Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417298

RESUMO

Plant pathogens are responsible for the annual yield loss of crops worldwide and pose a significant threat to global food security. A necessary prelude to many plant disease epidemics is the short-range dispersal of spores, which may generate several disease foci within a field. New information is needed on the mechanisms of plant pathogen spread within and among susceptible plants. Here, we show that self-propelled jumping dew droplets, working synergistically with low wind flow, can propel spores of a fungal plant pathogen (wheat leaf rust) beyond the quiescent boundary layer and disperse them onto neighboring leaves downwind. An array of horizontal water-sensitive papers was used to mimic healthy wheat leaves and showed that up to 25 spores/h may be deposited on a single leaf downwind of the infected leaf during a single dew cycle. These findings reveal that a single dew cycle can disperse copious numbers of fungal spores to other wheat plants, even in the absence of rain splash or strong gusts of wind.


Assuntos
Fungos/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Chuva , Esporos Fúngicos/fisiologia , Triticum/microbiologia , Vento , Folhas de Planta/microbiologia
2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875589

RESUMO

Wind disperses the pollen and seeds of many plants, but little is known about whether and how it shapes large-scale landscape genetic patterns. We address this question by a synthesis and reanalysis of genetic data from more than 1,900 populations of 97 tree and shrub species around the world, using a newly developed framework for modeling long-term landscape connectivity by wind currents. We show that wind shapes three independent aspects of landscape genetics in plants with wind pollination or seed dispersal: populations linked by stronger winds are more genetically similar, populations linked by directionally imbalanced winds exhibit asymmetric gene flow ratios, and downwind populations have higher genetic diversity. For each of these distinct hypotheses, partial correlations between the respective wind and genetic metrics (controlling for distance and climate) are positive for a significant majority of wind-dispersed or wind-pollinated genetic data sets and increase significantly across functional groups expected to be increasingly influenced by wind. Together, these results indicate that the geography of both wind strength and wind direction play important roles in shaping large-scale genetic patterns across the world's forests. These findings have implications for various aspects of basic plant ecology and evolution, as well as the response of biodiversity to future global change.


Assuntos
Fluxo Gênico/genética , Variação Genética/genética , Árvores/genética , Biodiversidade , Ecossistema , Florestas , Deriva Genética , Genética Populacional , Repetições de Microssatélites/genética , Pólen/genética , Polinização/genética , Dispersão de Sementes/fisiologia , Sementes/genética , Árvores/crescimento & desenvolvimento , Vento
3.
BMC Plant Biol ; 22(1): 113, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279080

RESUMO

BACKGROUND: Many seed plants produce winged diaspores that use wind to disperse their seeds. The morphology of these diaspores is directly related to the seed dispersal potential. The majority of winged diaspores have flat wings and only seeds; however, some angiosperms, such as Firmiana produce winged fruit with a different morphology, whose seed dispersal mechanisms are not yet fully understood. In this study, we observed the fruit development of F. simplex and determined the morphological characteristics of mature fruit and their effects on the flight performance of the fruit. RESULTS: We found that the pericarp of F. simplex dehisced early and continued to unfold and expand during fruit development until ripening, finally formed a spoon-shaped wing with multiple alternate seeds on each edge. The wing caused mature fruit to spin stably during descent to provide a low terminal velocity, which was correlated with the wing loading and the distribution of seeds on the pericarp. When the curvature distribution of the pericarp surface substantially changed, the aerodynamic characteristics of fruit during descent altered, resulting in the inability of the fruit to spin. CONCLUSIONS: Our results suggest that the curved shape and alternate seed distribution are necessary for the winged diaspore of F. simplex to stabilize spinning during wind dispersal. These unique morphological characteristics are related to the early cracking of fruits during development, which may be an adaptation for the wind dispersal of seeds.


Assuntos
Frutas/anatomia & histologia , Frutas/crescimento & desenvolvimento , Malvaceae/anatomia & histologia , Malvaceae/crescimento & desenvolvimento , Dispersão de Sementes , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , China , Fenótipo , Vento
4.
Am Nat ; 195(2): 275-283, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017633

RESUMO

Orchids are globally distributed, a feature often attributed to their tiny dustlike seeds. They were ancestrally terrestrial but in the Eocene expanded into tree canopies, with some lineages later returning to the ground, providing an evolutionarily replicated system. Because seeds are released closer to the ground in terrestrial species than in epiphytic ones, seed traits in terrestrials may have been under selective pressure to increase seed dispersal efficiency. In this study, we test the expectations that seed airspace-a trait known to increase seed flotation time in the air-is (i) larger in terrestrial lineages and (ii) has increased following secondary returns to a terrestrial habit. We quantified and scored 20 seed traits in 121 species and carried out phylogenetically informed analyses. Results strongly support both expectations, suggesting that aerodynamic traits even in dust seeds are under selection to increase dispersal ability, following shifts in average release heights correlated with changes in habit.


Assuntos
Orchidaceae/anatomia & histologia , Dispersão de Sementes , Sementes/anatomia & histologia , Fenômenos Biomecânicos , Ecossistema , Orchidaceae/classificação , Filogenia , Vento
5.
Am J Bot ; 107(12): 1831-1838, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33341929

RESUMO

PREMISE: Seed dispersal is extremely important for the recovery and restoration of forest communities. Relict tree genus Zelkova possesses a unique dispersal mechanism: mature fruits fall with the entire twig, and the dried leaves that are still attached function as a drag-enhancing appendage, carrying the fruits away from the parent tree. This singular adaptation has never been investigated in Z. abelicea. METHODS: Drop tests with dispersal units and individual fruits of Z. abelicea were performed in controlled conditions to measure their dispersal velocity and to define their flight mode. RESULTS: Zelkova abelicea uses both slowly falling dispersal units with chaotic motion, as well as fast falling individual fruits using a straight path. The falling velocity of Z. abelicea dispersal units is 1.53 m s-1 , which is virtually identical to that of the East Asiatic Z. serrata (1.51 m s-1 ). In contrast, the falling velocity of individual fruits was 2.74 m s-1 (Z. serrata: 5.36 m s-1 ). CONCLUSIONS: Members of the genus Zelkova, growing today in distant regions, show remarkable evolutionary conservation of the velocity and flight mechanics of their dispersal units. This is surprising because the Mediterranean and East Asiatic Zelkova species have been separated at least 15-20 mya. Zelkova abelicea, although growing in the Mediterranean with completely different forest structure and composition, still uses the same dispersal mechanism. The dispersal capacity of the genus Zelkova is less efficient than that of other wind dispersed trees, and it presumably evolved for short-distance ecological spread and not for long-distance biogeographical dispersal.


Assuntos
Dispersão de Sementes , Árvores , Florestas , Sementes , Ulmaceae , Vento
6.
Am J Bot ; 107(6): 864-875, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32462674

RESUMO

PREMISE: Adaptive seed dispersal mechanisms are fundamental to plant fitness, but dispersal advantage is scale-dependent. We tested the hypothesis that informed dispersal in response to an environmental cue enables dispersal by wind on a local scale for Astragalus holmgreniorum, a desert species restricted to swales and wash skirts with overland flow, but prevents longer-distance dispersal by water into unfavorable wash habitats. METHODS: Pod biomechanics in A. holmgreniorum lead to major shape modifications with changes in moisture content. We performed laboratory experiments to examine the interaction of pod shape with wind and water, and conducted field experiments in A. holmgreniorum habitat evaluating the roles of wind, water, and seed predators on dispersal. RESULTS: Dry pods exhibit a flattened crescent shape with partial dehiscence that facilitated wind dispersal by ground tumbling and seed scattering in laboratory experiments. Rain simulation experiments showed that even small precipitation events returned wetted pods to their cylindrical shape and opened the dorsal suture, exposing the seeds. In the field experiments, dry pods were moved locally by wind, whereas rain caused pod opening and washing out of seeds in place. Seed predators had minimal effect on pod movement. CONCLUSIONS: Astragalus holmgreniorum exhibits pod structural remodeling in response to environmental change in a striking and novel demonstration of informed dispersal. Wind-driven movement of dry pods facilitates local seed dispersal, but rain causes pods to open and release seeds, ensuring that they are not transported out of suitable habitats and into active washes where they would be lost from the seed bank.


Assuntos
Astrágalo , Dispersão de Sementes , Ecologia , Ecossistema , Sementes , Navios
7.
Exp Appl Acarol ; 82(1): 17-31, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32812209

RESUMO

Dispersal is a fundamental biological process that operates at different temporal and spatial scales with consequences for individual fitness, population dynamics, population genetics, and species distributions. Studying this process is particularly challenging when the focus is on microscopic organisms that disperse passively, whilst controlling neither the transience nor the settlement phase of their movement. In this work we propose a comprehensive approach for studying passive dispersal of microscopic invertebrates and demonstrate it using wind and phoretic vectors. The protocol includes the construction of versatile, modifiable dispersal tunnels as well as a theoretical framework quantifying the movement of species via wind or vectors, and a hierarchical Bayesian approach appropriate to the structure of the dispersal data. The tunnels were used to investigate the three stages of dispersal (viz., departure, transience, and settlement) of two species of minute, phytophagous eriophyid mites Aceria tosichella and Abacarus hystrix. The proposed devices are inexpensive and easy to construct from readily sourced materials. Possible modifications enable studies of a wide range of mite species and facilitate manipulation of dispersal factors, thus opening a new important area of ecological study for many heretofore understudied species.


Assuntos
Distribuição Animal , Ácaros , Vento , Animais , Teorema de Bayes
8.
Ann Bot ; 123(3): 557-568, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30380011

RESUMO

BACKGROUND AND AIMS: Archipelagos provide a valuable framework for investigating phenotypic evolution under different levels of geographical isolation. Here, we analysed two co-distributed, widespread plant lineages to examine if incipient island differentiation follows parallel patterns of variation in traits related to dispersal and colonization. METHODS: Twenty-one populations of two anemochorous Canarian endemics, Kleinia neriifolia and Periploca laevigata, were sampled to represent mainland congeners and two contrasting exposures across all the main islands. Leaf size, seed size and dispersability (estimated as diaspore terminal velocity) were characterized in each population. For comparison, dispersability was also measured in four additional anemochorous island species. Plastid DNA data were used to infer genetic structure and to reconstruct the phylogeographical pattern of our focal species. KEY RESULTS: In both lineages, mainland-island phenotypic divergence probably started within a similar time frame (i.e. Plio-Pleistocene). Island colonization implied parallel increases in leaf size and dispersability, but seed size showed opposite patterns of variation between Kleinia and Periploca species pairs. Furthermore, dispersability in our focal species was low when compared with other island plants, mostly due to large diaspore sizes. At the archipelago scale, island exposure explained a significant variation in leaf size across islands, but not in dispersability or seed size. Combined analyses of genetic and phenotypic data revealed two consistent patterns: (1) extensive within-island but very limited among-island dispersal, and (2) recurrent phenotypic differentiation between older (central) and younger (peripheral) island populations. CONCLUSIONS: Leaf size follows a more predictable pattern than dispersability, which is affected by stochastic shifts in seed size. Increased dispersability is associated with high population connectivity at the island scale, but does not preclude allopatric divergence among islands. In sum, phenotypic convergent patterns between species suggest a major role of selection, but deviating traits also indicate the potential contribution of random processes, particularly on peripheral islands.


Assuntos
Asteraceae , Evolução Biológica , Características de História de Vida , Periploca , Dispersão Vegetal , Ilhas , Filogeografia , Espanha
9.
Am J Bot ; 106(12): 1566-1574, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31769003

RESUMO

PREMISE: Dispersal capacity primarily determines the spatial establishment patterns that drive range expansions and contractions in tree species. Seedling establishment in Baker cypress (Hesperocyparis bakeri [(Jeps.) Bartel]) relies predominantly on fire events, due to its cone serotiny, shade intolerance, and small seeds that require the optimal conditions of fire-exposed, mineral soil seedbeds. METHODS: We quantified the density and spatial distribution of post-disturbance seedlings following the 2014 Eiler Fire in northern California and compared the observed recruitment to predictions from a mechanistic seed dispersal model. RESULTS: Postfire recruitment was dense, averaging 11 seedlings/m2 , and occurred primarily in the first year after fire. We estimated the mean descent velocity of the wingless seeds as ~4 m/s, the highest value reported for any putatively wind-dispersed tree species. The rapid seed descent contributed to markedly spatially constrained recruitment. Most seedlings (~81%) established within 5 m of the parent tree, and 94% established within 10 m. The maximum observed dispersal distance was 48.5 m; dispersal distance scaled linearly with canopy height. Distributions of modeled seed dispersal distance and observed seedling establishment in Baker cypress did not differ, demonstrating that wind disperses seeds a short distance because of the lack of a wing, and secondary dispersal appeared to be minimal at this recently burned site. CONCLUSIONS: If seed dispersal is solely reliant on wind, migration in response to rapid climate change will be impeded and potentially present difficulties in sustaining populations of this and other obligate seeder species with equally constrained dispersal.


Assuntos
Cupressus , Dispersão de Sementes , Traqueófitas , Animais , California , Plântula , Sementes , Árvores
10.
Ecology ; 99(8): 1857-1865, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29846000

RESUMO

Variation in habitat quality and quantity drive selection on dispersal traits in heterogeneous environments, but the extent to which environmental conditions predict geographic variation in dispersal is rarely evaluated. We assessed dispersal trait variation across the range of Cakile edentula var. lacustris, an annual herb that occupies beaches of the Great Lakes. Cakile edentula has dimorphic fruits that each contain one dispersive and one non-dispersive seed. Previous work showed that plant height, branching density, and dispersive fruit wing-loading can determine the distance that seeds disperse locally by wind, while pericarp thickness influences the distance they disperse by water. We tested if these traits vary predictably with latitude across the species' geographic range, and if variation in dispersal characteristics can be predicted by the quality and quantity of habitat available at a site. We observed that the dispersive fruits from northern and southern populations had thinner pericarps than those from the interior of the species' range, reflecting reduced long-distance dispersal by water at both range limits. Plants at the northern range limit were shorter with less dense branching and lower wing-loading than populations elsewhere in the range, suggesting that these populations have enhanced local wind dispersal. In contrast, southern populations exhibited traits with inconsistent effects on wind dispersal: plants tended to be short, which facilitates wind dispersal in C. edentula, but also had relatively higher branching density and distal segment wing-loading that reduce wind dispersal. Geographic variation in maternal plant height and branching density was partially explained by variation in habitat quality, which declined at the species' range limits. In addition, population differences in branching density, fruit wing-loading, and pericarp thickness were predicted by the abundance and distribution of beach habitat. Finally, a common garden analysis recovered latitudinal patterns for the dispersal traits associated with fruits, but not those associated with maternal architecture. Thus, the geographic patterns of dispersal trait variation that we observed likely reflect responses to past selection by the distribution, abundance, and quality of habitat, strong plasticity in dispersal traits, and the effects dispersal itself has in shaping local adaptation by driving gene flow among populations.


Assuntos
Brassicaceae , Ecossistema , Animais , Sementes
11.
Ann Bot ; 121(2): 377-383, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29300810

RESUMO

Background and Aims: The division of resource investment between male and female functions is poorly known for land plants other than angiosperms. The ancient lycophyte genus Selaginella is similar in some ways to angiosperms (in heterospory and in having sex allocation occur in the sporophyte generation, for example) but lacks the post-fertilization maternal investments that angiosperms make via fruit and seed tissues. One would therefore expect Selaginella to have sex allocation values less female-biased than in flowering plants and closer to the theoretical prediction of equal investment in male and female functions. Nothing is currently known of sex allocation in the genus, so even the simplest predictions have not been tested. Methods: Volumetric measurements of microsporangial and megasporangial investment were made in 14 species of Selaginella from four continents. In five of these species the length of the main above-ground axis of each plant was measured to determine whether sex allocation is related to plant size. Key Results: Of the 14 species, 13 showed male-biased allocations, often extreme, in population means and among the great majority of individual plants. There was some indication from the five species with axis length measurements that relative male allocation might be related to the release height of spores, but this evidence is preliminary. Conclusions: Sex allocation in Selaginella provides a phylogenetic touchstone showing how the innovations of fruit and seed investment in the angiosperm life cycle lead to typically female-biased allocations in that lineage. Moreover, the male bias we found in Selaginella requires an evolutionary explanation. The bias was often greater than what would occur from the mere absence of seed and fruit investments, and thus poses a challenge to sex allocation theory. It is possible that differences between microspores and megaspores in their dispersal ecology create selective effects that favour male-biased sexual allocation. This hypothesis remains tentative.


Assuntos
Selaginellaceae/fisiologia , Células Germinativas Vegetais/fisiologia , Reprodução , Selaginellaceae/anatomia & histologia
12.
Am J Bot ; 104(11): 1756-1764, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29167161

RESUMO

PREMISE OF THE STUDY: A repeated pattern of American amphitropical disjunct species or sister species distributed on either side of the equator has long-fascinated botanists, but the modes of these disjunctions remain untested. We evaluated diaspore morphology to generate hypotheses on probable dispersal mechanisms. METHODS: The sizes and structures of diaspores, habit, habitat, distribution, and dispersal units were collected for 108 species from literature searches and herbarium specimens. Variation was evaluated with summary statistics, χ2 tests with Monte Carlo simulations, ANOVAs, and the nonparametric Mann-Whitney test. KEY RESULTS: Seeds were the dispersing diaspore in 38.0% of the species, 45.4 were dispersed as fruits, and the remaining were dispersed as infructescences or spores. Diaspores were epizoochorous (52.8%), anemochorous (20.4%), achorous (15.7%), endozoochorous (8.3%), and hydrochorous (2.8%). Epizoochory was significantly greater than expected. Zoochory occurred more frequently than expected when considering achorous diaspores as animal-dispersed. Most species were associated with wetland, woodland, and grassland habitats. An ANOVA revealed that diaspores associated with hydrochory were larger and anemochory was smaller; all other syndromes were not significantly different. CONCLUSIONS: Botanists have long-held the assumption that bird migrations are responsible for amphitropical disjunctions. Our results support this hypothesis, with the majority of these events occurring by external attachment of small fruits. However, our results also indicate that anemochory might play a greater role in producing amphitropical distributions than previously thought and at a greater rate than endozoochory or hydrochory.


Assuntos
Dispersão Vegetal , Fenômenos Fisiológicos Vegetais , Animais , Aves , Ecossistema , Florestas , Frutas/anatomia & histologia , Frutas/genética , Frutas/fisiologia , Sementes/anatomia & histologia , Sementes/genética , Sementes/fisiologia
13.
Ann Bot ; 118(2): 197-206, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27296133

RESUMO

BACKGROUND AND AIMS: The settling velocity of diaspores is a key parameter for the measurement of dispersal ability in wind-dispersed plants and one of the most relevant parameters in explicit dispersal models, but remains largely undocumented in bryophytes. The settling velocities of moss spores were measured and it was determined whether settling velocities can be derived from spore diameter using Stokes' Law or if specific traits of spore ornamentation cause departures from theoretical expectations. METHODS: A fall tower design combined with a high-speed camera was used to document spore settling velocities in nine moss species selected to cover the range of spore diameters within the group. Linear mixed effect models were employed to determine whether settling velocity can be predicted from spore diameter, taking specific variation in shape and surface roughness into account. KEY RESULTS: Average settling velocity of moss spores ranged from 0·49 to 8·52 cm s(-1) There was a significant positive relationship between spore settling velocity and size, but the inclusion of variables of shape and texture of spores in the best-fit models provides evidence for their role in shaping spore settling velocities. CONCLUSIONS: Settling velocities in mosses can significantly depart from expectations derived from Stokes' Law. We suggest that variation in spore shape and ornamentation affects the balance between density and drag, and results in different dispersal capacities, which may be correlated with different life-history traits or ecological requirements. Further studies on spore ultrastructure would be necessary to determine the role of complex spore ornamentation patterns in the drag-to-mass ratio and ultimately identify what is the still poorly understood function of the striking and highly variable ornamentation patterns of the perine layer on moss spores.


Assuntos
Briófitas/fisiologia , Dispersão Vegetal , Modelos Biológicos , Esporos , Vento
14.
Mol Ecol ; 23(1): 70-81, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24128259

RESUMO

Population reduction and disturbances may alter dispersal, mating patterns and gene flow. Rather than taking the common approach of comparing different populations or sites, here we studied gene flow via wind-mediated effective pollen dispersal on the same plant individuals before and after a fire-induced population drop, in a natural stand of Pinus halepensis. The fire killed 96% of the pine trees in the stand and cleared the vegetation in the area. Thirteen trees survived in two groups separated by ~80 m, and seven of these trees had serotinous (closed) prefire cones that did not open despite the fire. We analysed pollen from closed pre and postfire cones using microsatellites. The two groups of surviving trees were highly genetically differentiated, and the pollen they produced also showed strong among-group differentiation and very high kinship both before and after the fire, indicating limited and very local pollen dispersal. The pollen not produced by the survivors also showed significant prefire spatial genetic structure and high kinship, indicating mainly within-population origin and limited gene flow from outside, but became spatially homogeneous with random kinship after the fire. We suggest that postfire gene flow via wind-mediated pollen dispersal increased by two putative mechanisms: (i) a drastic reduction in local pollen production due to population thinning, effectively increasing pollen immigration through reduced dilution effect; (ii) an increase in wind speeds in the vegetation-free postfire landscape. This research shows that dispersal can alleviate negative genetic effects of population size reduction and that disturbances might enhance gene flow, rather than reduce it.


Assuntos
Incêndios , Fluxo Gênico , Variação Genética , Pinus/genética , Polinização , Genética Populacional , Israel , Dados de Sequência Molecular , Pólen/genética , Densidade Demográfica , Dinâmica Populacional , Vento
15.
Ecology ; 105(1): e4201, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37901946

RESUMO

Climate change may significantly alter how organisms disperse, with implications for population spread and species management. Wind-dispersed plants have emerged as a useful study system for investigating how climate change affects dispersal, although studies modeling wind dispersal often assume propagules are released from a single point on an individual. This simplifying assumption, while useful, may misestimate dispersal. Here, we investigate the effects of climate change on dispersal distances and spread rates, examining how these quantities shift when accounting for all points of seed release on an individual. Using the wind-dispersed invasive thistles Carduus nutans and Carduus acanthoides, we quantify temperature-driven shifts in the distribution of flower head heights using a passive warming field experiment, and estimate how these shifts affect dispersal using the Wald analytical long-distance (WALD) model; for C. nutans, we use existing demographic data to simulate how these shifts affect population spread rates. We also compare dispersal distances for both warmed and ambient temperature plants, considering the entire distribution of flower head heights versus the common assumption of point-source seed release at the maximum height. For experimentally grown individuals, an ~0.6°C higher growing temperature increased mean and maximum flower head height by 14.1 cm (15.0%) and 14.0 cm (13.2%), respectively, in C. nutans and by 21.2 cm (26.6%) and 31.8 cm (36.7%), respectively, in C. acanthoides. Seeds from warmed individuals were more likely to exceed a given dispersal distance than those from their unwarmed counterparts; warmed C. nutans and C. acanthoides seeds were on average 1.36 and 1.71 times as likely, respectively, to travel 10 m or more in dispersal simulations, with this disparity increasing at longer dispersal distances. For C. nutans, increased growing temperatures boosted simulated rates of population spread by 42.2%, while assuming dispersal from a maximum height point source rather than the true distribution of flower head heights increased simulated spread by up to 28.5%. Our results not only demonstrate faster population spread under increased temperatures, but also have substantial implications for modeling such spread, as the common simplifying assumption of dispersal from a single maximum height source may substantially overestimate spread rates.


Assuntos
Carduus , Dispersão de Sementes , Humanos , Espécies Introduzidas , Temperatura , Inflorescência , Sementes
16.
Ecology ; 104(6): e4039, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960918

RESUMO

Following a disturbance, dispersal shapes community composition as well as ecosystem structure and function. For fungi, dispersal is often wind or mammal facilitated, but it is unclear whether these pathways are complementary or redundant in the taxa they disperse and the ecosystem functions they provide. Here, we compare the diversity and morphology of fungi dispersed by wind and three rodent species in recently harvested forests using a combination of microscopy and Illumina sequencing. We demonstrate that fungal communities dispersed by wind and small mammals differ in richness and composition. Most wind-dispersed fungi are wood saprotrophs, litter saprotrophs, and plant pathogens, whereas fungi dispersed in mammal scat are primarily mycorrhizal, soil saprotrophs, and unspecified saprotrophs. We note substantial dispersal of truffles and agaricoid mushrooms by small mammals, and dispersal of agaricoid mushrooms, crusts, and polypores by wind. In addition, we find mammal-dispersed spores are larger than wind-dispersed spores. Our findings suggest that wind- and small-mammal-facilitated dispersal are complementary processes and highlight the role of small mammals in dispersing mycorrhizal fungi, particularly following disturbances such as timber harvest.


Assuntos
Ecossistema , Micorrizas , Animais , Vento , Florestas , Mamíferos , Roedores , Microbiologia do Solo , Fungos , Solo , Esporos Fúngicos
17.
Protist ; 173(5): 125904, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037769

RESUMO

Spore size enables dispersal in plasmodial slime molds (Myxomycetes) and is an important taxonomic character. We recorded size and the number of nuclei per spore for 39 specimens (colonies of 50-1000 sporocarps) of the nivicolous myxomycete Physarum albescens, a morphologically defined taxon with several biological species. For each colony, three sporocarps were analyzed from the same spore mount under brightfield and DAPI-fluorescence, recording ca. 14,000 spores per item. Diagrams for spore size distribution showed narrow peaks of mostly uninucleate spores. Size was highly variable within morphospecies (10.6-13.5 µm, 11-13%), biospecies (3-13%), even within spatially separated colonies of one clone (ca. 8%); but fairly constant for a colony (mean variation 0.4 µm, ca. 1.5%). ANOVA explains most of this variation by the factor locality (within all colonies: 32.7%; within a region: 21.4%), less by biospecies (13.5%), whereas the contribution of intra-colony variation was negligible (<0.1%). Two rare aberrations occur: 1) multinucleate spores and 2) oversized spores with a double or triple volume of normal spores. Both are not related to each other or limited to certain biospecies. Spore size shows high phenotypic plasticity, but the low variation within a colony points to a strong genetic background.


Assuntos
Mixomicetos , Physarum , Esporos de Protozoários , Núcleo Celular
18.
Biomimetics (Basel) ; 6(2)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805294

RESUMO

Maple trees (genus Acer) accomplish the task of distributing objects to a wide area by producing seeds, known as samaras, which are carried by the wind as they autorotate and slowly descend to the ground. With the goal of supporting engineering applications, such as gathering environmental data over a broad area, we developed 3D-printed artificial samaras. Here, we compare the behavior of both natural and artificial samaras in both still-air laboratory experiments and wind dispersal experiments in the field. We show that the artificial samaras are able to replicate (within one standard deviation) the behavior of natural samaras in a lab setting. We further use the notion of windage to compare dispersal behavior, and show that the natural samara has the highest mean windage, corresponding to the longest flights during both high wind and low wind experimental trials. This study demonstrated a bioinspired design for the dispersed deployment of sensors and provides a better understanding of wind-dispersal of both natural and artificial samaras.

19.
Front Plant Sci ; 11: 599764, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281856

RESUMO

Propagule dispersal is a crucial life history stage, which affects population recruitment and regeneration as well as community structure and functions. The windborne process of samara dispersal is affected not only by samara traits and other plant traits, but also by environmental factors. Therefore, studying samara traits related to its dispersal and intraspecific variation in relation to other plant traits and environmental factors could help to understand population distribution and dynamics. Hopea hainanensis, a Dipterocarpaceae tree species dominant in lowland rainforests in Hainan (China) but endangered due to anthropogenic disturbances, is dispersed mainly by wind because of its sepal-winged samara. Here, we measured dispersal-related intraspecific samara traits of H. hainanensis, and analyzed their variation and correlation in relation to plant height, DBH (diameter at breast height), and elevation plant location. Great variations in the samara traits existed, and the variations were larger within than among individuals, which indicated a "bet-hedging" strategy of this species. Plant height, DBH, and elevation explained slight variation in the samara traits. Samara dispersal potential is mainly affected by the samara mass and morphological traits. Samara settling velocity was significantly positively correlated with fruit mass, seed mass, length and width, as well as samara wing loading, and negatively correlated with wing mass ratio, wing area, and wing aspect ratio. Substantial proportions of intraspecific variation in samara dispersal are explained by the samara mass and morphological traits. Natural regeneration with human-aided dispersal is necessary for recovering the H. hainanensis population. This finding contributes to the generalization of trait-based plant ecology, modeling of seed dispersal in tropical forests, and conservation and recovery of rare and endangered species such as H. hainanensis.

20.
Protist ; 171(6): 125771, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33171353

RESUMO

Soil protists play a crucial role in terrestrial ecosystems and often show immense taxonomic diversity. However, for many groups, distribution patterns remain largely unknown. We investigated range-wide intraspecific diversity of a specialized airborne protist (Didymium nivicola Meyl.) that occupies a narrow ecological niche associated with long-lasting snow cover. We sampled 122 collections covering all areas where the species was recorded worldwide. We obtained 105 and 41 sequences of small ribosomal subunit rDNA (SSU) and elongation factor 1-alpha (EF1A), respectively. While the species is very diverse in the austral Andes, Southern Hemisphere (SH; 17 SSU ribotypes and 12 EF1A genotypes identified), its populations are genetically uniform across three continents of the Northern Hemisphere (NH; single ribotype, single genotype). Our results indicate the austral Andes as a possible diversification centre for D. nivicola where populations seem to reproduce sexually. Two main parts of the range display highly contrasting genetic patterns, thus biogeographical history and dynamics. Current distribution of D. nivicola in the NH is likely a result of a dispersal event from the SH and subsequent long-distance dispersal (LDD) that might be associated with a shift to asexual mode of reproduction.


Assuntos
Amebozoários/classificação , Filogeografia , Amebozoários/genética , Fator 1 de Elongação de Peptídeos/genética , RNA Ribossômico 18S/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA