Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215624

RESUMO

De novo shoot apical meristem (SAM) organogenesis during regeneration in tissue culture has been investigated for several decades, but the precise mechanisms governing early-stage cell fate specification remain elusive. In contrast to SAM establishment during embryogenesis, in vitro SAM formation occurs without positional cues and is characterized by autonomous initiation of cellular patterning. Here, we report on the initial stages of SAM organogenesis and on the molecular mechanisms that orchestrate gene patterning to establish SAM homeostasis. We found that SAM organogenesis in tobacco calli starts with protuberance formation followed by the formation of an intact L1 layer covering the nascent protuberance. We also exposed a complex interdependent relationship between L1 and WUS expression and revealed that any disruption in this interplay compromises shoot formation. Silencing WUS in nascent protuberances prevented L1 formation and caused the disorganization of the outer cell layers exhibiting both anticlinal and periclinal divisions, suggesting WUS plays a critical role in the proper establishment and organization of L1 during SAM organogenesis. We further discovered that silencing TONNEAU1 prevents the exclusive occurrence of anticlinal divisions in the outermost layer of the protuberances and suppresses the acquisition of L1 cellular identity and L1 formation, ultimately impeding SAM formation and regeneration. This study provides a novel molecular framework for the characterization of a WUS/L1 interplay that mediates SAM formation during regeneration.

2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34462349

RESUMO

Floral organs are properly developed on the basis of timed floral meristem (FM) termination in Arabidopsis In this process, two known regulatory pathways are involved. The WUSCHEL (WUS)-CLAVATA3 (CLV3) feedback loop is vital for the spatial establishment and maintenance of the FM, while AGAMOUS (AG)-WUS transcriptional cascades temporally repress FM. At stage 6 of flower development, a C2H2-type zinc finger repressor that is a target of AG, KNUCKLES (KNU), directly represses the stem cell identity gene WUS in the organizing center for FM termination. However, how the robust FM activity is fully quenched within a limited time frame to secure carpel development is not fully understood. Here, we demonstrate that KNU directly binds to the CLV1 locus and the cis-regulatory element on CLV3 promoter and represses their expression during FM determinacy control. Furthermore, KNU physically interacts with WUS, and this interaction inhibits WUS from sustaining CLV3 in the central zone. The KNU-WUS interaction also interrupts the formation of WUS homodimers and WUS-HAIRYMERISTEM 1 heterodimers, both of which are required for FM maintenance. Overall, our findings describe a regulatory framework in which KNU plays a position-specific multifunctional role for the tightly controlled FM determinacy.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Flores/metabolismo , Meristema/metabolismo , Flores/citologia , Proteínas de Homeodomínio/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
3.
Planta ; 257(2): 30, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36596996

RESUMO

MAIN CONCLUSION: Introducing 35S-dsRED2 into the Cas9 vector which expresses naked-eye visible dsRED2 greatly facilitates the genetic screening, and the WUS promoter driving the Cas9 expression can improve editing efficiency in Arabidopsis. CRISPR/Cas9-dependent genome editing has been applied to generate random insertions and deletions, targeted insertions or replacements, and precise base changes for both fundamental studies in many plant species and crop improvement. To simplify the screening procedure for target gene-edited transformants, we introduced a CaMV 35S-driven dsRED2 cassette (35S-dsRED2) into the Cas9 vector to express the naked-eye visible protein dsRED2, which can be observed under white light, greatly facilitated the genetic screening and reduced labor intensity without using any instrument. In addition, the WUS promoter was used to drive the expression of Cas9, which successfully improved the target genes editing efficiency and enabled the homozygous mutagenesis of two genes in T1 generation in Arabidopsis. Considering the conserved function and expression pattern of WUS across the plant species, this dsRED2-WUS/Cas9 system could also be used in many crops.


Assuntos
Arabidopsis , Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Genoma de Planta , Plantas Geneticamente Modificadas/genética , Edição de Genes/métodos
4.
J Exp Bot ; 74(10): 3060-3073, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36806617

RESUMO

Stem cell function in different meristems of Arabidopsis is mainly defined by WUSCHEL (WUS)/WUSCHEL-RELATED HOMEOBOX (WOX) family of proteins. Sugars have also been demonstrated to play pivotal roles in stem cell function and development of plants. As a cytosolic fructose 1,6-bisphosphatase, FRUCTOSE INSENSITIVE1 (FINS1) has been demonstrated to regulate plant growth in response to fructose signalling. However, it remains to be elucidated how stem cell function is regulated in response to fructose signalling. Our work showed that FINS1 interacts with WUS/WOX protein as a complex, which further binds to the promoter of WUS/WOX and regulates its expression in response to fructose signalling. FINS1 might act as a bifunctional factor that promotes WUS/WOX expression in the presence of low concentrations of fructose, and represses WUS/WOX expression in the presence of high concentrations of fructose. Therefore, FINS1 regulates stem cell function in response to fructose signalling during the growth and development of Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Frutose/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema , Plantas/metabolismo , Células-Tronco , Regulação da Expressão Gênica de Plantas
5.
Proc Natl Acad Sci U S A ; 117(36): 22561-22571, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839309

RESUMO

In the shoot meristem, both WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM), two transcription factors with overlapping spatiotemporal expression patterns, are essential for maintaining stem cells in an undifferentiated state. Despite their importance, it remains unclear how these two pathways are integrated to coordinate stem cell development. Here, we show that the WUS and STM pathways in Arabidopsis thaliana converge through direct interaction between the WUS and STM proteins. STM binds to the promoter of CLAVATA3 (CLV3) and enhances the binding of WUS to the same promoter through the WUS-STM interaction. Both the heterodimerization and simultaneous binding of WUS and STM at two sites on the CLV3 promoter are required to regulate CLV3 expression, which in turn maintains a constant number of stem cells. Furthermore, the expression of STM depends on WUS, and this WUS-activated STM expression enhances the WUS-mediated stem cell activity. Our data provide a framework for understanding how spatial expression patterns within the shoot meristem are translated into regulatory units of stem cell homeostasis.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Meristema/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Linhagem Celular , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/metabolismo , Ligação Proteica , Células-Tronco/citologia , Células-Tronco/metabolismo
6.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203611

RESUMO

Maize is an important food and cash crop worldwide. The WUSCHEL (WUS)-related homeobox (WOX) transcription factor (TF) family plays a significant role in the development process and the response to abiotic stress of plants. However, few studies have been reported on the function of WOX genes in maize. This work, utilizing the latest maize B73 reference genome, results in the identification of 22 putative ZmWOX gene family members. Except for chromosome 5, the 22 ZmWOX genes were homogeneously distributed on the other nine chromosomes and showed three tandem duplication and 10 segmental duplication events. Based on phylogenetic characteristics, ZmWOXs are divided into three clades (e.g., WUS, intermediate, and ancient groups), and the majority of ZmWOXs in same group display similar gene and protein structures. Cross-species collinearity results indicated that some WOX genes might be evolutionarily conservative. The promoter region of ZmWOX family members is enriched in light, plant growth/hormone, and abiotic stress-responsive elements. Tissue-specific expression evaluation showed that ZmWOX genes might play a significant role in the occurrence of maize reproductive organs. Transcriptome data and RT-qPCR analysis further showed that six ZmWOX genes (e.g., ZmWOX1, 4, 6, 13, 16, and 18) were positively or negatively modulated by temperature, salt, and waterlogging stresses. Moreover, two ZmWOXs, ZmWOX1 and ZmWOX18, both were upregulated by abiotic stress. ZmWOX18 was localized in the nucleus and had transactivation activities, while ZmWOX1 was localized in both the cytoplasm and nucleus, without transactivation activity. Overall, this work offers new perspectives on the evolutionary relationships of ZmWOX genes and might provide a resource for further detecting the biological functions of ZmWOXs.


Assuntos
Genes Homeobox , Zea mays , Zea mays/genética , Filogenia , Fatores de Transcrição/genética , Estresse Fisiológico/genética
7.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834339

RESUMO

The development of both animals and plants relies on populations of pluripotent stem cells that provide the cellular raw materials for organ and tissue formation. Plant stem cell reservoirs are housed at the shoot and root tips in structures called meristems, with the shoot apical meristem (SAM) continuously producing aerial leaf, stem, and flower organs throughout the life cycle. Thus, the SAM acts as the engine of plant development and has unique structural and molecular features that allow it to balance self-renewal with differentiation and act as a constant source of new cells for organogenesis while simultaneously maintaining a stem cell reservoir for future organ formation. Studies have identified key roles for intercellular regulatory networks that establish and maintain meristem activity, including the KNOX transcription factor pathway and the CLV-WUS stem cell feedback loop. In addition, the plant hormones cytokinin and auxin act through their downstream signaling pathways in the SAM to integrate stem cell activity and organ initiation. This review discusses how the various regulatory pathways collectively orchestrate SAM function and touches on how their manipulation can alter stem cell activity to improve crop yield.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Células-Tronco Pluripotentes , Proteínas de Arabidopsis/genética , Brotos de Planta/metabolismo , Arabidopsis/metabolismo , Meristema , Células-Tronco Pluripotentes/metabolismo , Desenvolvimento Vegetal , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo
8.
New Phytol ; 234(1): 149-163, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35032334

RESUMO

The CLAVATA pathway is a key regulator of stem cell function in the multicellular shoot tips of Arabidopsis, where it acts via the WUSCHEL transcription factor to modulate hormone homeostasis. Broad-scale evolutionary comparisons have shown that CLAVATA is a conserved regulator of land plant stem cell function, but CLAVATA acts independently of WUSCHEL-like (WOX) proteins in bryophytes. The relationship between CLAVATA, hormone homeostasis and the evolution of land plant stem cell functions is unknown. Here we show that in the moss, Physcomitrella (Physcomitrium patens), CLAVATA affects stem cell activity by modulating hormone homeostasis. CLAVATA pathway genes are expressed in the tip cells of filamentous tissues, regulating cell identity, filament branching, plant spread and auxin synthesis. The receptor-like kinase PpRPK2 plays the major role, and Pprpk2 mutants have abnormal responses to cytokinin, auxin and auxin transport inhibition, and show reduced expression of PIN auxin transporters. We propose a model whereby PpRPK2 modulates auxin gradients in filaments to determine stem cell identity and overall plant form. Our data indicate that CLAVATA-mediated auxin homeostasis is a fundamental property of plant stem cell function, probably exhibited by the last shared common ancestor of land plants.


Assuntos
Proteínas de Arabidopsis , Briófitas , Bryopsida , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Briófitas/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Ácidos Indolacéticos/metabolismo , Células-Tronco/metabolismo
9.
New Phytol ; 234(3): 1059-1074, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35170044

RESUMO

CRABS CLAW (CRC) orthologues play a crucial role in floral meristem (FM) determinacy and gynoecium formation across angiosperms, the key developmental processes for ensuring successful plant reproduction and crop production. However, the mechanisms behind CRC mediated FM termination are far from fully understood. Here, we addressed the functional characterization of tomato (Solanum lycopersicum) paralogous CRC genes. Using mapping-by-sequencing, RNA interference and CRISPR/Cas9 techniques, expression analyses, protein-protein interaction assays and Arabidopsis complementation experiments, we examined their potential roles in FM determinacy and carpel formation. We revealed that the incomplete penetrance and variable expressivity of the indeterminate carpel-inside-carpel phenotype observed in fruit iterative growth (fig) mutant plants are due to the lack of function of the S. lycopersicum CRC homologue SlCRCa. Furthermore, a detailed functional analysis of tomato CRC paralogues, SlCRCa and SlCRCb, allowed us to propose that they operate as positive regulators of FM determinacy by acting in a compensatory and partially redundant manner to safeguard the proper formation of flowers and fruits. Our results uncover for the first time the physical interaction of putative CRC orthologues with members of the chromatin remodelling complex that epigenetically represses WUSCHEL expression through histone deacetylation to ensure the proper termination of floral stem cell activity.


Assuntos
Proteínas de Arabidopsis , Solanum lycopersicum , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Flores , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Mol Biol (Mosk) ; 55(3): 362-391, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34097673

RESUMO

WOX (WUSCHEL-RELATED HOMEOBOX) is a family of homeodomain-containing transcription factors in plants. WOX proteins maintain the activity of different types of meristems and regulate the formation of plant organs, controlling cell proliferation and differentiation. Study of the WOX family is important for the development of plant transformation and genome editing techniques. Here we review the functions of the WOX transcription factors as well as their targets, partners, and regulators. The WOX family can be divided into three phylogenetically distinct clades; so-called ancient, intermediate, and WUS clade; each clade is covered in a separate section. The WOX genes of Arabidopsis thaliana are described most comprehensively, with their orthologs in other plant species also considered. Summary tables with the described targets, regulators and partners of WOX family members are provided.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Meristema/metabolismo , Filogenia , Proteínas de Plantas/genética
11.
Mol Biol (Mosk) ; 54(2): 187-203, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32392188

RESUMO

A brief review of current data on the molecular biology of stem cells forming meristems and differentiating into various organs of angiosperms is presented. Different primary and secondary meristems are compared. The interactions of some hormones, regulatory gene networks, and signaling pathways in different types of meristems are described.


Assuntos
Magnoliopsida/citologia , Células Vegetais , Células-Tronco/citologia , Redes Reguladoras de Genes , Hormônios , Meristema , Transdução de Sinais
12.
Plant J ; 94(3): 535-547, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29474743

RESUMO

Anther and ovule genesis preconditions crop fertilization and fruit production; however, coordinative regulation of anther and ovule development and underlying molecular pathways remain largely elusive. Here, we found that SPOROCYTELESS (SPL)/NOZZLE (NZZ) expression was nearly abolished in a Cucumis sativus (cucumber) mutant with severely defective anther and ovule development. CsSPL was expressed specifically in the developing anthers and ovules. Knock-down of CsSPL reduced male and female fertility with malformed pollen and suppressed ovule development. Importantly, CsSPL directly interacted with CsWUS (WUSCHEL) in the nucellus and YABBY family genes in integuments, and positively regulated CsWUS expression, meanwhile the HD-ZIP III gene CsPHB (PHABULOSA), expressed specifically in the nucellus, promoted CsSPL expression by binding to the CsSPL promoter. Thus, CsSPL acts as an adaptor to link CsPHB and CsWUS functioning, underpinning a previously unidentified regulatory pathway orchestrating sex organ development in planta. In addition, auxin accumulation was reduced in the reproductive organs of CsSPL knock-down plants. Biochemical analyses further showed that CsSPL stimulated the expression of AUXIN RESPONSE FACTOR 3 (CsARF3), and was positively regulated by CsARF13 during reproductive organ development, indicating sequential interactions of CsSPL with auxin signaling components in orchestrating anther and ovule development.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Cucumis sativus/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes de Plantas/genética , Genes de Plantas/fisiologia , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética
13.
Development ; 143(3): 422-6, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26700684

RESUMO

Angiosperm ovules consist of three proximal-distal domains - the nucellus, chalaza and funiculus - demarcated by developmental fate and specific gene expression. Mutation in three paralogous class III homeodomain leucine zipper (HD-ZIPIII) genes leads to aberrations in ovule integument development. Expression of WUSCHEL (WUS) is normally confined to the nucellar domain, but in this triple mutant expression expands into the chalaza. MicroRNA-induced suppression of this expansion partially suppresses the effects of the HD-ZIPIII mutations on ovule development, implicating ectopic WUS expression as a component of the mutant phenotype. bell1 (bel1) mutants produce aberrant structures in place of the integuments and WUS is ectopically expressed in these structures. Combination of bel1 with the HD-ZIPIII triple mutant leads to a striking phenotype in which ectopic ovules emerge from nodes of ectopic WUS expression along the funiculi of the primary ovules. The synergistic phenotype indicates that BEL1 and the HD-ZIPIII genes act in at least partial independence in confining WUS expression to the nucellus and maintaining ovule morphology. The branching ovules of the mutant resemble those of some fossil gymnosperms, implicating BEL1 and HD-ZIPIII genes as players in the evolution of the unbranched ovule form in extant angiosperms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Óvulo Vegetal/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Padronização Corporal/genética , Citocininas/metabolismo , Proteínas de Homeodomínio/metabolismo , Modelos Biológicos , Mutação/genética , Óvulo Vegetal/genética , Óvulo Vegetal/ultraestrutura , Fenótipo , Fatores de Transcrição/metabolismo
14.
Int J Mol Sci ; 20(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875718

RESUMO

Chrysanthemum morifolium is a gynomonoecious plant that bears both female zygomorphic ray florets and bisexual actinomorphic disc florets in the inflorescence. This sexual system is quite prevalent in Asteraceae, but poorly understood. CYCLOIDEA (CYC) 2 subclade transcription factors, key regulators of flower symmetry and floret identity in Asteraceae, have also been speculated to function in reproductive organs and could be an entry point for studying gynomonoecy. However, the molecular mechanism is still unclear. On the other hand, the Arabidopsis WUSCHEL (WUS) transcription factor has been proven to play a vital role in the development of reproductive organs. Here, a WUS homologue (CmWUS) in C. morifolium was isolated and characterized. Overexpression of CmWUS in A. thaliana led to shorter siliques and fewer stamens, which was similar to CYC2-like genes reported before. In addition, both CmWUS and CmCYC2 were highly expressed in flower buds during floral organ differentiation and in the reproductive organs at later development stages, indicating their involvement in the development of reproductive organs. Moreover, CmWUS could directly interact with CmCYC2d. Thus, our data suggest a collaboration between CmWUS and CmCYC2 in the regulation of reproductive organ development in chrysanthemum and will contribute to a further understanding of the gynomonoecious sexual system in Asteraceae.


Assuntos
Chrysanthemum/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Chrysanthemum/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Mapas de Interação de Proteínas , Fatores de Transcrição/metabolismo
16.
New Phytol ; 218(1): 344-356, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29274285

RESUMO

Cucumber (Cucumis sativus) is an agronomically important vegetable with indeterminant growth habit, in which leaves are produced from the shoot apical meristem (SAM), and unisexual flowers are generated from the leaf axils. LEAFY (LFY) and its homologs have been shown to play important roles in promoting flower development and branching. The LFY homolog gene CsLFY was cloned in cucumber. Molecular biology, developmental biology and biochemical tools were combined to explore the biological function of the LFY homologous gene CsLFY in cucumber. CsLFY was expressed in the SAM, floral meristem and floral organ primordia. Ectopic expression of CsLFY rescued the phenotype of the lfy-5 mutant in Arabidopsis. Knockdown of CsLFY by RNA interference (RNAi) led to defective shoot development and premature discontinuance of leaf initiation in cucumber. Transcription of CsWUS and putative CsLFY target genes including CsAP3 and CUM1 were significantly reduced in the CsLFY-RNAi lines. Further biochemical analyses indicated that CsLFY physically interacts with CsWUS in cucumber. These data suggested that CsLFY has a novel function in regulating shoot meristem maintenance through interaction with CsWUS, and promotes flower development via activation of CsAP3 and CUM1 in cucumber.


Assuntos
Cucumis sativus/metabolismo , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/anatomia & histologia , Cucumis sativus/anatomia & histologia , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes de Plantas , Meristema/citologia , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica
17.
Development ; 141(4): 830-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24496620

RESUMO

In plants, the shoot apical meristem (SAM) serves as a reservoir of pluripotent stem cells from which all above ground organs originate. To sustain proper growth, the SAM must maintain homeostasis between the self-renewal of pluripotent stem cells and cell recruitment for lateral organ formation. At the core of the network that regulates this homeostasis in Arabidopsis are the WUSCHEL (WUS) transcription factor specifying stem cell fate and the CLAVATA (CLV) ligand-receptor system limiting WUS expression. In this study, we identified the ERECTA (ER) pathway as a second receptor kinase signaling pathway that regulates WUS expression, and therefore shoot apical and floral meristem size, independently of the CLV pathway. We demonstrate that reduction in class III HD-ZIP and ER function together leads to a significant increase in WUS expression, resulting in extremely enlarged shoot meristems and a switch from spiral to whorled vegetative phyllotaxy. We further show that strong upregulation of WUS in the inflorescence meristem leads to ectopic expression of the AGAMOUS homeotic gene to a level that switches cell fate from floral meristem founder cell to carpel founder cell, suggesting an indirect role for ER in regulating floral meristem identity. This work illustrates the delicate balance between stem cell specification and differentiation in the meristem and shows that a shift in this balance leads to abnormal phyllotaxy and to altered reproductive cell fate.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Homeodomínio/metabolismo , Meristema/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Proteína AGAMOUS de Arabidopsis/metabolismo , Biologia Computacional , Primers do DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Hibridização In Situ , Meristema/citologia , Microscopia Eletrônica de Varredura , Mutagênese , Brotos de Planta/citologia , Plantas Geneticamente Modificadas , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética
18.
J Sci Food Agric ; 97(3): 1034-1041, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27271725

RESUMO

BACKGROUND: The quality improvement capability of pentosanase (Pn) for whole-wheat Chinese steamed bread (CSB) is not as efficient as that for refined CSB. However, the underlying mechanism remains to be elucidated. In this work, water-extractable arabinoxylan (WEAX) and water-unextractable solids (WUS) were extracted from whole and refined wheat flour, and then treated with Pn under the conditions similar to CSB-making. Solubilisation and degradation of arabinoxylan (AX) caused by Pn treatment were determined. RESULTS: WEAX from whole flour exhibited higher molecular weight than that from refined flour before and after the treatment with equivalent Pn. Compared with WUS from refined flour, WUS from whole flour had a much lower dissolution degree but the degradation of AX released from the WUS was more efficiently. Moreover, AX released from WUS for refined flour showed a higher Ara/Xyl ratio and the percentage of residual ferulic acid in WUS decreased more significantly. CONCLUSION: The difference in quality improvement degree for Pn in whole-wheat and refined CSB might be mainly explained by its effect on WUS. That is, Pn contributed much more to the solubilisation of WUS from refined flour but provoked degradation predominantly on AX solubilised from WUS isolated from whole flour. © 2016 Society of Chemical Industry.


Assuntos
Pão/análise , Farinha/análise , Qualidade dos Alimentos , Triticum/química , Grãos Integrais/química , Xilanos/metabolismo , Xilosidases/metabolismo , Fenômenos Químicos , China , Culinária , Ácidos Cumáricos/análise , Eurotiales/enzimologia , Manipulação de Alimentos , Proteínas Fúngicas/metabolismo , Hidrólise , Fenômenos Mecânicos , Peso Molecular , Pentoses/metabolismo , Solubilidade , Vapor , Especificidade por Substrato , Viscosidade , Xilanos/química , Xilanos/isolamento & purificação
19.
Ann Bot ; 117(5): 905-23, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27098089

RESUMO

BACKGROUND AND AIMS: SUPERMAN is a cadastral gene controlling the sexual boundary in the flower. The gene's functions and role in flower development and evolution have remained elusive. The analysis of a contrasting SUP allelic series (for which the names superman, superwoman and supersex have been coined) makes it possible to distinguish early vs. late regulatory processes at the flower meristem centre to which SUP is an important contributor. Their understanding is essential in further addressing evolutionary questions linking bisexuality and flower meristem homeostasis. METHODS: Inter-allelic comparisons were carried out and SUP interactions with other boundary factors and flower meristem patterning and homeostasis regulators (such as CLV, WUS, PAN, CUC, KNU, AG, AP3/PI, CRC and SPT) have been evaluated at genetic, molecular, morphological and histological levels. KEY RESULTS: Early SUP functions include mechanisms of male-female (sexual) boundary specification, flower mersitem termination and control of stamen number. A SUP-dependent flower meristem termination pathway is identified and analysed. Late SUP functions play a role in organ morphogenesis by controlling intra-whorl organ separation and carpel medial region formation. By integrating early and late SUP functions, and by analyzing in one single experiment a series of SUP genetic interactions, the concept of meristematic 'transference' (cascade) - a regulatory bridging process redundantly and sequentially co-ordinating the triggering and completion of flower meristem termination, and carpel margin meristem and placenta patterning - is proposed. CONCLUSIONS: Taken together, the results strongly support the view that SUP(-type) function(s) have been instrumental in resolving male/female gradients into sharp male and female identities (whorls, organs) and in enforcing flower homeostasis during evolution. This has probably been achieved by incorporating the meristem patterning system of the floral axis into the female/carpel programme.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Fatores de Transcrição/genética , Alelos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Cruzamentos Genéticos , Proteínas de Ligação a DNA/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Meristema/genética , Mutação , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo
20.
Plant Cell Environ ; 38(10): 2098-114, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25764476

RESUMO

Plant stem cells are hypersensitive to environmental hazards throughout their life cycle, but the mechanism by which plants safeguard stem cell homeostasis in response to environmental hazards is largely unknown. The homeodomain transcription factor WUSCHEL (WUS) protein maintains the stem cell pool in the shoot apical meristem of Arabidopsis. Here, we demonstrate that the translation of WUS mRNA is directed by an internal ribosomal entry site (IRES) located in the 5'-untranslated region. The AtLa1 protein, an RNA-binding factor, binds to the 5'-untranslated region and initiates the IRES-dependent translation of WUS mRNA. Knockdown of AtLa1 expression represses the WUS IRES-dependent translation and leads to the arrest of growth and development. The AtLa1 protein is mainly located in the nucleoplasm. However, environmental hazards promote the nuclear-to-cytoplasmic translocation of the AtLa1 protein, which further enhances the IRES-dependent translation of WUS mRNA. Genetic evidence indicates that the WUS protein increases the tolerance of the shoot apical meristem to environmental hazards. Based on these results, we conclude that the stem cell niche in Arabidopsis copes with environmental hazards by enhancing the IRES-dependent translation of WUS mRNA under the control of the AtLa1 protein.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Sítios Internos de Entrada Ribossomal/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Regiões 5' não Traduzidas/genética , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Meio Ambiente , Proteínas de Homeodomínio/metabolismo , Homeostase , Meristema/genética , Meristema/fisiologia , Dados de Sequência Molecular , Brotos de Planta/genética , Brotos de Planta/fisiologia , Caules de Planta/genética , Caules de Planta/fisiologia , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA de Plantas/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de DNA , Nicho de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA