Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.427
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2309006120, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190516

RESUMO

Improving water use efficiency in crops is a significant challenge as it involves balancing water transpiration and CO2 uptake through stomatal pores. This study investigates the role of SlROP9, a tomato Rho of Plants protein, in guard cells and its impact on plant transpiration. The results reveal that SlROP9 null mutants exhibit reduced stomatal conductance while photosynthetic CO2 assimilation remains largely unaffected. Notably, there is a notable decrease in whole-plant transpiration in the rop9 mutants compared to the wild type, especially during noon hours when the water pressure deficit is high. The elevated stomatal closure observed in rop9 mutants is linked to an increase in reactive oxygen species formation. This is very likely dependent on the respiratory burst oxidase homolog (RBOH) NADPH oxidase and is not influenced by abscisic acid (ABA). Consistently, activated ROP9 can interact with RBOHB in both yeast and plants. In diverse tomato accessions, drought stress represses ROP9 expression, and in Arabidopsis stomatal guard cells, ABA suppresses ROP signaling. Therefore, the phenotype of the rop9 mutants may arise from a disruption in ROP9-regulated RBOH activity. Remarkably, large-scale field experiments demonstrate that the rop9 mutants display improved water use efficiency without compromising fruit yield. These findings provide insights into the role of ROPs in guard cells and their potential as targets for enhancing water use efficiency in crops.


Assuntos
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Produtos Agrícolas , Proteínas de Plantas/genética , Ácido Abscísico , Arabidopsis/genética
2.
Plant J ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039969

RESUMO

Water use efficiency (WUE) is crucial for apple tree fitness and survival, especially in response to climatic changes. The receptor-like kinase FERONIA is reportedly an essential regulator of plant stress responses, but its role in regulating WUE under water deficit conditions is unclear. Here, we found that overexpressing the apple FERONIA receptor kinase gene, MdMRLK2, enhanced apple WUE under long-term water deficit conditions. Under drought treatment, 35S::MdMRLK2 apple plants exhibited higher photosynthetic capacity and antioxidant enzyme activities than wild-type (WT) plants. 35S::MdMRLK2 apple plants also showed increased biomass accumulation, root activity, and water potential compared to WT plants. Moreover, MdMRLK2 physically interacts with and phosphorylates cinnamoyl-CoA reductase 1, MdCCR1, an enzyme essential for lignin synthesis, at position Ser260. This interaction likely contributed to increased vessel density, vascular cylinder area, and lignin content in 35S::MdMRLK2 apple plants under drought conditions. Therefore, our findings reveal a novel function of MdMRLK2 in regulating apple WUE under water deficit conditions.

3.
Plant J ; 119(5): 2514-2537, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38970620

RESUMO

Soil salinity is a major environmental stressor affecting agricultural productivity worldwide. Understanding plant responses to salt stress is crucial for developing resilient crop varieties. Wild relatives of cultivated crops, such as wild tomato, Solanum pimpinellifolium, can serve as a useful resource to further expand the resilience potential of the cultivated germplasm, S. lycopersicum. In this study, we employed high-throughput phenotyping in the greenhouse and field conditions to explore salt stress responses of a S. pimpinellifolium diversity panel. Our study revealed extensive phenotypic variations in response to salt stress, with traits such as transpiration rate, shoot mass, and ion accumulation showing significant correlations with plant performance. We found that while transpiration was a key determinant of plant performance in the greenhouse, shoot mass strongly correlated with yield under field conditions. Conversely, ion accumulation was the least influential factor under greenhouse conditions. Through a Genome Wide Association Study, we identified candidate genes not previously associated with salt stress, highlighting the power of high-throughput phenotyping in uncovering novel aspects of plant stress responses. This study contributes to our understanding of salt stress tolerance in S. pimpinellifolium and lays the groundwork for further investigations into the genetic basis of these traits, ultimately informing breeding efforts for salinity tolerance in tomato and other crops.


Assuntos
Estudo de Associação Genômica Ampla , Fenótipo , Estresse Salino , Solanum , Solanum/genética , Solanum/fisiologia , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia
4.
EMBO Rep ; 24(8): e56754, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37278352

RESUMO

The use of beneficial microbes to mitigate drought stress tolerance of plants is of great potential albeit little understood. We show here that a root endophytic desert bacterium, Pseudomonas argentinensis strain SA190, enhances drought stress tolerance in Arabidopsis. Transcriptome and genetic analysis demonstrate that SA190-induced root morphogenesis and gene expression is mediated via the plant abscisic acid (ABA) pathway. Moreover, we demonstrate that SA190 primes the promoters of target genes in an epigenetic ABA-dependent manner. Application of SA190 priming on crops is demonstrated for alfalfa, showing enhanced performance under drought conditions. In summary, a single beneficial root bacterial strain can help plants to resist drought conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Resistência à Seca , Arabidopsis/genética , Arabidopsis/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética
5.
Plant J ; 115(6): 1661-1676, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37300871

RESUMO

Most studies assume midday gas exchange measurements capture the leaf's daytime performance. However, stomatal conductance (gs ) and photosynthesis (An ) fluctuate diurnally due to endogenous and environmental rhythms, which can affect intrinsic water use efficiency (iWUE). Six Sorghum lines with contrasting stomatal anatomical traits were grown in environmentally controlled conditions, and leaf gas exchange was measured three times a day. Stomatal anatomy and kinetic responses to light transients were also measured. The highest An and gs and the lowest iWUE were observed at midday for most lines. Diurnally averaged iWUE correlated positively with morning and midday iWUE and negatively with the time taken for stomata to close after transition to low light intensity (kclose ). There was significant variation among sorghum lines for kclose , and smaller kclose correlated with lower gs and higher stomatal density (SD) across the lines. In turn, gs was negatively correlated with SD and regulated by the operational stomatal aperture regardless of stomatal size. Altogether, our data suggest a common physiology to improve iWUE in sorghum related to the control of water loss without impacting photosynthesis relying on higher SD, lower stomatal aperture and faster stomatal closing in response to low light intensity.


Assuntos
Sorghum , Água , Água/fisiologia , Estômatos de Plantas/fisiologia , Folhas de Planta/fisiologia , Luz , Fotossíntese/fisiologia , Dióxido de Carbono
6.
BMC Genomics ; 25(1): 640, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937661

RESUMO

BACKGROUND: Drought adaptation is critical to many tree species persisting under climate change, however our knowledge of the genetic basis for trees to adapt to drought is limited. This knowledge gap impedes our fundamental understanding of drought response and application to forest production and conservation. To improve our understanding of the genomic determinants, architecture, and trait constraints, we assembled a reference genome and detected ~ 6.5 M variants in 432 phenotyped individuals for the foundational tree Corymbia calophylla. RESULTS: We found 273 genomic variants determining traits with moderate heritability (h2SNP = 0.26-0.64). Significant variants were predominantly in gene regulatory elements distributed among several haplotype blocks across all chromosomes. Furthermore, traits were constrained by frequent epistatic and pleiotropic interactions. CONCLUSIONS: Our results on the genetic basis for drought traits in Corymbia calophylla have several implications for the ability to adapt to climate change: (1) drought related traits are controlled by complex genomic architectures with large haplotypes, epistatic, and pleiotropic interactions; (2) the most significant variants determining drought related traits occurred in regulatory regions; and (3) models incorporating epistatic interactions increase trait predictions. Our findings indicate that despite moderate heritability drought traits are likely constrained by complex genomic architecture potentially limiting trees response to climate change.


Assuntos
Secas , Epistasia Genética , Genômica , Genoma de Planta , Haplótipos , Locos de Características Quantitativas , Fenótipo , Polimorfismo de Nucleotídeo Único
7.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36788455

RESUMO

Energy production and metabolism are intimately linked to ecological and environmental constraints across the tree of life. In plants, which depend on sunlight to produce energy, the link between primary metabolism and the environment is especially strong. By governing CO2 uptake for photosynthesis and transpiration, leaf pores, or stomata, couple energy metabolism to the environment and determine productivity and water-use efficiency (WUE). Although evolution is known to tune physiological traits to the local environment, we lack knowledge of the specific links between molecular and evolutionary mechanisms that shape this process in nature. Here, we investigate the evolution of stomatal conductance and WUE in an Arabidopsis population that colonized an island with a montane cloud scrubland ecosystem characterized by seasonal drought and fog-based precipitation. We find that stomatal conductance increases and WUE decreases in the colonizing population relative to its closest outgroup population from temperate North Africa. Genome-wide association mapping reveals a polygenic basis of trait variation, with a substantial contribution from a nonsynonymous single-nucleotide polymorphism in MAP KINASE 12 (MPK12 G53R), which explains 35% of the phenotypic variance in WUE in the island population. We reconstruct the spatially explicit evolutionary history of MPK12 53R on the island and find that this allele increased in frequency in the population due to positive selection as Arabidopsis expanded into the harsher regions of the island. Overall, these findings show how adaptation shaped quantitative eco-physiological traits in a new precipitation regime defined by low rainfall and high humidity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Ecossistema , Estudo de Associação Genômica Ampla , Proteínas de Arabidopsis/genética , Folhas de Planta , Fotossíntese/genética , Água/metabolismo , Genômica , Secas
8.
BMC Plant Biol ; 24(1): 435, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773410

RESUMO

BACKGROUND: Afforestation of non-forestland is a new measure by the European Union to enhance climate mitigation and biodiversity. Hybrid aspen (Populus tremula L. × P. tremuloides Michx.) is among the suitable tree species for afforestation to produce woody biomass. However, the best performing genotypic material for intensive biomass production and its physiological adaptation capacity is still unclear. We compared 22 hybrid aspen genotypes growth and leaf physiological characteristics (stomatal conductance, net photosynthesis, intrinsic water-use efficiency) according to their geographical north- or southward transfer (European P. tremula parent from 51° to 60° N and North American P. tremuloides parent from 45° to 54° N) to hemiboreal Estonia (58° N) in a completely randomized design progeny trial. We tested whether the growth ranking of genotypes of different geographical origin has changed from young (3-year-old) to mid-rotation age (13-year-old). The gas exchange parameters were measured in excised shoots in 2021 summer, which was characterised with warmer (+ 4 °C) and drier (17% precipitation from normal) June and July than the long-term average. RESULTS: We found that the northward transfer of hybrid aspen genotypes resulted in a significant gain in growth (two-fold greater diameter at breast height) in comparison with the southward transfer. The early selection of genotypes was generally in good accordance with the middle-aged genotype ranking, while some of the northward transferred genotypes showed improved growth at the middle-age period in comparison with their ranking during the early phase. The genotypes of southward transfer demonstrated higher stomatal conductance, which resulted in higher net photosynthesis, and lower intrinsic water-use efficiency (iWUE) compared with northward transfer genotypes. However, higher photosynthesis did not translate into higher growth rate. The higher physiological activity of southern transferred genotypes was likely related to a better water supply of smaller and consequently more shaded trees under drought. Leaf nitrogen concentration did not have any significant relation with tree growth. CONCLUSIONS: We conclude that the final selection of hybrid aspen genotypes for commercial use should be done in 10-15 years after planting. Physiological traits acquired during periods of droughty conditions may not fully capture the growth potential. Nonetheless, we advocate for a broader integration of physiological measurements alongside traditional traits (such as height and diameter) in genotype field testing to facilitate the selection of climate-adapted planting material for resilient forests.


Assuntos
Genótipo , Folhas de Planta , Populus , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/fisiologia , Populus/genética , Populus/crescimento & desenvolvimento , Populus/fisiologia , Fotossíntese/genética , Hibridização Genética , Ligação Genética
9.
BMC Plant Biol ; 24(1): 845, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251892

RESUMO

Wheat (Triticum aestivum L.) is a staple food crop that plays a crucial role in global food security. A suitable planting pattern and optimum nitrogen (N) split management are efficient practices for improving wheat production. Therefore, an experiment was performed to explore the effect of N split management and sowing patterns on wheat at the Agronomy Research Farm, The University of Agriculture Peshawar, during rabi season 2020-21 and 2021-22. The treatments consisted of different nitrogen rates of 0, 80, 120, and 160 kg ha- 1 and planting patterns of W, M, broadcast and line sowing. The pooled analysis of both cropping seasons showed that application of 120 kg N ha- 1 increased spikelets spike- 1, grains spike- 1, 1000 grains weight, grain yield, grain N content, evapotranspiration and water use efficiency by 21.9, 16.7, 21.8, 70, 13, 19.9 and 40% as compared to control, respectively. In addition, W and M were observed the best management practices among all planting patterns. The M planting pattern enhanced chlorophyll a, b, carotenoids and evapotranspiration while W plating pattern improved yield components and yield of wheat as compared to broadcast planting patterns. The principal component analysis biplot showed a close association of M and W planting patterns with 120 kg N ha- 1 in most of the studied traits. Hence, it is concluded that split application of 120 kg N ha- 1 in W and M sowing patterns enhanced growth, biochemical traits and water use efficiency, reducing N fertilization from 160 to 120 kg ha- 1 while increasing grain yield of wheat. Hence, it is recommended that application of 120 kg N ha⁻¹ in combination with W and M planting patterns offer a sustainable approach to enhancing wheat production in the alkaline soil conditions of the Peshawar valley.


Assuntos
Fertilizantes , Nitrogênio , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Nitrogênio/metabolismo , Fertilizantes/análise , Produção Agrícola/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Agricultura/métodos , Clorofila/metabolismo
10.
BMC Plant Biol ; 24(1): 624, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951758

RESUMO

Drought poses significant risks to maize cultivation by impairing plant growth, water uptake and yield; nano priming offers a promising avenue to mitigate these effects by enhancing plant water relations, stress tolerance and overall productivity. In the current experiment, we tested a hypothesis that seed priming with iron oxide nanoparticles (n-Fe2O3) can improve maize performance under water stress by improving its growth, water relations, yield and biochemical attributes. The experiment was conducted on a one main plot bisected into two subplots corresponding to the water and drought environments. Within each subplot, maize plants were raised from n-Fe2O3 primed seeds corresponding to 0 mg. L- 1 (as control treatment), 25, 50, 75, and 100 mg. L- 1 (as trial treatments). Seed priming with n-Fe2O3 at a concentration of 75 mg. L- 1 improved the leaf relative water content, water potential, photosynthetic water use efficiency, and leaf intrinsic water use efficiency of maize plants by 13%, 44%, 64% and 17%, respectively compared to control under drought stress. The same treatments improved plant biochemical attributes such as total chlorophyll content, total flavonoids and ascorbic acid by 37%, 22%, and 36%, respectively. Seed priming with n-Fe2O3 accelerated the functioning of antioxidant enzymes such as SOD and POD and depressed the levels of leaf malondialdehyde and hydrogen peroxide significantly. Seed priming with n-Fe2O3 at a concentration of 75 mg. L- 1 improved cob length, number of kernel rows per cob, and 100 kernel weight by 59%, 27% and 33%, respectively, under drought stress. Seed priming with n-Fe2O3 can be used to increase maize production under limited water scenarios.


Assuntos
Desidratação , Sementes , Água , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Água/metabolismo , Secas , Fotossíntese/efeitos dos fármacos , Compostos Férricos , Clorofila/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia
11.
BMC Plant Biol ; 24(1): 135, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403579

RESUMO

The production of crops depending on many factors including water, nutrient, soil types, climate and crops types, water stress and drought is in one of the important factors affecting crop productivity. The experiment was conducted in pots to evaluate the effect of biofertilizers (Bacillus simplex) with deficit irrigations on the early development and growth of maize crop under greenhouse condition. Pre sowing seed was inoculated with strain of bacteria (B+/B-) and different irrigation levels (no stress: 100% (I1) and deficit irrigation: 75 (I2), 50 (I3), 25 (I4) % of required water amount to reach pot capacity) was performed. Data was collected on different morphological characteristics and root characteristic of maize crop. Highest plant height (125 cm), stem diameter (18.02 mm), leaf area (350 cm- 2), plant weight (180.42 g in fresh, 73.58 g in dry), root length (92.83 cm) root ((91.70 g in fresh, (28.66 g in dry) weight were recorded in pots applied with 100% irrigation followed by 75%. Bacillus treated plants showed significant increase in leaf area (214.20 cm- 2), plant fresh weight (91.65 g) and dry weight (42.05 g), root length (79.20 cm), root fresh (53.52 g) and dry weight (16.70 g) compared with control (without bacteria). Likewise highest relative water content of leaf was observed with I3 followed by I2 and I1 respectively. Highest water use efficiency was recorded as 0.67 g pot- 1 mm- 1 in I1 with B + treatment. Likewise, Bacillus inoculated pots resulted in increased water use efficiency (0.44 g pot- 1 mm- 1) compared with no application (0.36 g pot- 1 mm- 1). It can be endorsed from the outcome that Bacillus inoculation increased plant biomass, root biomass of maize and water use efficiency during early growth stage of maize despite of water stress and can be used under limited water condition for crop combating during moderate to lower stress conditions.


Assuntos
Bacillus , Zea mays , Desidratação , Solo
12.
BMC Plant Biol ; 24(1): 321, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654179

RESUMO

BACKGROUND: pOsNAR2.1:OsNAR2.1 expression could significantly increase nitrogen uptake efficiency and grain yield of rice. RESULT: This study reported the effects of overexpression of OsNAR2.1 by OsNAR2.1 promoter on physiological and agronomic traits associated with drought tolerance. In comparison to the wild-type (WT), the pOsNAR2.1:OsNAR2.1 transgenic lines exhibited a significant improvement in survival rate when subjected to drought stress and then irrigation. Under limited water supply conditions, compared with WT, the photosynthesis and water use efficiency (WUE) of transgenic lines were increased by 39.2% and 28.8%, respectively. Finally, the transgenic lines had 25.5% and 66.4% higher grain yield than the WT under full watering and limited water supply conditions, respectively. Compared with the WT, the agronomic nitrogen use efficiency (NUE) of transgenic lines increased by 25.5% and 66.4% under full watering and limited water supply conditions, and the N recovery efficiency of transgenic lines increased by 29.3% and 50.2%, respectively. The interaction between OsNAR2.1 protein and OsPLDα1 protein was verified by yeast hybrids. After drought treatment, PLDα activity on the plasma membrane of the transgenic line increased 85.0% compared with WT. CONCLUSION: These results indicated that pOsNAR2.1:OsNAR2.1 expression could improve the drought resistance of rice by increasing nitrogen uptake and regulating the expression of OsPLDα1.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Regiões Promotoras Genéticas , Resistência à Seca , Nitrogênio/metabolismo , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
13.
BMC Plant Biol ; 24(1): 83, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308236

RESUMO

BACKGROUND: A sufficient nitrogen supply is crucial for high-quality wheat yields. However, the use of nitrogen fertilization can also negatively influence ecosystems due to leaching or volatile atmospheric emissions. Drought events, increasingly prevalent in many crop production areas, significantly impact nitrogen uptake. Breeding more efficient wheat varieties is necessary to achieve acceptable yields with limited nitrogen and water. Crop root systems play a crucial role as the primary organ for absorbing water and nutrients. To investigate the impact of an enhanced root system on nitrogen and water use efficiency in wheat under various irrigation conditions, this study conducted two experiments using precision phenotyping platforms for controlled drought stress treatment. Experiment 1 involved four contrasting winter wheat genotypes. It included the Chinese variety Ning0604, carrying a quantitative trait locus (QTL) on chromosome 5B associated with a higher root dry biomass, and three elite German varieties, Elixer, Genius, and Leandrus. Experiment 2 compared near-isogenic lines (NIL) of the three elite varieties, each containing introgressions of the QTL on chromosome 5B linked to root dry mass. In both experiments, nitrogen partitioning was tracked via isotope discrimination after fertilization with 5 Atom % 15N-labeled KNO3-. RESULTS: In experiment 1 the quantification by 15N isotope discrimination revealed significantly (p < 0.05) higher nitrogen derived from fertilizer in the root organ for Ning0604 than those of the three German varieties. In experiment 2, two out of three NILs showed a significantly (p < 0.05) higher uptake of N derived from fertilizer than their respective recipient line under well-watered conditions. Furthermore, significantly lower transpiration rates (p < 0.1) were observed in one NIL compared to its respective recipient. CONCLUSIONS: The combination of the DroughtSpotter facility coupled with 15N tracer-based tracking of N uptake and remobilization extends the insight into the impact of genetically altered root biomass on wheat NUE and WUE under different water availability scenarios. The study shows the potential for how a modified genetic constitution of the locus on wheat chromosome 5B can reduce transpiration and enhance N uptake. The dependence of the observations on the recipient and water availability suggests a need for further research to investigate the interaction with genetic background traits.


Assuntos
Nitrogênio , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Triticum/genética , Secas , Ecossistema , Fertilizantes , Melhoramento Vegetal , Água , Cromossomos , Isótopos
14.
Planta ; 260(3): 56, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039321

RESUMO

MAIN CONCLUSION: Stomatal traits in rice genotypes affect water use efficiency. Low-frequency small-size stomata correlate with whole plant efficiency, while low-frequency large-size stomata show intrinsic efficiency and responsiveness to vapour pressure deficit. Leaf surface and the patterning of the epidermal layer play a vital role in determining plant growth. While the surface helps in determining radiation interception, epidermal pattern of stomatal factors strongly regulate gas exchange and water use efficiency (WUE). This study focuses on identifying distinct stomatal traits among rice genotypes to comprehend their influence on WUE. Stomatal frequency ranged from 353 to 687 per mm2 and the size varied between 128.31 and 339.01 µm2 among 150 rice germplasm with significant variability in abaxial and adaxial surfaces. The cumulative water transpired and WUE determined at the outdoor phenomics platform, over the entire crop growth period as well as during specific hours of a 24 h-day did not correlate with stomatal frequency nor size. However, genotypes with low-frequency and large-size stomata recorded higher intrinsic water use efficiency (67.04 µmol CO2 mol-1 H2O) and showed a quicker response to varying vapour pressure deficit that diurnally ranged between 0.03 and 2.17 kPa. The study demonstrated the role of stomatal factors in determining physiological subcomponents of WUE both at single leaf and whole plant levels. Differential expression patterns of stomatal regulatory genes among the contrasting groups explained variations in the epidermal patterning. Increased expression of ERECTA, TMM and YODA genes appear to contribute to decreased stomatal frequency in low stomatal frequency genotypes. These findings underscore the significance of stomatal traits in breeding programs and strongly support the importance of these genes that govern variability in stomatal architecture in future crop improvement programs.


Assuntos
Genótipo , Oryza , Folhas de Planta , Estômatos de Plantas , Transpiração Vegetal , Água , Oryza/genética , Oryza/fisiologia , Oryza/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Água/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Transpiração Vegetal/fisiologia , Pressão de Vapor
15.
Planta ; 260(4): 90, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256219

RESUMO

MAIN CONCLUSION: The high intrinsic water-use efficiency of Erianthus may be due to the low abaxial stomatal density and the accumulation of leaf metabolites such as betaine and gamma-aminobutyric acid. Sugarcane is an important crop that is widely cultivated in tropical and subtropical regions of the world. Because drought is among the main impediments limiting sugarcane production in these regions, breeding of drought-tolerant sugarcane varieties is important for sustainable production. Erianthus arundinaceus, a species closely related to sugarcane, exhibits high intrinsic water-use efficiency (iWUE), the underlying mechanisms for which remain unknown. To improve the genetic base for conferring drought tolerance in sugarcane, in the present study, we performed a comprehensive comparative analysis of leaf gas exchange and metabolites in different organs of sugarcane and Erianthus under wet and dry soil-moisture conditions. Erianthus exhibited lower stomatal conductance under both conditions, which resulted in a higher iWUE than in sugarcane. Organ-specific metabolites showed gradations between continuous parts and organs, suggesting linkages between them. Cluster analysis of organ-specific metabolites revealed the effects of the species and treatments in the leaves. Principal component analysis of leaf metabolites confirmed a rough ordering of the factors affecting their accumulations. Compared to sugarcane leaf, Erianthus leaf accumulated more raffinose, betaine, glutamine, gamma-aminobutyric acid, and S-adenosylmethionine, which function as osmolytes and stress-response compounds, under both the conditions. Our extensive analyses reveal that the high iWUE of Erianthus may be due to the specific accumulation of such metabolites in the leaves, in addition to the low stomatal density on the abaxial side of leaves. The identification of drought-tolerance traits of Erianthus will benefit the generation of sugarcane varieties capable of withstanding drought stress.


Assuntos
Secas , Folhas de Planta , Saccharum , Saccharum/genética , Saccharum/fisiologia , Saccharum/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Estômatos de Plantas/fisiologia , Estresse Fisiológico , Água/metabolismo , Água/fisiologia , Transpiração Vegetal/fisiologia
16.
Plant Biotechnol J ; 22(9): 2504-2517, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38687118

RESUMO

Mesophyll conductance (gm) describes the ease with which CO2 passes from the sub-stomatal cavities of the leaf to the primary carboxylase of photosynthesis, Rubisco. Increasing gm is suggested as a means to engineer increases in photosynthesis by increasing [CO2] at Rubisco, inhibiting oxygenation and accelerating carboxylation. Here, tobacco was transgenically up-regulated with Arabidopsis Cotton Golgi-related 3 (CGR3), a gene controlling methylesterification of pectin, as a strategy to increase CO2 diffusion across the cell wall and thereby increase gm. Across three independent events in tobacco strongly expressing AtCGR3, mesophyll cell wall thickness was decreased by 7%-13%, wall porosity increased by 75% and gm measured by carbon isotope discrimination increased by 28%. Importantly, field-grown plants showed an average 8% increase in leaf photosynthetic CO2 uptake. Up-regulating CGR3 provides a new strategy for increasing gm in dicotyledonous crops, leading to higher CO2 assimilation and a potential means to sustainable crop yield improvement.


Assuntos
Dióxido de Carbono , Parede Celular , Células do Mesofilo , Nicotiana , Fotossíntese , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Células do Mesofilo/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Porosidade
17.
New Phytol ; 243(2): 567-579, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38812270

RESUMO

Aerosols could significantly influence ecosystem carbon and water fluxes, potentially altering their interconnected dynamics, typically characterized by water-use efficiency (WUE). However, our understanding of the underlying ecophysiological mechanisms remains limited due to insufficient field observations. We conducted 4-yr measurements of leaf photosynthesis and transpiration, as well as 3-yr measurements of stem growth (SG) and sap flow of poplar trees exposed to natural aerosol fluctuation, to elucidate aerosol's impact on plant WUE. We found that aerosol improved sun leaf WUE mainly because a sharp decline in photosynthetically active radiation (PAR) inhibited its transpiration, while photosynthesis was less affected, as the negative effect induced by declined PAR was offset by the positive effect induced by low leaf vapor pressure deficit (VPDleaf). Conversely, diffuse radiation fertilization (DRF) effect stimulated shade leaf photosynthesis with minimal impact on transpiration, leading to an improved WUE. The responses were further verified by a strong DRF on SG and a decrease in sap flow due to the suppresses in total radiation and VPD. Our field observations indicate that, contrary to the commonly assumed coupling response, carbon uptake and water use exhibited dissimilar reactions to aerosol pollution, ultimately enhancing WUE at the leaf and canopy level.


Assuntos
Aerossóis , Carbono , Fotossíntese , Folhas de Planta , Transpiração Vegetal , Populus , Água , Água/metabolismo , Fotossíntese/efeitos da radiação , Fotossíntese/efeitos dos fármacos , Carbono/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Transpiração Vegetal/fisiologia , Transpiração Vegetal/efeitos da radiação , Populus/fisiologia , Populus/efeitos da radiação , Populus/efeitos dos fármacos , Caules de Planta/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia
18.
New Phytol ; 243(1): 58-71, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38655662

RESUMO

Climate change is simultaneously increasing carbon dioxide concentrations ([CO2]) and temperature. These factors could interact to influence plant physiology and performance. Alternatively, increased [CO2] may offset costs associated with elevated temperatures. Furthermore, the interaction between elevated temperature and [CO2] may differentially affect populations from along an elevational gradient and disrupt local adaptation. We conducted a multifactorial growth chamber experiment to examine the interactive effects of temperature and [CO2] on fitness and ecophysiology of diverse accessions of Boechera stricta (Brassicaceae) sourced from a broad elevational gradient in Colorado. We tested whether increased [CO2] would enhance photosynthesis across accessions, and whether warmer conditions would depress the fitness of high-elevation accessions owing to steep reductions in temperature with increasing elevation in this system. Elevational clines in [CO2] are not as evident, making it challenging to predict how locally adapted ecotypes will respond to elevated [CO2]. This experiment revealed that elevated [CO2] increased photosynthesis and intrinsic water use efficiency across all accessions. However, these instantaneous responses to treatments did not translate to changes in fitness. Instead, increased temperatures reduced the probability of reproduction for all accessions. Elevated [CO2] and increased temperatures interacted to shift the adaptive landscape, favoring lower elevation accessions for the probability of survival and fecundity. Our results suggest that elevated temperatures and [CO2] associated with climate change could have severe negative consequences, especially for high-elevation populations.


Assuntos
Brassicaceae , Dióxido de Carbono , Fotossíntese , Temperatura , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Brassicaceae/fisiologia , Aptidão Genética , Altitude , Água , Colorado , Mudança Climática , Reprodução
19.
New Phytol ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223910

RESUMO

Water use efficiency (WUE) represents the trade-off between carbon assimilation and water loss in plants. It remains unclear how leaf stomatal and photosynthetic traits regulate the spatial variation of leaf WUE in different natural forest ecosystems. We investigated 43 broad-leaf tree species spanning from cold-temperate to tropical forests in China. We quantified leaf WUE using leaf δ13C and measured stomatal traits, photosynthetic traits as well as maximum stomatal conductance ( G w max $$ {G}_{{\mathrm{w}}_{\mathrm{max}}} $$ ) and maximum carboxylation capacity ( V c max $$ {V}_{{\mathrm{c}}_{\mathrm{max}}} $$ ). We found that leaves in cold-temperate forests displayed 'fast' carbon economics, characterized by higher leaf nitrogen, Chl, specific leaf area, and V c max $$ {V}_{{\mathrm{c}}_{\mathrm{max}}} $$ , as an adaptation to the shorter growing season. However, these leaves exhibited 'slow' hydraulic traits, with larger but fewer stomata and similar G w max $$ {G}_{{\mathrm{w}}_{\mathrm{max}}} $$ , resulting in higher leaf WUE. By contrast, leaves in tropical forests had smaller and denser stomata, enabling swift response to heterogeneous light conditions. However, this stomatal configuration increased potential water loss, and coupled with their low photosynthetic capacity, led to lower WUE. Our findings contribute to understanding how plant photosynthetic and stomatal traits regulate carbon-water trade-offs across climatic gradients, advancing our ability to predict the impacts of climate changes on forest carbon and water cycles.

20.
New Phytol ; 241(1): 243-252, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964665

RESUMO

The widening of xylem vessels from tip to base of trees is an adaptation to minimize the hydraulic resistance of a long pathway. Given that parallel veins of monocot leaves do not branch hierarchically, vessels should also widen basipetally but, in addition to minimizing resistance, should also account for water volume lost to transpiration since they supply water to the lamina along their lengths, that is 'leakiness'. We measured photosynthesis, stomatal conductance, and vessel diameter at five locations along each leaf of five perennial grass species. We found that the rate of conduit widening in grass leaves was larger than the widening exponent required to minimize pathlength resistance (0.35 vs c. 0.22). Furthermore, variation in the widening exponent among species was positively correlated with maximal stomatal conductance (r2 = 0.20) and net CO2 assimilation (r2 = 0.45). These results suggest that faster rates of conduit widening (> 0.22) were associated with higher rates of water loss. Taken together, our results show that the widening exponent is linked to plant function in grass leaves and that natural selection has favored parallel vein networks that are constructed to meet transpiration requirements while minimizing hydraulic resistance within grass blades.


Assuntos
Transpiração Vegetal , Poaceae , Folhas de Planta , Xilema , Água , Estômatos de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA