Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.599
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 453-481, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36750319

RESUMO

The innate immune system detects pathogens via germline-encoded receptors that bind to conserved pathogen ligands called pathogen-associated molecular patterns (PAMPs). Here we consider an additional strategy of pathogen sensing called effector-triggered immunity (ETI). ETI involves detection of pathogen-encoded virulence factors, also called effectors. Pathogens produce effectors to manipulate hosts to create a replicative niche and/or block host immunity. Unlike PAMPs, effectors are often diverse and rapidly evolving and can thus be unsuitable targets for direct detection by germline-encoded receptors. Effectors are instead often sensed indirectly via detection of their virulence activities. ETI is a viable strategy for pathogen sensing and is used across diverse phyla, including plants, but the molecular mechanisms of ETI are complex compared to simple receptor/ligand-based PAMP detection. Here we survey the mechanisms and functions of ETI, with a particular focus on emerging insights from animal studies. We suggest that many examples of ETI may remain to be discovered, hiding in plain sight throughout immunology.


Assuntos
Reconhecimento da Imunidade Inata , Moléculas com Motivos Associados a Patógenos , Humanos , Animais , Moléculas com Motivos Associados a Patógenos/metabolismo , Virulência
2.
Cell ; 187(9): 2095-2116, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670067

RESUMO

Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.


Assuntos
Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas/imunologia , Plantas/genética , Resistência à Doença/genética , Humanos
3.
Mol Cell ; 80(2): 210-226.e7, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002424

RESUMO

Many bacterial pathogens regulate their virulence genes via phase variation, whereby length-variable simple sequence repeats control the transcription or coding potential of those genes. Here, we have exploited this relationship between DNA structure and physiological function to discover a globally acting small RNA (sRNA) regulator of virulence in the gastric pathogen Helicobacter pylori. Our study reports the first sRNA whose expression is affected by a variable thymine (T) stretch in its promoter. We show the sRNA post-transcriptionally represses multiple major pathogenicity factors of H. pylori, including CagA and VacA, by base pairing to their mRNAs. We further demonstrate transcription of the sRNA is regulated by the nickel-responsive transcriptional regulator NikR (thus named NikS for nickel-regulated sRNA), thereby linking virulence factor regulation to nickel concentrations. Using in-vitro infection experiments, we demonstrate NikS affects host cell internalization and epithelial barrier disruption. Together, our results show NikS is a phase-variable, post-transcriptional global regulator of virulence properties in H. pylori.


Assuntos
Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , RNA Bacteriano/genética , Sequências Repetitivas de Ácido Nucleico/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Contagem de Colônia Microbiana , Endocitose/efeitos dos fármacos , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Helicobacter pylori/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Níquel/farmacologia , Fenótipo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
4.
Trends Genet ; 40(7): 555-557, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38688811

RESUMO

Bacteriophages and plasmids drive horizontal gene transfer (HGT) in bacteria. Phage-plasmids (P-Ps) are hybrids of plasmid and phages. Pfeifer and Rocha recently demonstrated that P-Ps can serve as intermediates in gene exchanges between these two types of elements, identified categories of preferentially transferred genes, and reconstructed gene flows involving phage P1-like P-Ps.


Assuntos
Bacteriófagos , Transferência Genética Horizontal , Plasmídeos , Bactérias/genética , Bactérias/virologia , Bacteriófagos/genética , Transferência Genética Horizontal/genética , Plasmídeos/genética
5.
Mol Cell ; 69(4): 539-550.e6, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452635

RESUMO

Microbial or endogenous molecular patterns as well as pathogen functional features can activate innate immune systems. Whereas detection of infection by pattern recognition receptors has been investigated in details, sensing of virulence factors activities remains less characterized. In Drosophila, genetic evidences indicate that the serine protease Persephone belongs to a danger pathway activated by abnormal proteolytic activities to induce Toll signaling. However, neither the activation mechanism of this pathway nor its specificity has been determined. Here, we identify a unique region in the pro-domain of Persephone that functions as bait for exogenous proteases independently of their origin, type, or specificity. Cleavage in this bait region constitutes the first step of a sequential activation and licenses the subsequent maturation of Persephone to the endogenous cysteine cathepsin 26-29-p. Our results establish Persephone itself as an immune receptor able to sense a broad range of microbes through virulence factor activities rather than molecular patterns.


Assuntos
Beauveria/enzimologia , Proteínas de Drosophila/imunologia , Drosophila melanogaster/imunologia , Imunidade Inata/imunologia , Receptores Imunológicos/metabolismo , Serina Endopeptidases/imunologia , Serina Proteases/imunologia , Receptores Toll-Like/imunologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Proteólise , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo
6.
Clin Microbiol Rev ; 37(2): e0012123, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38466110

RESUMO

SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.


Assuntos
Infecções por Bactérias Gram-Positivas , Fatores de Virulência , Humanos , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Fatores de Virulência/genética , Animais , Farmacorresistência Bacteriana , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Enterococcus/patogenicidade , Enterococcus/efeitos dos fármacos , Enterococcus/genética , Virulência
7.
Clin Microbiol Rev ; : e0011823, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899876

RESUMO

SUMMARYStaphylococcus capitis is divided into two subspecies, S. capitis subsp. ureolyticus (renamed urealyticus in 1992; ATCC 49326) and S. capitis subsp. capitis (ATCC 27840), and fits with the archetype of clinically relevant coagulase-negative staphylococci (CoNS). S. capitis is a commensal bacterium of the skin in humans, which must be considered an opportunistic pathogen of interest particularly as soon as it is identified in a clinically relevant specimen from an immunocompromised patient. Several studies have highlighted the potential determinants underlying S. capitis pathogenicity, resistance profiles, and virulence factors. In addition, mobile genetic element acquisitions and mutations contribute to S. capitis genome adaptation to its environment. Over the past decades, antibiotic resistance has been identified for S. capitis in almost all the families of the currently available antibiotics and is related to the emergence of multidrug-resistant clones of high clinical significance. The present review summarizes the current knowledge concerning the taxonomic position of S. capitis among staphylococci, the involvement of this species in human colonization and diseases, the virulence factors supporting its pathogenicity, and the phenotypic and genomic antimicrobial resistance profiles of this species.

8.
Trends Immunol ; 43(12): 1006-1017, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36369102

RESUMO

Effector-triggered immunity (ETI) is a common defense strategy used by mammalian host cells that is engaged upon detection of the enzymatic activities of pathogen-encoded proteins or the effects of their expression on cellular homeostasis. However, in contrast to the effector-triggered responses engaged upon bacterial infection, much less is understood about the activation and consequences of these responses following viral infection. Several recent studies have identified novel mechanisms by which viruses engage ETI, highlighting the importance of these immune responses in antiviral defense. We summarize recent advances in understanding how mammalian cells sense virus-encoded effector proteins, the downstream signaling pathways that are triggered by these sensing events, and how viruses manipulate these pathways to become more successful pathogens.


Assuntos
Antivirais , Infecções Bacterianas , Animais , Humanos , Transdução de Sinais , Imunidade Inata , Interações Hospedeiro-Patógeno , Mamíferos
9.
FASEB J ; 38(6): e23566, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38526868

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, a chronic pathology that affects the heart and/or digestive system. This parasite invades and multiplies in virtually all nucleated cells, using a variety of host cell receptors for infection. T. cruzi has a gene that encodes an ecotin-like inhibitor of serine peptidases, ISP2. We generated ISP2-null mutants (Δisp2) in T. cruzi Dm28c using CRISPR/Cas9. Epimastigotes of Δisp2 grew normally in vitro but were more susceptible to lysis by human serum compared to parental and ISP2 add-back lines. Tissue culture trypomastigotes of Δisp2 were more infective to human muscle cells in vitro, which was reverted by the serine peptidase inhibitors aprotinin and camostat, suggesting that host cell epitheliasin/TMPRSS2 is the target of ISP2. Pretreatment of host cells with an antagonist to the protease-activated receptor 2 (PAR2) or an inhibitor of Toll-like receptor 4 (TLR4) selectively counteracted the increased cell invasion by Δisp2, but did not affect invasion by parental and add-back lines. The same was observed following targeted gene silencing of PAR2, TLR4 or TMPRSS2 in host cells by siRNA. Furthermore, Δisp2 caused increased tissue edema in a BALB/c mouse footpad infection model after 3 h differently to that observed following infection with parental and add-back lines. We propose that ISP2 contributes to protect T. cruzi from the anti-microbial effects of human serum and to prevent triggering of PAR2 and TLR4 in host cells, resulting in the modulation of host cell invasion and contributing to decrease inflammation during acute infection.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Camundongos , Humanos , Receptor 4 Toll-Like/genética , Receptor PAR-2/genética , Doença de Chagas/genética , Doença de Chagas/parasitologia , Antivirais/farmacologia , Inibidores de Serina Proteinase/farmacologia , Inflamação , Serina , Serina Endopeptidases/genética
10.
Drug Resist Updat ; 72: 101029, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38071861

RESUMO

Mycoplasma hominis, a commensal bacterium that commonly inhabits the genital tract, leading to infections in both the genitourinary and extragenital regions. However, the antimicrobial resistance and pathogenic mechanisms of M. hominis isolated from extra-urogenital cystic abscess is largely unknown. This study reports the genomic epidemiological characteristics of a M. hominis isolate recovered from a pelvic abscess sample in China. Genomic DNA was extracted and sequenced using Illumina HiSeq X Ten platform. De novo assembly was performed and in silico analysis was accomplished by multiple bioinformatics tools. For phylogenomic analysis, publicly available M. hominis genomes were retrieved from NCBI GenBank database. Whole genome sequencing data showed that the genome size of M. hominis MH4246 was calculated as 679,746 bp, with 558 protein-coding sequences and a G + C content of 26.9%. M. hominis MH4246 is resistant to fluoroquinolones and macrolides, harboring mutations in the quinolone resistance-determining regions (QRDRs) (GyrA S153L, ParC S91I and ParE V417I) and 23S rRNA gene (G280A, C1500T, T1548C and T2218C). Multiple virulence determinants, such as tuf, hlyA, vaa, oppA, MHO_0730 and alr genes, were identified. Phylogenetic analysis showed that the closest relative of M. hominis MH4246 was the strain MH-1 recovered from China, which differed by 3490 SNPs. Overall, this study contributes to the comprehension of genomic characteristics, antimicrobial resistance patterns, and the mechanisms underlying the pathogenicity of this pathogen.


Assuntos
Abscesso , Mycoplasma hominis , Humanos , Mycoplasma hominis/genética , Filogenia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico
11.
J Infect Dis ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869193

RESUMO

BACKGROUND: This study sought to investigate associations between a virulence factors and phylogeny in all neonatal E. coli bloodstream infections from patients admitted to the neonatal intensive care unit at Uppsala University Hospital between 2005 to 2020. METHODS: A total of 37 E. coli isolates from 32 neonates were whole genome sequenced and analysed for virulence factors related to extraintestinal E. coli, patient-related data were collected retrospectively in the medical records. RESULTS: E. coli isolates that belong to phylogroup B2 were associated with mortality (OR 26, p < 0.001), extreme prematurity with delivery before gestational week 28 (OR 9, p < 0.05) and shock (OR 9, p < 0.05) compared with isolates of non-B2 group. Female neonates were more often infected by isolates of phylogroup B2 E. coli compared with male neonates (OR 7, p = 0.05). The identification of the genotoxin determinant clb coding for colibactin exhibited strong associations with mortality (OR 67, p < 0.005), gestational age (OR 18, p < 0.005), and shock (OR 26, p < 0.005). DISCUSSION: The study highlighted the correlation between neonatal E. coli bacteraemia caused by phylogroup B2 and the role of colibactin. Moreover, it emphasised sex-based differences in bloodstream infections among the bacterial population of E. coli.

12.
J Proteome Res ; 23(5): 1666-1678, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38644792

RESUMO

Bordetella pertussis persists inside host cells, and virulence factors are crucial for intracellular adaptation. The regulation of B. pertussis virulence factor transcription primarily occurs through the modulation of the two-component system (TCS) known as BvgAS. However, additional regulatory systems have emerged as potential contributors to virulence regulation. Here, we investigate the impact of BP1092, a putative TCS histidine kinase that shows increased levels after bacterial internalization by macrophages, on B. pertussis proteome adaptation under nonmodulating (Bvg+) and modulating (Bvg-) conditions. Using mass spectrometry, we compare B. pertussis wild-type (wt), a BP1092-deficient mutant (ΔBP1092), and a ΔBP1092 trans-complemented strain under both conditions. We find an altered abundance of 10 proteins, including five virulence factors. Specifically, under nonmodulating conditions, the mutant strain showed decreased levels of FhaB, FhaS, and Cya compared to the wt. Conversely, under modulating conditions, the mutant strain exhibited reduced levels of BvgA and BvgS compared to those of the wt. Functional assays further revealed that the deletion of BP1092 gene impaired B. pertussis ability to survive within human macrophage THP-1 cells. Taken together, our findings allow us to propose BP1092 as a novel player involved in the intricate regulation of B. pertussis virulence factors and thus in adaptation to the intracellular environment. The data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD041940.


Assuntos
Proteínas de Bactérias , Bordetella pertussis , Histidina Quinase , Bordetella pertussis/patogenicidade , Bordetella pertussis/genética , Histidina Quinase/metabolismo , Histidina Quinase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/genética , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Humanos , Proteoma , Fatores de Virulência de Bordetella/genética , Fatores de Virulência de Bordetella/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Viabilidade Microbiana
13.
Infect Immun ; 92(8): e0019324, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38990045

RESUMO

Immunoglobulin A1 (IgA1) protease is a critical virulence factor of Haemophilus influenzae that facilitates bacterial mucosal infection. This study investigates the effect of iga gene polymorphism on the enzymatic activity of H. influenzae IgA1 protease. The IgA1 protease activity was examined in the H. influenzae Rd KW20 strain and 51 isolates. Genetic variations in iga and deduced amino acid substitutions affecting IgA1 protease activity were assessed. Machine learning tools and functional complementation assays were used to analyze the effects of identified substitutions on the stability and activity of IgA1 protease, respectively. All 51 isolates exhibited similar iga expression levels. No igaB expression was detected. According to comparisons with the reference Rd KW20 strain, four substitutions in the protease domain, 26 in the nonprotease passenger domain, and two in the ß-barrel domain were associated with the change in IgA1 protease activity. No substitutions in the catalytic site of IgA1 protease were observed. Logistic regression, receiver operating characteristic curves, Venn diagrams, and protein stability analyses revealed that the substitutions Asn352Lys, Pro353Ala, Lys356Asn, Gln916Lys, and Gly917Ser, which were located in the nonactive site of the passenger domain, were associated with decreases in IgA1 protease activity and stability, whereas Asn914Lys was associated with an increase in these events. Functional complementation assays revealed that the Asn914Lys substitution increased IgA1 protease activity in the Rd KW20 strain. This study identified substitutions in the nonactive site of the passenger domain that affect both the activity and stability of H. influenzae IgA1 protease.


Assuntos
Haemophilus influenzae , Haemophilus influenzae/genética , Haemophilus influenzae/enzimologia , Humanos , Substituição de Aminoácidos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/química , Imunoglobulina A/metabolismo , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
14.
Infect Immun ; 92(6): e0010324, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38722168

RESUMO

Candida auris is an opportunistic fungal pathogen with high mortality rates which presents a clear threat to public health. The risk of C. auris infection is high because it can colonize the body, resist antifungal treatment, and evade the immune system. The genetic mechanisms for these traits are not well known. Identifying them could lead to new targets for new treatments. To this end, we present an analysis of the genetics and gene expression patterns of C. auris carbon metabolism, drug resistance, and macrophage interaction. We chose to study two C. auris isolates simultaneously, one drug sensitive (B11220 from Clade II) and one drug resistant (B11221 from Clade III). Comparing the genomes, we confirm the previously reported finding that B11220 was missing a 12.8 kb region on chromosome VI. This region contains a gene cluster encoding proteins related to alternative sugar utilization. We show that B11221, which has the gene cluster, readily assimilates and utilizes D-galactose and L-rhamnose as compared to B11220, which harbors the deletion. B11221 exhibits increased adherence and drug resistance compared to B11220 when grown in these sugars. Transcriptomic analysis of both isolates grown on glucose or galactose showed that the gene cluster was upregulated when grown on D-galactose. These findings reinforce growing evidence of a link between metabolism and drug tolerance. B11221 resists phagocytosis by macrophages and exhibits decreased ß-1,3-glucan exposure, a key determinant that allows Candida to evade the host immune system, as compared to B11220. In a transcriptomic analysis of both isolates co-cultured with macrophages, we find upregulation of genes associated with transport and transcription factors in B11221. Our studies show a positive correlation between membrane composition and immune evasion, alternate sugar utilization, and drug tolerance in C. auris.


Assuntos
Antifúngicos , Candida auris , Virulência/genética , Candida auris/genética , Candida auris/efeitos dos fármacos , Antifúngicos/farmacologia , Candidíase/microbiologia , Candidíase/imunologia , Farmacorresistência Fúngica/genética , Genoma Fúngico , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , Regulação Fúngica da Expressão Gênica , Perfilação da Expressão Gênica , Animais
15.
Clin Infect Dis ; 78(1): 31-39, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-37633257

RESUMO

BACKGROUND: The clinical and microbial factors associated with Klebsiella pneumoniae bloodstream infections (BSIs) are not well characterized. Prior studies have focused on highly resistant or hypervirulent isolates, limiting our understanding of K. pneumoniae strains that commonly cause BSI. We performed a record review and whole-genome sequencing to investigate the clinical characteristics, bacterial diversity, determinants of antimicrobial resistance, and risk factors for in-hospital death in a cohort of patients with K. pneumoniae BSI. METHODS: We identified 562 patients at Massachusetts General Hospital with K. pneumoniae BSIs between 2016 and 2022. We collected data on comorbid conditions, infection source, clinical outcomes, and antibiotic resistance and performed whole-genome sequencing on 108 sequential BSI isolates from 2021 to 2022. RESULTS: Intra-abdominal infection was the most common source of infection accounting for 34% of all BSIs. A respiratory tract source accounted for 6% of BSIs but was associated with a higher in-hospital mortality rate (adjusted odds ratio, 5.4 [95% confidence interval, 2.2-12.8]; P < .001 for comparison with other sources). Resistance to the first antibiotic prescribed was also associated with a higher risk of death (adjusted odds ratio, 5.2 [95% confidence interval, 2.2-12.4]; P < .001). BSI isolates were genetically diverse, and no clusters of epidemiologically and genetically linked cases were observed. Virulence factors associated with invasiveness were observed at a low prevalence, although an unexpected association between O-antigen type and the source of infection was found. CONCLUSIONS: These observations demonstrate the versatility of K. pneumoniae as an opportunistic pathogen and highlight the need for new approaches for surveillance and the rapid identification of patients with invasive antimicrobial-resistant K. pneumoniae infection.


Assuntos
Bacteriemia , Infecção Hospitalar , Infecções por Klebsiella , Sepse , Humanos , Klebsiella pneumoniae , Infecção Hospitalar/epidemiologia , Mortalidade Hospitalar , Bacteriemia/microbiologia , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sepse/tratamento farmacológico , Genômica
16.
BMC Genomics ; 25(1): 708, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033279

RESUMO

BACKGROUND: As a nexus of routine antibiotic use and zoonotic pathogen presence, the livestock farming environment is a potential hotspot for the emergence of zoonotic diseases and antibiotic resistant bacteria. Livestock can further facilitate disease transmission by serving as intermediary hosts for pathogens before a spillover event. In light of this, we aimed to characterize the microbiomes and resistomes of dairy workers, whose exposure to the livestock farming environment places them at risk for facilitating community transmission of antibiotic resistant genes and emerging zoonotic diseases. RESULTS: Using shotgun sequencing, we investigated differences in the taxonomy, diversity and gene presence of 10 dairy farm workers and 6 community controls' gut metagenomes, contextualizing these samples with additional publicly available gut metagenomes. We found no significant differences in the prevalence of resistance genes, virulence factors, or taxonomic composition between the two groups. The lack of statistical significance may be attributed, in part, to the limited sample size of our study or the potential similarities in exposures between the dairy workers and community controls. We did, however, observe patterns warranting further investigation including greater abundance of tetracycline resistance genes and prevalence of cephamycin resistance genes as well as lower average gene diversity (even after accounting for differential sequencing depth) in dairy workers' metagenomes. We also found evidence of commensal organism association with tetracycline resistance genes in both groups (including Faecalibacterium prausnitzii, Ligilactobacillus animalis, and Simiaoa sunii). CONCLUSIONS: This study highlights the utility of shotgun metagenomics in examining the microbiomes and resistomes of livestock workers, focusing on a cohort of dairy workers in the United States. While our study revealed no statistically significant differences between groups in taxonomy, diversity and gene presence, we observed patterns in antibiotic resistance gene abundance and prevalence that align with findings from previous studies of livestock workers in China and Europe. Our results lay the groundwork for future research involving larger cohorts of dairy and non-dairy workers to better understand the impact of occupational exposure to livestock farming on the microbiomes and resistomes of workers.


Assuntos
Microbioma Gastrointestinal , Metagenoma , Humanos , Microbioma Gastrointestinal/genética , Estudos Transversais , Feminino , Indústria de Laticínios , Metagenômica/métodos , Adulto , Animais , Pessoa de Meia-Idade , Bactérias/genética , Bactérias/classificação , Fazendeiros , Masculino , Farmacorresistência Bacteriana/genética
17.
BMC Genomics ; 25(1): 263, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459466

RESUMO

BACKGROUND: Escherichia coli, a ubiquitous inhabitant of the gut microbiota, has been recognized as an indicator of fecal contamination and a potential reservoir for antibiotic resistance genes. Its prevalence in drinking water sources raises concerns about the potential dissemination of antibiotic resistance within aquatic ecosystems and the subsequent impact on public health. The ability of E. coli to acquire and transfer resistance genes, coupled with the constant exposure to low levels of antibiotics in the environment, underscores the need for comprehensive surveillance and rigorous antimicrobial stewardship strategies to safeguard the quality and safety of drinking water supplies, ultimately mitigating the escalation of antibiotic resistance and its implications for human well-being. METHODS: WG5D strain, isolated from a drinking water distribution source in North-West Province, South Africa, underwent genomic analysis following isolation on nutrient agar, anaerobic cultivation, and DNA extraction. Paired-end Illumina sequencing with a Nextera XT Library Preparation kit was performed. The assembly, annotation, and subsequent genomic analyses, including phylogenetic analysis using TYGS, pairwise comparisons, and determination of genes related to antimicrobial resistance and virulence, were carried out following standard protocols and tools, ensuring comprehensive insights into the strain's genomic features. RESULTS: This study explores the notable characteristics of E. coli strain WG5D. This strain stands out because it possesses multiple antibiotic resistance genes, encompassing tetracycline, cephalosporin, vancomycin, and aminoglycoside resistances. Additionally, virulence-associated genes indicate potential heightened pathogenicity, complemented by the identification of mobile genetic elements that underscore its adaptability. The intriguing possibility of bacteriophage involvement and factors contributing to pathogenicity further enriches our understanding. We identified E. coli WG5D as a potential human pathogen associated with a drinking water source in South Africa. The analysis provided several antibiotic resistance-associated genes/mutations and mobile genetic elements. It further identified WG5D as a potential human pathogen. The occurrence of E. coli WG5D raised the awareness of the potential pathogens and the carrying of antibiotic resistance in drinking water. CONCLUSIONS: The findings of this study have highlighted the advantages of the genomic approach in identifying the bacterial species and antibiotic resistance genes of E. coli and its potential as a human pathogen.


Assuntos
Água Potável , Escherichia coli , Humanos , Antibacterianos/farmacologia , Virulência/genética , Fatores de Virulência/genética , Filogenia , Ecossistema , Resistência Microbiana a Medicamentos/genética
18.
Antimicrob Agents Chemother ; 68(2): e0138723, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38189278

RESUMO

The cell-to-cell communication system quorum sensing (QS), used by various pathogenic bacteria to synchronize gene expression and increase host invasion potentials, is studied as a potential target for persistent infection control. To search for novel molecules targeting the QS system in the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, a chemical library consisting of 3,280 small compounds from LifeArc was screened. A series of 10 conjugated phenones that have not previously been reported to target bacteria were identified as inhibitors of QS in P. aeruginosa. Two lead compounds (ethylthio enynone and propylthio enynone) were re-synthesized for verification of activity and further elucidation of the mode of action. The isomeric pure Z-ethylthio enynone was used for RNA sequencing, revealing a strong inhibitor of QS-regulated genes, and the QS-regulated virulence factors rhamnolipid and pyocyanin were significantly decreased by treatment with the compounds. A transposon mutagenesis screen performed in a newly constructed lasB-gfp monitor strain identified the target of Z-ethylthio enynone in P. aeruginosa to be the MexEF-OprN efflux pump, which was further established using defined mex knockout mutants. Our data indicate that the QS inhibitory capabilities of Z-ethylthio enynone were caused by the drainage of intracellular signal molecules as a response to chemical-induced stimulation of the MexEF-oprN efflux pump, thereby inhibiting the autogenerated positive feedback and its enhanced signal-molecule synthesis.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/genética , Percepção de Quorum/genética , Fatores de Virulência/genética , Proteínas de Bactérias/genética
19.
Funct Integr Genomics ; 24(5): 145, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196424

RESUMO

Cases of diphtheria, even in immunized individuals, are still reported in several parts of the world, including in Brazil. New outbreaks occur in Europe and other continents. In this context, studies on Corynebacterium diphtheriae infections are highly relevant, both for a better understanding of the pathogenesis of the disease and for controlling the circulation of clones and antimicrobial resistance genes. Here we present a case of cutaneous infection by multidrug-resistant Corynebacterium diphtheriae and provide its whole-genome sequencing. Genomic analysis revealed resistance genes, including tet(W), sul1, cmx, rpoB2, rbpA and mutation in rpoB. We performed phylogenetic analyzes and used the BRIG to compare the predicted resistance genes with those found in genomes from other significant isolates, including those associated with some outbreaks. Virulence factors such as spaD, srtBC, spaH, srtDE, surface-anchored pilus proteins (sapD), nonfimbrial adhesins (DIP0733, DIP1281, and DIP1621), embC and mptC (putatively involved in CdiLAM), sigA, dtxR and MdbA (putatively involved) in post-translational modification, were detected. We identified the CRISPR-Cas system in our isolate, which was classified as Type II-U based on the database and contains 15 spacers. This system functions as an adaptive immune mechanism. The strain was attributed to a new sequence type ST-928, and phylogenetic analysis confirmed that it was related to ST-634 of C. diphtheriae strains isolated in French Guiana and Brazil. In addition, since infections are not always reported, studies with the sequence data might be a way to complement and inform C. diphtheriae surveillance.


Assuntos
Sistemas CRISPR-Cas , Corynebacterium diphtheriae , Rifampina , Fatores de Virulência , Corynebacterium diphtheriae/genética , Corynebacterium diphtheriae/patogenicidade , Corynebacterium diphtheriae/efeitos dos fármacos , Humanos , Fatores de Virulência/genética , Rifampina/farmacologia , Mutação , Filogenia , Difteria/microbiologia , Genoma Bacteriano , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética
20.
BMC Biotechnol ; 24(1): 43, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909197

RESUMO

Fungal diseases are often linked to poverty, which is associated with poor hygiene and sanitation conditions that have been severely worsened by the COVID-19 pandemic. Moreover, COVID-19 patients are treated with Dexamethasone, a corticosteroid that promotes an immunosuppressive profile, making patients more susceptible to opportunistic fungal infections, such as those caused by Candida species. In this study, we analyzed the prevalence of Candida yeasts in wastewater samples collected to track viral genetic material during the COVID-19 pandemic and identified the yeasts using polyphasic taxonomy. Furthermore, we investigated the production of biofilm and hydrolytic enzymes, which are known virulence factors. Our findings revealed that all Candida species could form biofilms and exhibited moderate hydrolytic enzyme activity. We also proposed a workflow for monitoring wastewater using Colony PCR instead of conventional PCR, as this technique is fast, cost-effective, and reliable. This approach enhances the accurate taxonomic identification of yeasts in environmental samples, contributing to environmental monitoring as part of the One Health approach, which preconizes the monitoring of possible emergent pathogenic microorganisms, including fungi.


Assuntos
COVID-19 , Candida , Águas Residuárias , Fluxo de Trabalho , Águas Residuárias/microbiologia , Águas Residuárias/virologia , Brasil/epidemiologia , Candida/isolamento & purificação , Candida/genética , Candida/classificação , COVID-19/epidemiologia , COVID-19/virologia , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Biofilmes , Monitoramento Ambiental/métodos , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA