Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; : 107802, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307300

RESUMO

Coronavirus relevancy for human health has surged over the past 20 years as they have a propensity for spillover into humans from animal reservoirs resulting in pandemics such as COVID-19. The diversity within the Coronavirinae subfamily and high infection frequency in animal species worldwide creates a looming threat that calls for research across all genera within the Coronavirinae subfamily. We sought to contribute to the limited structural knowledge within the Gammacoronavirus genera and determined the structure of the viral core replication-transcription complex (RTC) from Infectious Bronchitis Virus (IBV) using single-particle cryo-EM. Comparison between our IBV structure with published RTC structures from other Coronavirinae genera reveals structural differences across genera. Using in vitro biochemical assays, we characterized these differences and revealed their differing involvement in core RTC formation across different genera. Our findings highlight the value of cross-genera Coronavirinae studies, as they show genera specific features in coronavirus genome replication. A broader knowledge of coronavirus replication will better prepare us for future coronavirus spillovers.

2.
J Virol ; 98(3): e0194423, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421166

RESUMO

Since the first human infection reported in 2013, H7N9 avian influenza virus (AIV) has been regarded as a serious threat to human health. In this study, we sought to identify the virulence determinant of the H7N9 virus in mammalian hosts. By comparing the virulence of the SH/4664 H7N9 virus, a non-virulent H9N2 virus, and various H7N9-H9N2 hybrid viruses in infected mice, we first pinpointed PB2 as the primary viral factor accounting for the difference between H7N9 and H9N2 in mammalian virulence. We further analyzed the in vivo effects of individually mutating H7N9 PB2 residues different from the closely related H9N2 virus and consequently found residue 473, alongside the well-known residue 627, to be critical for the virulence of the H7N9 virus in mice and the activity of its reconstituted viral polymerase in mammalian cells. The importance of PB2-473 was further strengthened by studying reverse H7N9 substitutions in the H9N2 background. Finally, we surprisingly found that species-specific usage of ANP32A, a family member of host factors connecting with the PB2-627 polymorphism, mediates the contribution of PB2 473 residue to the mammalian adaption of AIV polymerase, as the attenuating effect of PB2 M473T on the viral polymerase activity and viral growth of the H7N9 virus could be efficiently complemented by co-expression of chicken ANP32A but not mouse ANP32A and ANP32B. Together, our studies uncovered the PB2 473 residue as a novel viral host range determinant of AIVs via species-specific co-opting of the ANP32 host factor to support viral polymerase activity.IMPORTANCEThe H7N9 avian influenza virus has been considered to have the potential to cause the next pandemic since the first case of human infection reported in 2013. In this study, we identified PB2 residue 473 as a new determinant of mouse virulence and mammalian adaptation of the viral polymerase of the H7N9 virus and its non-pathogenic H9N2 counterparts. We further demonstrated that the variation in PB2-473 is functionally linked to differential co-opting of the host ANP32A protein in supporting viral polymerase activity, which is analogous to the well-known PB2-627 polymorphism, albeit the two PB2 positions are spatially distant. By providing new mechanistic insight into the PB2-mediated host range determination of influenza A viruses, our study implicated the potential existence of multiple PB2-ANP32 interfaces that could be targets for developing new antivirals against the H7N9 virus as well as other mammalian-adapted influenza viruses.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Proteínas Nucleares , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Vírus da Influenza A Subtipo H9N2 , Influenza Humana/virologia , Mamíferos , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Virulência , Replicação Viral
3.
Antimicrob Agents Chemother ; 68(10): e0080024, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39162479

RESUMO

Small-molecule antivirals can be used as chemical probes to stabilize transitory conformational stages of viral target proteins, facilitating structural analyses. Here, we evaluate allosteric pneumo- and paramyxovirus polymerase inhibitors that have the potential to serve as chemical probes and aid the structural characterization of short-lived intermediate conformations of the polymerase complex. Of multiple inhibitor classes evaluated, we discuss in-depth distinct scaffolds that were selected based on well-understood structure-activity relationships, insight into resistance profiles, biochemical characterization of the mechanism of action, and photoaffinity-based target mapping. Each class is thought to block structural rearrangements of polymerase domains albeit target sites and docking poses are distinct. This review highlights validated druggable targets in the paramyxo- and pneumovirus polymerase proteins and discusses discrete structural stages of the polymerase complexes required for bioactivity.


Assuntos
Antivirais , Pneumovirus , Antivirais/farmacologia , Antivirais/química , Relação Estrutura-Atividade , Pneumovirus/efeitos dos fármacos , Humanos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteínas Virais/química
4.
J Virol ; 97(1): e0194122, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602364

RESUMO

Infectious bursal disease virus (IBDV) is a double-stranded RNA (dsRNA) virus belonging to the genus Avibirnavirus in the family Birnaviridae. It can cause serious failure of vaccination in young poultry birds with impaired immune systems. Post-translational modifications of the VP1 protein are essential for viral RNA transcription, genome replication, and viral multiplication. Little information is available so far regarding the exact mechanism of phosphorylation of IBDV VP1 and its significance in the viral life cycle. Here, we provide several lines of evidence that the cyclin-dependent kinase 1 (CDK1)-cyclin B1 complex phosphorylates VP1, which facilitates viral replication. We show that the CDK1-cyclin B1 specifically interacts with VP1 and phosphorylates VP1 on the serine 7 residue, located in the N-terminal 7SPAQ10 region, which follows the optimal phosphorylation motif of CDK1, p-S/T-P. Additionally, IBDV infection drives the cytoplasmic accumulation of CDK1-cyclin B1, which co-localizes with VP1, supporting the kinase activity of CDK1-cyclin B1. Treatment with CDK1 inhibitor RO3306 and knockdown of CDK1-cyclin B1 severely disrupts the polymerase activity of VP1, resulting in diminished viral replication. Moreover, the replication of S7A mutant recombinant IBDV was significantly decreased compared to that of wild-type (WT) IBDV. Thus, CDK1-cyclin B1 is a crucial enzyme which phosphorylates IBDV VP1 on serine 7, which is necessary both for the polymerase activity of VP1 and for viral replication. IMPORTANCE Infectious bursal disease virus still poses a great economic threat to the global poultry farming industry. Detailed information on the steps of viral genome replication is essential for the development of antiviral therapeutics. Phosphorylation is a common post-translational modification in several viral proteins. There is a lack of information regarding the significance of VP1 phosphorylation and its role in modulating the viral life cycle. In this study, we found that CDK1-cyclin B1 accumulates in the cytoplasm and phosphorylates VP1 on serine 7. The presence of a CDK1 inhibitor and the silencing of CDK1-cyclin B1 decrease IBDV replication. The mutation of VP1 serine 7 to alanine reduces VP1 polymerase activity, disrupting the viral life cycle, which suggests that this residue serves an essential function. Our study offers novel insights into the regulatory mechanism of VP1 phosphorylation.


Assuntos
Infecções por Birnaviridae , Proteína Quinase CDC2 , Ciclina B1 , Vírus da Doença Infecciosa da Bursa , Animais , Infecções por Birnaviridae/virologia , Proteína Quinase CDC2/metabolismo , Linhagem Celular , Galinhas , Ciclina B1/metabolismo , Vírus da Doença Infecciosa da Bursa/genética , Fosforilação , Proteínas Estruturais Virais/metabolismo , Replicação Viral/genética
5.
Curr Issues Mol Biol ; 45(8): 6851-6879, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37623252

RESUMO

The search for new drugs has been greatly accelerated by the emergence of new viruses and drug-resistant strains of known pathogens. Nucleoside analogues (NAs) are a prospective class of antivirals due to known safety profiles, which are important for rapid repurposing in the fight against emerging pathogens. Recent improvements in research methods have revealed new unexpected details in the mechanisms of action of NAs that can pave the way for new approaches for the further development of effective drugs. This review accounts advanced techniques in viral polymerase targeting, new viral and host enzyme targeting approaches, and prodrug-based strategies for the development of antiviral NAs.

6.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33827947

RESUMO

RNA viruses demonstrate a vast range of variants, called quasispecies, due to error-prone replication by viral RNA-dependent RNA polymerase. Although live attenuated vaccines are effective in preventing RNA virus infection, there is a risk of reversal to virulence after their administration. To test the hypothesis that high-fidelity viral polymerase reduces the diversity of influenza virus quasispecies, resulting in inhibition of reversal of the attenuated phenotype, we first screened for a high-fidelity viral polymerase using serial virus passages under selection with a guanosine analog ribavirin. Consequently, we identified a Leu66-to-Val single amino acid mutation in polymerase basic protein 1 (PB1). The high-fidelity phenotype of PB1-L66V was confirmed using next-generation sequencing analysis and biochemical assays with the purified influenza viral polymerase. As expected, PB1-L66V showed at least two-times-lower mutation rates and decreased misincorporation rates, compared to the wild type (WT). Therefore, we next generated an attenuated PB1-L66V virus with a temperature-sensitive (ts) phenotype based on FluMist, a live attenuated influenza vaccine (LAIV) that can restrict virus propagation by ts mutations, and examined the genetic stability of the attenuated PB1-L66V virus using serial virus passages. The PB1-L66V mutation prevented reversion of the ts phenotype to the WT phenotype, suggesting that the high-fidelity viral polymerase could contribute to generating an LAIV with high genetic stability, which would not revert to the pathogenic virus.IMPORTANCE The LAIV currently in use is prescribed for actively immunizing individuals aged 2 to 49 years. However, it is not approved for infants and elderly individuals, who actually need it the most, because it might prolong virus propagation and cause an apparent infection in these individuals, due to their weak immune systems. Recently, reversion of the ts phenotype of the LAIV strain currently in use to a pathogenic virus was demonstrated in cultured cells. Thus, the generation of mutations associated with enhanced virulence in LAIV should be considered. In this study, we isolated a novel influenza virus strain with a Leu66-to-Val single amino acid mutation in PB1 that displayed a significantly higher fidelity than the WT. We generated a novel LAIV candidate strain harboring this mutation. This strain showed higher genetic stability and no ts phenotype reversion. Thus, our high-fidelity strain might be useful for the development of a safer LAIV.


Assuntos
Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Vacinas contra Influenza , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/genética , Substituição de Aminoácidos , Animais , Antivirais/farmacologia , Cães , Farmacorresistência Viral , Vírus da Influenza A/efeitos dos fármacos , Células Madin Darby de Rim Canino , Mutação , Fenótipo , Engenharia de Proteínas , RNA Polimerase Dependente de RNA/química , Ribavirina/farmacologia , Vacinas Atenuadas , Ensaio de Placa Viral , Proteínas Virais/química , Proteínas Virais/metabolismo
7.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33408177

RESUMO

Influenza A virus (IAV) nonstructural protein 1 (NS1) is a protein with multiple functions that are regulated by phosphorylation. Phosphoproteomic screening of H1N1 virus-infected cells revealed that NS1 was phosphorylated at serine 205 in intermediate stages of the viral life cycle. Interestingly, S205 is one of six amino acid changes in NS1 of post-pandemic H1N1 viruses currently circulating in humans compared to the original swine-origin 2009 pandemic (H1N1pdm09) virus, suggesting a role in host adaptation. To identify NS1 functions regulated by S205 phosphorylation, we generated recombinant PR8 H1N1 NS1 mutants with S205G (nonphosphorylatable) or S205N (H1N1pdm09 signature), as well as H1N1pdm09 viruses harboring the reverse mutation NS1 N205S or N205D (phosphomimetic). Replication of PR8 NS1 mutants was attenuated relative to wild-type (WT) virus replication in a porcine cell line. However, PR8 NS1 S205N showed remarkably higher attenuation than PR8 NS1 S205G in a human cell line, highlighting a potential host-independent advantage of phosphorylatable S205, while an asparagine at this position led to a potential host-specific attenuation. Interestingly, PR8 NS1 S205G did not show polymerase activity-enhancing functions, in contrast to the WT, which can be attributed to diminished interaction with cellular restriction factor DDX21. Analysis of the respective kinase mediating S205 phosphorylation indicated an involvement of casein kinase 2 (CK2). CK2 inhibition significantly reduced the replication of WT viruses and decreased NS1-DDX21 interaction, as observed for NS1 S205G. In summary, NS1 S205 is required for efficient NS1-DDX21 binding, resulting in enhanced viral polymerase activity, which is likely to be regulated by transient phosphorylation.IMPORTANCE Influenza A viruses (IAVs) still pose a major threat to human health worldwide. As a zoonotic virus, IAV can spontaneously overcome species barriers and even reside in new hosts after efficient adaptation. Investigation of the functions of specific adaptational mutations can lead to a deeper understanding of viral replication in specific hosts and can probably help to find new targets for antiviral intervention. In the present study, we analyzed the role of NS1 S205, a phosphorylation site that was reacquired during the circulation of pandemic H1N1pdm09 "swine flu" in the human host. We found that phosphorylation of human H1N1 virus NS1 S205 is mediated by the cellular kinase CK2 and is needed for efficient interaction with human host restriction factor DDX21, mediating NS1-induced enhancement of viral polymerase activity. Therefore, targeting CK2 activity might be an efficient strategy for limiting the replication of IAVs circulating in the human population.


Assuntos
Vírus da Influenza A/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Serina/metabolismo , Proteínas não Estruturais Virais/metabolismo , Adaptação Fisiológica/genética , Animais , Caseína Quinase II/metabolismo , Linhagem Celular , RNA Helicases DEAD-box/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Mutação , Fosforilação , Ligação Proteica , Suínos , Proteínas não Estruturais Virais/genética , Replicação Viral
8.
J Biol Chem ; 295(48): 16436-16444, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32938715

RESUMO

The hepatitis C virus RNA-dependent RNA polymerase NS5B is responsible for the replication of the viral genome. Previous studies have uncovered NTP-mediated excision mechanisms that may be responsible for aiding in maintaining fidelity (the frequency of incorrect incorporation events relative to correct), but little is known about the fidelity of NS5B. In this study, we used transient-state kinetics to examine the mechanistic basis for polymerase fidelity. We observe a wide range of efficiency for incorporation of various mismatched base pairs and have uncovered a mechanism in which the rate constant for pyrophosphate release is slowed for certain misincorporation events. This results in an increase in fidelity against these specific misincorporations. Furthermore, we discover that some mismatches are highly unfavorable and cannot be observed under the conditions used here. The calculated fidelity of NS5B ranges between 10-4-10-9 for different mismatches.


Assuntos
Difosfatos/metabolismo , Hepacivirus/enzimologia , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Hepacivirus/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Proteínas não Estruturais Virais/genética
9.
J Biol Chem ; 295(31): 10624-10637, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32493771

RESUMO

Picornaviral RNA-dependent RNA polymerases (RdRPs) have low replication fidelity that is essential for viral fitness and evolution. Their global fold consists of the classical "cupped right hand" structure with palm, fingers, and thumb domains, and these RdRPs also possess a unique contact between the fingers and thumb domains. This interaction restricts movements of the fingers, and RdRPs use a subtle conformational change within the palm domain to close their active sites for catalysis. We have previously shown that this core RdRP structure and mechanism provide a platform for polymerases to fine-tune replication rates and fidelity to optimize virus fitness. Here, we further elucidated the structural basis for differences in replication rates and fidelity among different viruses by generating chimeric RdRPs from poliovirus and coxsackievirus B3. We designed these chimeric polymerases by exchanging the fingers, pinky finger, or thumb domains. The results of biochemical, rapid-quench, and stopped-flow assays revealed that differences in biochemical activity map to individual modular domains of this polymerase. We found that the pinky finger subdomain is a major regulator of initiation and that the palm domain is the major determinant of catalytic rate and nucleotide discrimination. We further noted that thumb domain interactions with product RNA regulate translocation and that the palm and thumb domains coordinately control elongation complex stability. Several RdRP chimeras supported the growth of infectious poliovirus, providing insights into enterovirus species-specific protein-protein interactions required for virus replication.


Assuntos
Enterovirus Humano B , Poliovirus , RNA Viral , RNA Polimerase Dependente de RNA , Proteínas Virais , Enterovirus Humano B/enzimologia , Enterovirus Humano B/genética , Células HeLa , Humanos , Poliovirus/enzimologia , Poliovirus/genética , Domínios Proteicos , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
J Biol Chem ; 295(47): 16156-16165, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32967965

RESUMO

Remdesivir (RDV) is a direct-acting antiviral agent that is used to treat patients with severe coronavirus disease 2019 (COVID-19). RDV targets the viral RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have previously shown that incorporation of the active triphosphate form of RDV (RDV-TP) at position i causes delayed chain termination at position i + 3. Here we demonstrate that the S861G mutation in RdRp eliminates chain termination, which confirms the existence of a steric clash between Ser-861 and the incorporated RDV-TP. With WT RdRp, increasing concentrations of NTP pools cause a gradual decrease in termination and the resulting read-through increases full-length product formation. Hence, RDV residues could be embedded in copies of the first RNA strand that is later used as a template. We show that the efficiency of incorporation of the complementary UTP opposite template RDV is compromised, providing a second opportunity to inhibit replication. A structural model suggests that RDV, when serving as the template for the incoming UTP, is not properly positioned because of a significant clash with Ala-558. The adjacent Val-557 is in direct contact with the template base, and the V557L mutation is implicated in low-level resistance to RDV. We further show that the V557L mutation in RdRp lowers the nucleotide concentration required to bypass this template-dependent inhibition. The collective data provide strong evidence to show that template-dependent inhibition of SARS-CoV-2 RdRp by RDV is biologically relevant.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Terminação da Transcrição Genética/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Modelos Químicos , Mutação , Nucleotídeos/metabolismo , SARS-CoV-2/genética , Moldes Genéticos , Replicação Viral/efeitos dos fármacos
11.
J Biol Chem ; 295(30): 10112-10124, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32457046

RESUMO

NS5B is the RNA-dependent RNA polymerase that catalyzes the replication of the hepatitis C virus genome. It is a major target for antiviral drugs including nucleoside analogs, such as the prodrugs mericitabine and sofosbuvir, which get metabolized to 2'-fluoro-2'C-methylcytidine-5'-triphosphate and 2'-fluoro-2'C-methyluridine-5'-triphosphate, respectively. These analogs act as chain terminators after they are incorporated during RNA synthesis. Recently, it has been shown that NS5B can efficiently remove chain terminators by a nucleotide-mediated excision reaction that rescues RNA synthesis. In this study, we use transient-state kinetics to understand the efficiency of inhibition for five nucleoside analogs. We show that CTP analogs are readily incorporated into a growing primer by NS5B but are also efficiently excised. In contrast, although UMP analogs are more slowly incorporated, the excision of UMP is slow and inefficient, and modifications to the 2'-carbon of the UTP ribose ring further decreased rates of excision to an undetectable level. Taken together, these data suggest that the clinical effectiveness of sofosbuvir is largely a function of being intractable to nucleotide-mediated excision compared with similar nucleoside analogs.


Assuntos
Citidina Trifosfato , Hepacivirus/enzimologia , RNA Viral/química , RNA Polimerase Dependente de RNA , Proteínas não Estruturais Virais/química , Citidina Trifosfato/análogos & derivados , Citidina Trifosfato/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química
12.
J Biol Chem ; 295(15): 4773-4779, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094225

RESUMO

Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome-coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectrum of antiviral activities against RNA viruses, including severe acute respiratory syndrome-CoV and Middle East respiratory syndrome (MERS-CoV). RDV is a nucleotide analog inhibitor of RNA-dependent RNA polymerases (RdRps). Here, we co-expressed the MERS-CoV nonstructural proteins nsp5, nsp7, nsp8, and nsp12 (RdRp) in insect cells as a part a polyprotein to study the mechanism of inhibition of MERS-CoV RdRp by RDV. We initially demonstrated that nsp8 and nsp12 form an active complex. The triphosphate form of the inhibitor (RDV-TP) competes with its natural counterpart ATP. Of note, the selectivity value for RDV-TP obtained here with a steady-state approach suggests that it is more efficiently incorporated than ATP and two other nucleotide analogs. Once incorporated at position i, the inhibitor caused RNA synthesis arrest at position i + 3. Hence, the likely mechanism of action is delayed RNA chain termination. The additional three nucleotides may protect the inhibitor from excision by the viral 3'-5' exonuclease activity. Together, these results help to explain the high potency of RDV against RNA viruses in cell-based assays.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/farmacologia , Animais , Antivirais/química , Coronavirus/enzimologia , Ebolavirus/enzimologia , Expressão Gênica , Inibidores da Síntese de Ácido Nucleico/química , RNA , RNA Polimerase Dependente de RNA/genética , Células Sf9 , Proteínas não Estruturais Virais/genética
13.
Virol J ; 18(1): 230, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809668

RESUMO

BACKGROUND: In 2011, a new influenza virus, named Influenza D Virus (IDV), was isolated from pigs, and then cattle, presenting influenza-like symptoms. IDV is one of the causative agents of Bovine Respiratory Disease (BRD), which causes high morbidity and mortality in feedlot cattle worldwide. To date, the molecular mechanisms of IDV pathogenicity are unknown. Recent IDV outbreaks in cattle, along with serological and genetic evidence of IDV infection in humans, have raised concerns regarding the zoonotic potential of this virus. Influenza virus polymerase is a determining factor of viral pathogenicity to mammals. METHODS: Here we take a prospective approach to this question by creating a random mutation library about PB2 subunit of the IDV viral polymerase to test which amino acid point mutations will increase viral polymerase activity, leading to increased pathogenicity of the virus. RESULTS: Our work shows some exact sites that could affect polymerase activities in influenza D viruses. For example, two single-site mutations, PB2-D533S and PB2-G603Y, can independently increase polymerase activity. The PB2-D533S mutation alone can increase the polymerase activity by 9.92 times, while the PB2-G603Y mutation increments the activity by 8.22 times. CONCLUSION: Taken together, our findings provide important insight into IDV replication fitness mediated by the PB2 protein, increasing our understanding of IDV replication and pathogenicity and facilitating future studies.


Assuntos
Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Aminoácidos/genética , Animais , Bovinos , Mutação , Suínos , Thogotovirus/genética , Replicação Viral
14.
J Biol Chem ; 294(20): 8088-8100, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30926610

RESUMO

The L protein of arena- and bunyaviruses is structurally and functionally related to the orthomyxovirus polymerase complex. It plays a central role in the viral life cycle, as it replicates the virus genome and generates viral mRNA via a cap-snatching mechanism. Here, we aimed to biochemically characterize the L protein of Lassa virus, a human-pathogenic arenavirus endemic in West Africa. Full-length 250-kDa L protein was expressed using a baculovirus expression system. A low-resolution structure calculated from small-angle X-ray scattering data revealed a conformation similar to that in the crystal structure of the orthomyxovirus polymerase complex. Although the L protein did not exhibit cap-snatching endonuclease activity, it synthesized RNA in vitro RNA polymerization required manganese rather than magnesium ions, was independent of nucleotide primers, and was inhibited by viral Z protein. Maximum activity was mediated by double-stranded promoter sequences with a minimum length of 17 nucleotides, containing a nontemplated 5'-G overhang, as in the natural genome context, as well as the naturally occurring base mismatches between the complementary promoter strands. Experiments with various short primers revealed the presence of two replication initiation sites at the template strand and evidence for primer translocation as proposed by the prime-and-realign hypothesis. Overall, our findings provide the foundation for a detailed understanding of the mechanistic differences and communalities in the polymerase proteins of segmented negative-strand RNA viruses and for the search for antiviral compounds targeting the RNA polymerase of Lassa virus.


Assuntos
Vírus Lassa , Regiões Promotoras Genéticas , RNA Viral , DNA Polimerase Dirigida por RNA , Proteínas Virais , Cristalografia por Raios X , Humanos , Vírus Lassa/enzimologia , Vírus Lassa/genética , RNA Viral/biossíntese , RNA Viral/química , RNA Viral/genética , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
J Biol Chem ; 294(13): 5023-5037, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30723154

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne Nairovirus that causes severe hemorrhagic fever with a mortality rate of up to 30% in certain outbreaks worldwide. The virus has wide endemic distribution. There is no effective antiviral therapeutic or FDA approved vaccine for this zoonotic viral illness. The multifunctional CCHFV nucleocapsid protein (N protein) plays a crucial role in the establishment of viral infection and is an important structural component of the virion. Here we show that CCHFV N protein has a distant RNA-binding site in the stalk domain that specifically recognizes the vRNA panhandle, formed by the base pairing of complementary nucleotides at the 5' and 3' termini of the vRNA genome. Using multiple approaches, including filter-bonding analysis, GFP reporter assay, and biolayer interferometry we observed an N protein-panhandle interaction both in vitro and in vivo The purified WT CCHFV N protein and the stalk domain also recognize the vRNA panhandle of hazara virus, another Nairovirus in the family Bunyaviridae, demonstrating the genus-specific nature of N protein-panhandle interaction. Another RNA-binding site was identified at the head domain of CCHFV N protein that nonspecifically recognizes the single strand RNA (ssRNA) of viral or nonviral origin. Expression of CCHFV N protein stalk domain active in panhandle binding, dramatically inhibited the hazara virus replication in cell culture, illustrating the role of N protein-panhandle interaction in Nairovirus replication. Our findings reveal the stalk domain of N protein as a potential target in therapeutic interventions to manage CCHFV disease.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/virologia , Proteínas do Nucleocapsídeo/metabolismo , RNA/metabolismo , Sítios de Ligação , Vírus da Febre Hemorrágica da Crimeia-Congo/química , Febre Hemorrágica da Crimeia/metabolismo , Humanos , Modelos Moleculares , Nairovirus/química , Nairovirus/fisiologia , Proteínas do Nucleocapsídeo/química , Domínios Proteicos , Replicação Viral
16.
J Biol Chem ; 294(19): 7573-7587, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30867194

RESUMO

RNA viruses synthesize new genomes in the infected host thanks to dedicated, virally-encoded RNA-dependent RNA polymerases (RdRps). As such, these enzymes are prime targets for antiviral therapy, as has recently been demonstrated for hepatitis C virus (HCV). However, peculiarities in the architecture and dynamics of RdRps raise fundamental questions about access to their active site during RNA polymerization. Here, we used molecular modeling and molecular dynamics simulations, starting from the available crystal structures of HCV NS5B in ternary complex with template-primer duplexes and nucleotides, to address the question of ribonucleotide entry into the active site of viral RdRp. Tracing the possible passage of incoming UTP or GTP through the RdRp-specific entry tunnel, we found two successive checkpoints that regulate nucleotide traffic to the active site. We observed that a magnesium-bound nucleotide first binds next to the tunnel entry, and interactions with the triphosphate moiety orient it such that its base moiety enters first. Dynamics of RdRp motifs F1 + F3 then allow the nucleotide to interrogate the RNA template base prior to nucleotide insertion into the active site. These dynamics are finely regulated by a second magnesium dication, thus coordinating the entry of a magnesium-bound nucleotide with shuttling of the second magnesium necessary for the two-metal ion catalysis. The findings of our work suggest that at least some of these features are general to viral RdRps and provide further details on the original nucleotide selection mechanism operating in RdRps of RNA viruses.


Assuntos
Guanosina Trifosfato/química , Hepacivirus/enzimologia , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA/química , Uridina Trifosfato/química , Proteínas não Estruturais Virais/química , Motivos de Aminoácidos , Domínio Catalítico , Guanosina Trifosfato/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Uridina Trifosfato/metabolismo , Proteínas não Estruturais Virais/metabolismo
17.
J Biol Chem ; 294(45): 16897-16907, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31575662

RESUMO

The 2'-C-methyl ribonucleosides are nucleoside analogs representing an important class of antiviral agents, especially against positive-strand RNA viruses. Their value is highlighted by the highly successful anti-hepatitis C drug sofosbuvir. When appropriately phosphorylated, these nucleotides are successfully incorporated into RNA by the virally encoded RNA-dependent RNA polymerase (RdRp). This activity prevents further RNA extension, but the mechanism is poorly characterized. Previously, we had identified NMR signatures characteristic of formation of RdRp-RNA binary and RdRp-RNA-NTP ternary complexes for the poliovirus RdRp, including an open-to-closed conformational change necessary to prepare the active site for catalysis of phosphoryl transfer. Here we used these observations as a framework for interpreting the effects of 2'-C-methyl adenosine analogs on RNA chain extension in solution-state NMR spectroscopy experiments, enabling us to gain additional mechanistic insights into 2'-C-methyl ribonucleoside-mediated RNA chain termination. Contrary to what has been proposed previously, poliovirus RdRp that was bound to RNA with an incorporated 2'-C-methyl nucleotide could still bind to the next incoming NTP. Our results also indicated that incorporation of the 2'-C-methyl nucleotide does not disrupt RdRp-RNA interactions and does not prevent translocation. Instead, incorporation of the 2'-C-methyl nucleotide blocked closure of the RdRp active site upon binding of the next correct incoming NTP, which prevented further nucleotide addition. We propose that other nucleotide analogs that act as nonobligate chain terminators may operate through a similar mechanism.


Assuntos
Domínio Catalítico , Nucleotídeos/metabolismo , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Sequência de Bases , Ligantes , Metilação , Modelos Moleculares , RNA Viral/química , RNA Viral/metabolismo , Replicação Viral/genética
18.
J Biol Chem ; 294(51): 19764-19784, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31712313

RESUMO

The reverse transcriptases (RTs) encoded by mobile group II introns and other non-LTR retroelements differ from retroviral RTs in being able to template-switch efficiently from the 5' end of one template to the 3' end of another with little or no complementarity between the donor and acceptor templates. Here, to establish a complete kinetic framework for the reaction and to identify conditions that more efficiently capture acceptor RNAs or DNAs, we used a thermostable group II intron RT (TGIRT; GsI-IIC RT) that can template switch directly from synthetic RNA template/DNA primer duplexes having either a blunt end or a 3'-DNA overhang end. We found that the rate and amplitude of template switching are optimal from starter duplexes with a single nucleotide 3'-DNA overhang complementary to the 3' nucleotide of the acceptor RNA, suggesting a role for nontemplated nucleotide addition of a complementary nucleotide to the 3' end of cDNAs synthesized from natural templates. Longer 3'-DNA overhangs progressively decreased the template-switching rate, even when complementary to the 3' end of the acceptor template. The reliance on only a single bp with the 3' nucleotide of the acceptor together with discrimination against mismatches and the high processivity of group II intron RTs enable synthesis of full-length DNA copies of nucleic acids beginning directly at their 3' end. We discuss the possible biological functions of the template-switching activity of group II intron- and other non-LTR retroelement-encoded RTs, as well as the optimization of this activity for adapter addition in RNA- and DNA-Seq protocols.


Assuntos
Íntrons , Nucleotídeos/genética , DNA Polimerase Dirigida por RNA/metabolismo , RNA-Seq/métodos , Retroelementos/genética , Moldes Genéticos , Animais , Primers do DNA , Elementos de DNA Transponíveis , Teste de Complementação Genética , Insetos , Cinética , RNA/genética , Retroviridae/genética , Temperatura , Sequenciamento do Exoma
19.
J Biol Chem ; 294(15): 5759-5773, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755480

RESUMO

Hepatitis C virus (HCV) establishes a chronic infection that can lead to cirrhosis and hepatocellular carcinoma. The HCV life cycle is closely associated with host factors that promote or restrict viral replication, the characterization of which could help to identify potential therapeutic targets. To this end, here we performed a genome-wide microarray analysis and identified ribonucleotide reductase M2 (RRM2) as a cellular factor essential for HCV replication. We found that RRM2 is up-regulated in response to HCV infection in quiescent hepatocytes from humanized chimeric mouse livers. To elucidate the molecular basis of RRM2 expression in HCV-infected cells, we used HCV-infected hepatocytes from chimeric mice and hepatoma cells infected with the HCV strain JFH1. Both models exhibited increased RRM2 mRNA and protein expression levels. Moreover, siRNA-mediated silencing of RRM2 suppressed HCV replication and infection. Of note, RRM2 and RNA polymerase nonstructural protein 5B (NS5B) partially co-localized in cells and co-immunoprecipitated, suggesting that they might interact. RRM2 knockdown reduced NS5B expression, which depended on the protein degradation pathway, as NS5B RNA levels did not decrease and NS5B protein stability correlated with RRM2 protein levels. We also found that RRM2 silencing decreased levels of hPLIC1 (human homolog 1 of protein linking integrin-associated protein and cytoskeleton), a ubiquitin-like protein that interacts with NS5B and promotes its degradation. This finding suggests that there is a dynamic interplay between RRM2 and the NS5B-hPLIC1 complex that has an important function in HCV replication. Together, these results identify a role of host RRM2 in viral RNA replication.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Hepacivirus/fisiologia , Hepatite C Crônica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ribonucleosídeo Difosfato Redutase/biossíntese , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Regulação Enzimológica da Expressão Gênica , Hepatite C Crônica/genética , Hepatite C Crônica/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Camundongos , Camundongos SCID , Camundongos Transgênicos , Complexo de Endopeptidases do Proteassoma/genética , Estabilidade Proteica , Proteólise , Ribonucleosídeo Difosfato Redutase/genética , Ubiquitinação/genética , Proteínas não Estruturais Virais/genética
20.
Biochem Biophys Res Commun ; 526(4): 1143-1149, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32327257

RESUMO

In this study, we examined the impact of roscovitine, a cyclin-dependent kinase inhibitor (CDKI) that has entered phase I and II clinical trials, on influenza A viruses (IAVs) and its antiviral mechanism. The results illustrated that roscovitine inhibited multiple subtypes of influenza strains dose-dependently, including A/WSN/1933(H1N1), A/Aichi/2/68 (H3N2) and A/FM1/47 (H1N1) with IC50 value of 3.35 ± 0.39, 7.01 ± 1.84 and 5.99 ± 1.89 µM, respectively. Moreover, roscovitine suppressed the gene transcription and genome replication steps in the viral life cycle. Further mechanistic studies indicated that roscovitine reduced viral polymerase activity and bound specifically to the viral PB2cap protein by fluorescence polarization assay (FP) and surface plasmon resonance (SPR). Therefore, we believed roscovitine, as a PB2cap inhibitor, was a prospective antiviral agent to be developed as therapeutic treatment against influenza A virus infection.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Roscovitina/farmacologia , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , RNA Polimerases Dirigidas por DNA/metabolismo , Cães , Genoma Viral , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Inibidores de Proteínas Quinases/química , Roscovitina/química , Transcrição Gênica/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA