Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biofouling ; 40(3-4): 235-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584359

RESUMO

The association between dysbiotic microbiota biofilm and colon cancer has recently begun to attract attention. In the study, the apitherapeutic effects of bee products (honey, bee venom, royal jelly, pollen, perga and propolis) obtained from the endemic Yigilca ecotype of Apis mellifera anatoliaca were investigated. Antibiofilm activity were performed by microplate assay using crystal violet staining to measure adherent biofilm biomass of Escherichia coli capable of forming biofilms. Bee venom showed the highest inhibition effect (73.98%) at 50% concentration. Honey, perga and royal jelly reduced biofilm formation by >50% at all concentrations. The antiproliferation effect on the HCT116 colon cancer cell line was investigated with the water­soluble tetrazolium salt­1 assay. After 48 h of honey application at 50% concentration, cell proliferation decreased by 86.51%. The high cytotoxic effects of royal jelly and bee venom are also remarkable. Additionally, apoptotic pathway analysis was performed by ELISA using caspase 3, 8 and 9 enzyme-linked immunosorbent assay kits. All bee products induced a higher expression of caspase 9 compared with caspase 8. Natural products that upregulate caspase proteins are promising therapeutic targets for proliferative diseases.


Assuntos
Antineoplásicos , Venenos de Abelha , Biofilmes , Neoplasias do Colo , Escherichia coli , Ácidos Graxos , Própole , Biofilmes/efeitos dos fármacos , Humanos , Animais , Venenos de Abelha/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Neoplasias do Colo/tratamento farmacológico , Abelhas/efeitos dos fármacos , Células HCT116 , Própole/farmacologia , Própole/química , Ácidos Graxos/farmacologia , Antineoplásicos/farmacologia , Mel , Proliferação de Células/efeitos dos fármacos , Pólen/química , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos
2.
Arch Gynecol Obstet ; 309(4): 1509-1514, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37737883

RESUMO

PURPOSE: In the following work, we investigated the effect of matcha green tea extract (MTE) on MCF-7 breast cancer cell viability and estrogen receptor-beta expression (ERß). METHODS: MCF-7 cells were stimulated with MTE at concentrations of 5 and 10 µg/ml. Cell viability was assessed using a water-soluble tetrazolium assay (WST-1 assay) after an incubation time of 72 h. ERß was quantified at gene level by real-time polymerase chain reaction (PCR). A western blot (WB) was carried out for the qualitative assessment of the expression behavior of on a protein level. RESULTS: The WST-1 test showed a significant inhibition of viability in MFC-7 cells after 72 h at 10 µg/ml. The WB demonstrated a significant quantitative decrease of ERß at protein level with MTE concentrations of 10 µg/ml. In contrast, the PCR did not result in significant downregulation of ERß. CONCLUSION: MTE decreases the cell viability of MCF-7 cells and furthermore leads to a decrease of ERß at protein level.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Células MCF-7 , Receptor beta de Estrogênio/genética , Sobrevivência Celular , Antioxidantes/farmacologia , Chá , Receptor alfa de Estrogênio , Linhagem Celular Tumoral , Proliferação de Células
3.
BMC Oral Health ; 24(1): 663, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849812

RESUMO

BACKGROUND: Restorative materials are in prolonged contact with living tissues such as oral mucosa, dentin, pulp, periodontal, and periapical tissues. Therefore, the potentially harmful effects of these materials and their components on oral tissues should be evaluated before clinical use. This study aimed to compare the cell viability of different adhesive systems (ASs) on human dental pulp stem cells (hDPSCs). METHODS: Three ASs that combining methacryloyloxydecyl dihydrogen phosphate (MDP) monomer with new hydrophilic amide monomers [Clearfil Universal Bond Quick(CUBQ), Kuraray Noritake], self-reinforcing 3D monomer [Bond Force II(BFII), Tokuyama)], and dual-cure property [Futurabond DC(FBDC), VOCO] were used. Three (n = 3) samples were prepared for each group. Dental pulp stem cells were isolated from ten patients' extracted third molar teeth. Samples were incubated in Dulbecco's modified Eagle's medium (DMEM) for 24 h (h), 72 h, and 7 days (d) to obtain extracts. For the control group, cells were cultured without DBA samples. Cell viability of ASs extracts was measured using a cell proliferation detection kit (WST-1, Roche). Statistical analysis was performed using two-way ANOVA and post-hoc (Duncan) tests (p < 0.05). RESULTS: At 24 and 72 h statistically significant differences were determined between control and BFII, control and FBDC groups (p < 0.05), while no differences between control and CUBQ groups (p > 0.05). On the 7th d, statistically significant differences were found between the control and experimental groups (p < 0.05), while no differences between experimental groups (p > 0.05). A statistically significant difference was detected for the BFII group over the three-time interval (p < 0.05). The lowest cell viability was observed for the FBDC group at 24 h, and the difference was statistically significant when compared with 72 h and 7th d (p < 0.05). CONCLUSION: All ASs showed different cell viability values at various exposure times. It should be taken into consideration that pH values, as well as the contents of ASs, have a significant effect on the cell viability.


Assuntos
Sobrevivência Celular , Polpa Dentária , Adesivos Dentinários , Células-Tronco , Humanos , Polpa Dentária/citologia , Adesivos Dentinários/química , Fatores de Tempo , Células Cultivadas
4.
J Neural Transm (Vienna) ; 130(3): 243-252, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800023

RESUMO

Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental polygenic disorder that affects more than 5% of children and adolescents around the world. Genetic and environmental factors play important roles in ADHD etiology, which leads to a wide range of clinical outcomes and biological phenotypes across the population. Brain maturation delays of a 4-year lag are commonly found in patients, when compared to controls of the same age. Possible differences in cellular growth rates might reflect the clinical observations in ADHD patients. However, the cellular mechanisms are still not elucidated. To test this hypothesis, we analysed the proliferation of induced pluripotent stem cells (iPSCs) and neural stem cells (NSCs) derived from male children and adolescents diagnosed with ADHD and with genetic predisposition to it (assessed using polygenic risk scores), as well as their respective matched controls. In the current pilot study, it was noticeable that NSCs from the ADHD group proliferate less than controls, while no differences were seen at the iPSC developmental stage. Our results from two distinct proliferation methods indicate that the functional and structural delays found in patients might be associated with these in vitro phenotypic differences, but start at a distinct neurodevelopmental stage. These findings are the first ones in the field of disease modelling of ADHD and might be crucial to better understand the pathophysiology of this disorder.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Criança , Adolescente , Humanos , Masculino , Transtorno do Deficit de Atenção com Hiperatividade/genética , Projetos Piloto , Predisposição Genética para Doença
5.
Arch Gynecol Obstet ; 306(2): 451-459, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35079875

RESUMO

PURPOSE: In the following work, we investigated the nuclear peroxisome proliferator-activated receptor gamma (PPARγ)-dependent proliferation behavior of breast cancer cells after stimulation with matcha green tea extract (MTE). METHODS: T47D cells were stimulated with MTE at concentrations of 5, 10 and 50 µg/ml. Cell viability was assessed using a WST-1 assay after an incubation time of 72 h. PPARγ expression was quantified at the gene level by real-time polymerase chain reaction (PCR). A western blot (WB) was carried out for the qualitative assessment of the expression behavior of on a protein level. RESULTS: The WST-1 test showed a significant inhibition of viability in T47D cells after 72 h at 5, 10 and 50 µg/ml. The PCR showed an overexpression of PPARγ in T47D cells in all concentrations. At the concentration of 50 µg/ml the expression was significantly increased (p < 0.05). The WB demonstrated a significant quantitative increase of PPARγ at protein level with MTE concentrations of 10 and 50 µg/ml. In addition, there was a negative correlation between the overexpression of PPAR γ and the inhibition of proliferation. CONCLUSION: MTE decreases the cell viability of T47D cells and furthermore leads to an overexpression of PPARγ on protein and mRNA level.


Assuntos
Neoplasias da Mama , PPAR gama , Extratos Vegetais , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular , Feminino , Humanos , PPAR gama/genética , Extratos Vegetais/farmacologia , RNA Mensageiro/genética , Chá
6.
Molecules ; 27(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36235222

RESUMO

Human glioblastoma multiforme (GBM) is one of the most malignant brain tumors, with a high mortality rate worldwide. Conventional GBM treatment is now challenged by the presence of the blood-brain barrier (BBB), drug resistance, and post-treatment adverse effects. Hence, developing bioactive compounds isolated from plant species and identifying molecular pathways in facilitating effective treatment has become crucial in GBM. Based on pharmacodynamic studies, andrographolide has sparked the interest of cancer researchers, who believe it may alleviate difficulties in GBM therapy; however, it still requires further study. Andrographolide is a bicyclic diterpene lactone derived from Andrographis paniculata (Burm.f.) Wallich ex Nees that has anticancer properties in various cancer cell lines. The present study aimed to evaluate andrographolide's anticancer effectiveness and potential molecular pathways using a DBTRG-05MG cell line. The antiproliferative activity of andrographolide was determined using the WST-1 assay, while scratch assay and clonogenic assay were used to evaluate andrographolide's effectiveness against the cancer cell line by examining cell migration and colony formation. Flowcytometry was also used to examine the apoptosis and cell cycle arrest induced by andrographolide. The mRNA and protein expression level involved in the ERK1/2/c-Myc/p53 signaling pathway was then assessed using qRT-PCR and Western blot. The protein-protein interaction between c-Myc and p53 was determined by a reciprocal experiment of the co-immunoprecipitation (co-IP) using DBTRG-05MG total cell lysate. Andrographolide significantly reduced the viability of DBTRG-05MG cell lines in a concentration- and time-dependent manner. In addition, scratch and clonogenic assays confirmed the effectiveness of andrographolide in reducing cell migration and colony formation of DBTRG-05MG, respectively. Andrographolide also promoted cell cycle arrest in the G2/M phase, followed by apoptosis in the DBTRG-05MG cell line, by inducing ERK1/2, c-Myc, and p53 expression at the mRNA level. Western blot results demonstrated that c-Myc overexpression also increased the production of the anti-apoptotic protein p53. Our findings revealed that c-Myc and p53 positively interact in triggering the apoptotic signaling pathway. This study successfully discovered the involvement of ERK1/2/c-Myc/p53 in the suppression of the DBTRG-05MG cell line via cell cycle arrest followed by the apoptosis signaling pathway following andrographolide treatment.


Assuntos
Diterpenos , Glioblastoma , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Pontos de Checagem da Fase G2 do Ciclo Celular , Glioblastoma/metabolismo , Humanos , Lactonas/farmacologia , Sistema de Sinalização das MAP Quinases , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Neurochem Res ; 46(1): 88-99, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31902045

RESUMO

The reduction of water-soluble tetrazolium salts (WSTs) is frequently used to determine the metabolic integrity and the viability of cultured cells. Recently, we have reported that the electron cycler menadione can efficiently connect intracellular oxidation reactions in cultured astrocytes with the extracellular reduction of WST1 and that this menadione cycling reaction involves an enzyme. The enzymatic reaction involved in the menadione-dependent WST1 reduction was found strongly enriched in the cytosolic fraction of cultured astrocytes and is able to efficiently use both NADH and NADPH as electron donors. In addition, the reaction was highly sensitive towards dicoumarol with Kic values in the low nanomolar range, suggesting that the NAD(P)H:quinone oxidoreductase 1 (NQO1) catalyzes the menadione-dependent WST1 reduction in astrocytes. Also, in intact astrocytes, dicoumarol inhibited the menadione-dependent WST1 reduction in a concentration-dependent manner with half-maximal inhibition observed at around 50 nM. Moreover, the menadione-dependent WST1 reduction by viable astrocytes was strongly affected by the availability of glucose. In the absence of glucose only residual WST1 reduction was observed, while a concentration-dependent increase in WST1 reduction was found during a 30 min incubation with maximal WST1 reduction already determined in the presence of 0.5 mM glucose. Mannose could fully replace glucose as substrate for astrocytic WST1 reduction, while other hexoses, lactate and the mitochondrial substrate ß-hydroxybutyrate failed to provide electrons for the cell-dependent WST1 reduction. These results demonstrate that the menadione-mediated WST1 reduction involves cytosolic NQO1 activity and that this process is strongly affected by the availability of glucose as metabolic substrate.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Sais de Tetrazólio/metabolismo , Vitamina K 3/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Dicumarol/farmacologia , Inibidores Enzimáticos/farmacologia , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Oxirredução , Ratos Wistar , Sais de Tetrazólio/química
8.
Biochem Biophys Res Commun ; 533(3): 332-337, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958253

RESUMO

The Ca2+-mediated S100 family protein S100A6 has a crucial task in various intracellular and extracellular activities thereby demonstrating a possible involvement in the advancement and development of malignant tumors. S100A6 has been found to associate with receptor for advanced glycation end products, RAGE, through its extracellular extension. This extension is famously identified as a prominent receptor for many S100 family associates. Additionally, S100A6 binds to S100B protein and forms a heterodimer. Thus, we consider the S100B protein to be a prospective drug molecule to obstruct the interacting regions amongst S100A6 and RAGE V domain. We applied the NMR spectroscopy method to locate the binding area amid the S100A6m (mutant S100A6, cysteine at 3rd position of S100A6 is replaced with serine, C3S) and S100B proteins. The 1H-15N HSQC NMR titrations revealed the probable requisite dynamics of S100A6m and S100B interfaces. Utilizing data from the NMR titrations as input parameters, we ran the HADDOCK program and created a S100A6m-S100B heterodimer complex. The obtained complex was then superimposed with the reported complex of S100A6m-RAGE V domain. This superimposition displayed the possibility of S100B to be a potential antagonist that can block the interface area of the S100A6m and the RAGE V domain. Moreover, an in vitro cancer model using SW480 cells in water-soluble tetrazolium-1 assay (WST-1) showed a noticeable change in the cell proliferation as an effect of these proteins. Our study indicates the possibility to develop a S100B-like competitor that could play a key role in the treatment of S100- and RAGE-mediated human diseases.


Assuntos
Proteínas de Ciclo Celular/química , Regulação Neoplásica da Expressão Gênica , Receptor para Produtos Finais de Glicação Avançada/química , Proteína A6 Ligante de Cálcio S100/química , Subunidade beta da Proteína Ligante de Cálcio S100/química , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/farmacologia
9.
BMC Musculoskelet Disord ; 20(1): 339, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31349830

RESUMO

BACKGROUND: Local antibiotic application has been widely used in orthopedic surgery. The dose-related toxicity of antibiotics towards periosteal tissues and resulting effects on osteogenic expression are yet to be studied. METHODS: Periosteal cells harvested from the medial tibia of New Zealand White rabbits were used. A seeding density of 5 × 103 cells/cm2 was determined to be optimal for testing in the pilot study; the cells were cultured in xCELLigence 96-well plates. Microfluidic impedance analyzers were used to monitor cellular proliferation in microfluidic culture systems with exposure to three different concentrations (10 µg/mL, 100 µg/mL, and 1000 µg/mL) of cefazolin, ciprofloxacin, and vancomycin, respectively. The correlation of cell index at day 7 with optical density values from WST-1 assays using conventional cultures was evaluated by calculating the Pearson's coefficient. RNA analysis was performed to investigate the expression of osteogenic markers in the cultured cells, including core-binding factor alpha 1 (Cbfa1), osteopontin (OPN), and osteopontin promoter (OPNp), relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the endogenous control. RESULTS: A significant dose-related inhibition of cell index was found for all the 3 antibiotics, whereas the WST-1 assays showed a significant dose-related inhibition of cellular proliferation only at a high dose of cefazolin (1000 µg/mL) and medium-to-high dose of ciprofloxacin (100 µg/mL and 1000 µg/mL). Pearson's coefficient analysis indicated a high correlation between the cell index and optical density values of WST-1 assays only for medium and high doses of ciprofloxacin (100 µg/mL and 1000 µg/mL); a moderate correlation was seen for cefazolin, and a low dose of ciprofloxacin (10 µg/mL). RNA analysis confirmed significant dose-related inhibition of cfba1, OPN, and OPNp expression by all three antibiotics. CONCLUSION: With optimal seeding amounts, rabbit periosteal cells can be dynamically monitored in the xCELLigence microfluidic system. Dose-related inhibition of cellular proliferation and osteogenic expression was found after exposure to cefazolin and ciprofloxacin. By providing real-time detection and exhibiting comparable correlation, microfluidic impedance-based analyzer is a feasible alternative to the conventional WST-1 assays.


Assuntos
Antibacterianos/toxicidade , Dispositivos Lab-On-A-Chip , Osteogênese/efeitos dos fármacos , Periósteo/citologia , Testes de Toxicidade Aguda/instrumentação , Animais , Antibacterianos/administração & dosagem , Biomarcadores/análise , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Estudos de Viabilidade , Masculino , Procedimentos Ortopédicos/métodos , Projetos Piloto , Cultura Primária de Células , Coelhos , Tíbia
10.
Molecules ; 24(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295864

RESUMO

Extracellular acidification is an important feature of tumor microenvironments but has yet to be successfully exploited in cancer therapy. The reversal of the pH gradient across the plasma membrane in cells that regulate intracellular pH (pHi) has potential to drive the selective uptake of weak acids at low extracellular pH (pHe). Here, we investigate the dual targeting of low pHe and hypoxia, another key feature of tumor microenvironments. We prepared eight bioreductive prodrugs based on the benzotriazine di-oxide (BTO) nucleus by appending alkanoic or aminoalkanoic acid sidechains. The BTO acids showed modest selectivity for both low pHe (pH 6.5 versus 7.4, ratios 2 to 5-fold) and anoxia (ratios 2 to 8-fold) in SiHa and FaDu cell cultures. Related neutral BTOs were not selective for acidosis, but had greater cytotoxic potency and hypoxic selectivity than the BTO acids. Investigation of the uptake and metabolism of representative BTO acids confirmed enhanced uptake at low pHe, but lower intracellular concentrations than expected for passive diffusion. Further, the modulation of intracellular reductase activity and competition by the cell-excluded electron acceptor WST-1 suggests that the majority of metabolic reductions of BTO acids occur at the cell surface, compromising the engagement of the resulting free radicals with intracellular targets. Thus, the present study provides support for designing bioreductive prodrugs that exploit pH-dependent partitioning, suggesting, however, that that the approach should be applied to prodrugs with obligate intracellular activation.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Neoplasias/metabolismo , Pró-Fármacos , Triazinas/química , Triazinas/farmacologia , Linhagem Celular Tumoral , Fenômenos Químicos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Modelos Biológicos , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Óxidos
11.
J Toxicol Environ Health A ; 81(19): 998-1014, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30325709

RESUMO

LED technology has the extraordinary ability to reduce energy consumption, constituting an economic and ecological advantage, so it is planned to replace incandescent, halogen and other inefficient bulbs for public and domestic lighting with LEDs. LEDs present specific spectral and energetic characteristics compared with those of other domestic light sources, so the potential risks for human health of these bulbs need to be explored. The aim of this study was to assess cytotoxicity and genotoxicity of light emitted by different commercial light bulbs: incandescent, halogen, and two LED bulbs with different correlated color temperatures. The evaluation was done on ARPE-19 as a specific cell model for eye toxicity and on BEAS-2B as a good cell model for toxicology tests. Light induced mainly cytotoxic effects on ARPE-19 and DNA damage on BEAS-2B, so different cell lines showed different biological responses. Moreover, our findings indicate that among the four bulbs, cold LED caused the highest cytotoxic effect on ARPE-19 and the highest genotoxic and oxidative effect on BEAS-2B. Cold LED is probably able to cause more cellular damage because it contains more high-energy radiations (blue). These results suggest that LED technology could be a safe alternative to older technologies, but the use of warm LED should be preferred to cold LED, which can potentially cause adverse effects on retinal cells.


Assuntos
Luz/efeitos adversos , Mucosa Respiratória/efeitos da radiação , Epitélio Pigmentado da Retina/efeitos da radiação , Brônquios/efeitos da radiação , Linhagem Celular , Dano ao DNA , Humanos , Testes de Mutagenicidade
12.
Andrologia ; 50(10): e13141, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30225848

RESUMO

One known environmental risk factor impacting on human reproduction is heavy metal pollution. Although some metals (e.g., Cu, Se and Zn) have protective effects on the male reproductive system in low doses, heavy metals can accumulate to toxic levels and result in poor semen quality and decreased sperm function. We investigated the effect of CuSO4 and CdCl2 (10, 50, 100 and 250 µg/ml or 500 µg/ml) on human sperm motility and vitality by using computer-aided sperm analysis (CASA) and two cytotoxicity assays (WST-1 and XTT). Several sperm motility parameters were significantly reduced after 5 hr of exposure to the highest concentrations of CuSO4 (250 µg/ml) and CdCl2 (500 µg/ml). The WST-1 assay also revealed significantly lower absorbance values for 50, 100 and 250 µg/ml CuSO4 and for 500 µg/ml CdCl2 ; however, no significant effect was seen with XTT. The calculated average IC50 value was 50.31±  4.34 µg/ml for CuSO4 and 392.32  ±76.79 µg/ml for CdCl2 . The effects of these metals were confirmed with MgCl2 , a positive control. This study provides threshold concentrations for the harmful effect of CuSO4 and CdCl2 on human spermatozoa and recommends the use of WST-1 as vitality assay in future in vitro studies.


Assuntos
Poluentes Ambientais/toxicidade , Metais Pesados/toxicidade , Análise do Sêmen/métodos , Sêmen/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Sulfato de Cobre/toxicidade , Voluntários Saudáveis , Humanos , Concentração Inibidora 50 , Cloreto de Magnésio/toxicidade , Masculino , Análise do Sêmen/instrumentação
13.
Biochim Biophys Acta ; 1864(11): 1558-69, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27524699

RESUMO

Human S100A9 (Calgranulin B) is a Ca(2+)-binding protein, from the S100 family, that often presents as a homodimer in myeloid cells. It becomes an important mediator during inflammation once calcium binds to its EF-hand motifs. Human RAGE protein (receptor for advanced glycation end products) is one of the target-proteins. RAGE binds to a hydrophobic surface on S100A9. Interactions between these proteins trigger signal transduction cascades, promoting cell growth, proliferation, and tumorigenesis. Here, we present the solution structure of mutant S100A9 (C3S) homodimer, determined by multi-dimensional NMR experiments. We further characterize the solution interactions between mS100A9 and the RAGE V domain via NMR spectroscopy. CHAPS is a zwitterionic and non-denaturing molecule widely used for protein solubilizing and stabilization. We found out that CHAPS and RAGE V domain would interact with mS100A9 by using (1)H-(15)N HSQC NMR titrations. Therefore, using the HADDOCK program, we superimpose two binary complex models mS100A9-RAGE V domain and mS100A9-CHAPS and demonstrate that CHAPS molecules could play a crucial role in blocking the interaction between mS100A9 and the RAGE V domain. WST-1 assay results also support the conclusion that CHAPS inhibits the bioactivity of mS100A9. This report will help to inform new drug development against cell proliferation.


Assuntos
Antineoplásicos/farmacologia , Calgranulina B/química , Proliferação de Células/efeitos dos fármacos , Ácidos Cólicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/química , Sequência de Aminoácidos , Antineoplásicos/química , Sítios de Ligação , Calgranulina B/genética , Calgranulina B/metabolismo , Linhagem Celular Tumoral , Ácidos Cólicos/química , Clonagem Molecular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
14.
Anal Biochem ; 538: 42-52, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939007

RESUMO

Cellular reduction of tetrazolium salts to their respective formazans is frequently used to determine the metabolic activity of cultured cells as an indicator of cell viability. For membrane-impermeable tetrazolium salts such as WST1 the application of a membrane-permeable electron cycler is usually required to mediate the transfer of intracellular electrons for extracellular WST1 reduction. Here we demonstrate that in addition to the commonly used electron cycler M-PMS, menadione can also serve as an efficient electron cycler for extracellular WST1 reduction in cultured neural cells. The increase in formazan absorbance in glial cell cultures for the WST1 reduction by menadione involves enzymatic menadione reduction and was twice that recorded for the cytosolic enzyme-independent WST1 reduction in the presence of M-PMS. The optimized WST1 reduction assay allowed within 30 min of incubation a highly reliable detection of compromised cell metabolism caused by 3-bromopyruvate and impaired membrane integrity caused by Triton X-100, with a sensitivity as good as that of spectrophotometric assays which determine cellular MTT reduction or lactate dehydrogenase release. The short incubation period of 30 min and the observed good sensitivity make this optimized menadione-mediated WST1 reduction assay a quick and reliable alternative to other viability and toxicity assays.


Assuntos
Astrócitos/química , Formazans/química , Neurônios/química , Espectrofotometria , Vitamina K 3/química , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Formazans/análise , Glioma/metabolismo , Glioma/patologia , Humanos , Metilfenazônio Metossulfato/análogos & derivados , Metilfenazônio Metossulfato/química , Neurônios/citologia , Neurônios/metabolismo , Octoxinol/química , Octoxinol/toxicidade , Oxirredução , Piruvatos/química , Piruvatos/toxicidade , Ratos , Ratos Wistar
15.
J Appl Toxicol ; 37(4): 462-470, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27593524

RESUMO

Graphene and its derivative, because of their unique physical, electrical and chemical properties, are an important class of nanomaterials being proposed as foundational materials in nanomedicine as well as for a variety of industrial applications. A major limitation for graphene, when used in biomedical applications, is its poor solubility due to its rather hydrophobic nature. Therefore, chemical functionalities are commonly introduced to alter both its surface chemistry and biochemical activity. Here, we show that surface chemistry plays a major role in the toxicological profile of the graphene structures. To demonstrate this, we chemically increased the oxidation level of the pristine graphene and compared the corresponding toxicological effects along with those for the graphene oxide. X-ray photoelectron spectroscopy revealed that pristine graphene had the lowest amount of surface oxygen, while graphene oxide had the highest at 2.5% and 31%, respectively. Low and high oxygen functionalized graphene samples were found to have 6.6% and 24% surface oxygen, respectively. Our results showed a dose-dependent trend in the cytotoxicity profile, where pristine graphene was the most cytotoxic, with decreasing toxicity observed with increasing oxygen content. Increased surface oxygen also played a role in nanomaterial dispersion in water or cell culture medium over longer periods. It is likely that higher dispersity might result in graphene entering into cells as individual flakes ~1 nm thick rather than as more cytotoxic aggregates. In conclusion, changes in graphene's surface chemistry resulted in altered solubility and toxicity, suggesting that a generalized toxicity profile would be rather misleading. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Grafite/química , Grafite/toxicidade , Nanoestruturas/química , Nanoestruturas/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura , Relação Dose-Resposta a Droga , Humanos , Oxigênio/química , Células PC12 , Espectroscopia Fotoeletrônica , Ratos , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Relação Estrutura-Atividade , Propriedades de Superfície
16.
Biochem Biophys Res Commun ; 477(2): 188-94, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27297108

RESUMO

The human S100 protein family contains small, dimeric and acidic proteins that contain two EF-hand motifs and bind calcium. When S100A5 binds calcium, its conformation changes and promotes interaction with the target protein. The extracellular domain of RAGE (Receptor of Advanced Glycation End products) contain three domains: C1, C2 and V. The RAGE V domain is the target protein of S100A5 that promotes cell survival, growth and differentiation by activating several signaling pathways. Pentamidine is an apoptotic and antiparasitic drug that is used to treat or prevent pneumonia. Here, we found that pentamidine interacts with S100A5 using HSQC titration. We elucidated the interactions of S100A5 with RAGE V domain and pentamidine using fluorescence and NMR spectroscopy. We generated two binary models-the S100A5-RAGE V domain and S100A5-Pentamidine complex-and then observed that the pentamidine and RAGE V domain share a similar binding region in mS100A5. We also used the WST-1 assay to investigate the bioactivity of S100A5, RAGE V domain and pentamidine. These results indicated that pentamidine blocks the binding between S100A5 and RAGE V domain. This finding is useful for the development of new anti-proliferation drugs.


Assuntos
Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pentamidina/administração & dosagem , Pentamidina/química , Proteínas S100/química , Proteínas S100/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Modelos Químicos , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Domínios Proteicos , Proteínas S100/ultraestrutura , Transdução de Sinais/efeitos dos fármacos
17.
Biochem Biophys Res Commun ; 477(4): 861-867, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27387234

RESUMO

The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Suramina/química , Suramina/farmacologia , Antiparasitários , Sítios de Ligação/efeitos dos fármacos , Regulação para Baixo , Fator 1 de Crescimento de Fibroblastos/ultraestrutura , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
18.
Can J Physiol Pharmacol ; 93(4): 223-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25494822

RESUMO

OBJECTIVE: To evaluate the toxicity of extracts from disposable chopsticks, toothpicks, and paper cups on L-929 cells. METHODS: We followed national standards to prepare the extracts from disposable chopsticks, toothpicks, and paper cups used for the cell culture media, and the morphology of L-929 cells was observed with an optical microscope. The loss rate for adherent cells was evaluated with the trypan blue exclusion method, and cell proliferation was determined using the WST-1 assay. RESULTS: Compared with the control group, the cells cultured in media containing the extracts showed signs of apoptosis and necrosis after culturing for 4 or 7 days, and the loss rate for adherent cells was significantly increased (P < 0.05). An obvious decrease in cell viability was also observed (P < 0.05). CONCLUSION: The extracts from disposable chopsticks, toothpicks, and paper cups can affect the growth and proliferation of L-929 cells and are potentially toxic to humans.


Assuntos
Apoptose/efeitos dos fármacos , Qualidade de Produtos para o Consumidor , Utensílios de Alimentação e Culinária , Fibroblastos/efeitos dos fármacos , Papel , Extratos Vegetais/toxicidade , Madeira/química , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , China , Células Clonais , Dispositivos para o Cuidado Bucal Domiciliar/efeitos adversos , Equipamentos Descartáveis , Fibroblastos/citologia , Fibroblastos/patologia , Camundongos , Necrose , Testes de Toxicidade , Madeira/efeitos adversos
19.
Biochim Biophys Acta ; 1833(12): 2988-2995, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23954444

RESUMO

Reg (regenerating gene) product, Reg protein, is induced in pancreatic ß-cells and acts as autocrine/paracrine growth factor for regeneration via the cell surface Reg receptor. However, high concentrations of Reg I protein induced ß-cell apoptosis. In the present study, we found that hepatocyte growth factor (HGF) attenuated the ß-cell apoptosis induced by the high concentrations of Reg I protein and that the combined stimulation of interleukin-6 (IL-6) and dexamethasone (Dx) induced the accumulation of HGF mRNA as well as Reg I mRNA in ß-cells. The accumulation of the HGF mRNA was caused by the activation of the HGF promoter. Deletion analysis revealed that the region of -96 to -92 of the HGF gene was responsible for the promoter activation by IL-6+Dx. The promoters contain a consensus transcription factor binding sequence for signal transducer and activator of transcription (STAT). Site-directed mutations of STAT-binding motif in the region markedly attenuated the HGF promoter activity. Chromatin immunoprecipitation assay showed that STAT3 is located at the active HGF promoter in response to IL-6+Dx stimulation. These results strongly suggest that the combined stimulation of IL-6 and glucocorticoids induces the activation of both Reg and HGF genes and that the anti-apoptotic effects of HGF against the Reg I-induced apoptosis may help ß-cell regeneration by Reg I protein.


Assuntos
Apoptose , Dexametasona/farmacologia , Regulação da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Células Secretoras de Insulina/patologia , Interleucina-6/farmacologia , Litostatina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Citoproteção/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Litostatina/farmacologia , Masculino , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fator de Transcrição STAT3/metabolismo , Transcrição Gênica/efeitos dos fármacos
20.
Exp Cell Res ; 319(17): 2501-13, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23792081

RESUMO

INTRODUCTION: Endothelial barrier function is pivotal for the outcome of organ transplantation. Since hypothermic preservation (gold standard) is associated with cold-induced endothelial damage, endothelial barrier function may benefit from organ preservation at warmer temperatures. We therefore assessed endothelial barrier integrity and viability as function of preservation temperature and perfusion solution, and hypothesized that endothelial cell preservation at subnormothermic conditions using metabolism-supporting solutions constitute optimal preservation conditions. METHODS: Human umbilical vein endothelial cells (HUVEC) were preserved at 4-37°C for up to 20 h using Ringer's lactate, histidine-tryptophan-ketoglutarate solution, University of Wisconsin (UW) solution, Polysol, or endothelial cell growth medium (ECGM). Following preservation, the monolayer integrity, metabolic capacity, and ATP content were determined as positive parameters of endothelial cell viability. As negative parameters, apoptosis, necrosis, and cell activation were assayed. A viability index was devised on the basis of these parameters. RESULTS: HUVEC viability and barrier integrity was compromised at 4°C regardless of the preservation solution. At temperatures above 20°C, the cells' metabolic demands outweighed the preservation solutions' supporting capacity. Only UW maintained HUVEC viability up to 20°C. Despite high intracellular ATP content, none of the solutions were capable of sufficiently preserving HUVEC above 20°C except for ECGM. CONCLUSION: Optimal HUVEC preservation is achieved with UW up to 20°C. Only ECGM maintains HUVEC viability at temperatures above 20°C.


Assuntos
Temperatura Baixa , Células Endoteliais da Veia Umbilical Humana/fisiologia , Soluções para Preservação de Órgãos , Preservação de Tecido/métodos , Sobrevivência Celular , Metabolismo Energético , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA