Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 261: 119637, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032620

RESUMO

Low-intensity ultrasound, as a form of biological enhancement technology, holds significant importance in the field of biological nitrogen removal. This study utilized low-intensity ultrasound (200 W, 6 min) to enhance partial nitrification and investigated its impact on sludge structure, as well as the internal relationship between structure and properties. The results demonstrated that ultrasound induced a higher concentration of nitrite in the effluent (40.16 > 24.48 mg/L), accompanied by a 67.76% increase in the activity of ammonia monooxygenase (AMO) and a 41.12% increase in the activity of hydroxylamine oxidoreductase (HAO), benefiting the partial nitrification. Based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theoretical analysis, ultrasonic treatment enhanced the electrostatic interaction energy (WR) between sludge flocs, raising the total interaction energy from 46.26 kT to 185.54 kT, thereby causing sludge dispersion. This structural alteration was primarily attributed to the fact that the tightly bonded extracellular polymer (TB-EPS) after ultrasound was found to increase hydrophilicity and negative charge, weakening the adsorption between sludge cells. In summary, this study elucidated that the change in sludge structure caused by ultrasonic treatment has the potential to enhance the nitrogen removal performance by partial nitrification.

2.
World J Microbiol Biotechnol ; 40(5): 150, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38548998

RESUMO

Microalgae have emerged as potential candidates for biomass production and pollutant removal. However, expensive biomass harvesting, insufficient biomass productivity, and low energy intensity limit the large-scale production of microalgae. To break through these bottlenecks, a novel technology of immobilized microalgae culture coupled with wastewater treatment has received increasing attention in recent years. In this review, the characteristics of two immobilized microalgae culture technologies are first presented and then their mechanisms are discussed in terms of biofilm formation theories, including thermodynamic theory, Derjaguin-Landau-Verwei-Overbeek theory (DLVO) and its extended theory (xDLVO), as well as ionic cross-linking mechanisms in the process of microalgae encapsulated in alginate. The main factors (algal strains, carriers, and culture conditions) affecting the growth of microalgae are also discussed. It is also summarized that immobilized microalgae show considerable potential for nitrogen and phosphorus removal, heavy metal removal, pesticide and antibiotic removal in wastewater treatment. The role of bacteria in the cultivation of microalgae by immobilization techniques and their application in wastewater treatment are clarified. This is economically feasible and technically superior. The problems and challenges faced by immobilized microalgae are finally presented.


Assuntos
Microalgas , Purificação da Água , Águas Residuárias , Fósforo , Nitrogênio/análise , Biomassa
3.
Environ Res ; 233: 116446, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331555

RESUMO

While pioneering methods have demonstrated that bacterial N-acyl homoserine lactone (AHL) signaling molecules can influence the growth and self-aggregation of suspended microalgae, whether AHLs can affect the initial adhesion to a carrier has remained an open question. Here we revealed that the microalgae exhibited different adhesion potential under AHL mediation, where the performance was affiliated to both AHL types and concentrations. The result can be well explained by the interaction energy theory, where the energy barrier between the carriers and the cells varied due to AHL mediation. Depth analyses revealed that AHL acted through modifying the properties of the surface electron donor of the cells, which were dependent upon three major components, i.e., extracellular protein (PN) secretion, the PN secondary structure, and the PN amino acid composition. These findings expand the known diversity of AHLs mediation on microalgal initial adhesion and metabolisms, which may interface with other major cycles and become helpful to theoretically guide the application of AHLs in microalgal culture and harvesting.


Assuntos
Acil-Butirolactonas , Microalgas , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Transdução de Sinais , Biofilmes
4.
Biofouling ; 39(4): 371-384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37272360

RESUMO

This work assesses the biofouling formation of a microalgal consortium, cultivated in wastewater, on dialysis tubular membranes with no supporting layer, in both batch and continuous FO dewatering modes. The biological adhesion strength was compared with the predictions from the Baier and Vogler biocompatibility theories, employing critical surface tension (γc) and water adhesion tension (τ0), respectively, as measurable parameters of surface wettability. The results indicate that most of the tested membranes presented amphiphilic surface characteristics (τ0=22 to 45 mJ.m-2, θW ≈ 65˚) with a minimal biological adhesion tendency, which is compatible with the Vogler criteria. However, the membrane exposed the longest time to the microalgal culture presented more hydrophobic characteristics and poor wettability. The existing thermodynamic models succeeded in predicting cell-cell and cell-surface interactions as a competitive phenomenon. Nevertheless, the XDLVO model was used to determine changes in the cell-to-surface attraction dynamics. This assessment of microalgal foulant-membrane interfacial interactions helps to enhance understanding of the fouling mechanisms present on a novel FO membrane surface.


Assuntos
Incrustação Biológica , Microalgas , Purificação da Água , Biofilmes , Membranas Artificiais , Osmose , Celulose/química , Ésteres , Purificação da Água/métodos
5.
Biofouling ; 39(5): 483-501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394974

RESUMO

In order to build an efficient closed-photobioreactor (PBR) in which biofouling formation is avoided, a non-toxic coating with high transparency is required, which can be applied to the interior surface of the PBR walls. Nowadays, amphiphilic copolymers are being used to inhibit microorganism adhesion, so poly(dimethylsiloxane)-based coatings mixed with poly(ethylene glycol)-based copolymers could be a good option. The 7 poly(dimethylsiloxane)-based coatings tested in this work contained 4% w/w of poly(ethylene glycol)-based copolymers. All were a good alternative to glass because they presented lower cell adhesion. However, the DBE-311 copolymer proved the best option due to its very low cell adhesion and high transmittance. Furthermore, XDLVO theory indicates that these coatings should have no cell adhesion at time 0 since they create a very high-energy barrier that microalgae cells cannot overcome. Nevertheless, this theory also shows that their surface properties change over time, making cell adhesion possible on all coatings after 8 months of immersion. The theory is useful in explaining the interaction forces between the surface and microalgae cells at any moment in time, but it should be complemented with models to predict the conditioning film formation and the contribution of the PBR's fluid dynamics over time.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Fotobiorreatores , Biofilmes , Polietilenoglicóis/farmacologia , Polímeros/farmacologia , Propriedades de Superfície
6.
J Environ Manage ; 345: 118791, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683379

RESUMO

Methanol-to-olefin (MTO) is a typical new coal chemical industry example. Due to the large volume of generated wastewater, complex composition including catalysts, aromatics and various oxygen-containing compounds, and serious environmental hazard, wastewater recycling is critical for sustainable industrial development and ecological protection. Herein, a swirl regenerating micro-channel separation (SRMS) technology was proposed to integrate deep filtration and hydrocyclone-enhanced regeneration. A small-scale experimental investigation was first conducted to verify the feasibility of the MTO wastewater treatment. A pilot SRMS device with a treatment capacity of 20 m3/h was constructed, and the device's continuous operation effect and stability were comprehensively evaluated. The separation performance of the SRMS device at different solution pH values and the impact of the hydrocyclone-enhanced regeneration of separation media were discussed in detail. At low solution pH values (<7), the SRMS device exhibits an average separation efficiency of 92.0% for fine particulate matter in wastewater, and the median particle size, d50, decreases from 1.55 to 0.6 µm. As the solution pH increases, the repulsive energy barrier for the medium-contaminant and contaminant-contaminant increases, inhibiting the deposition behavior of particulate pollutants. In addition, hydrocyclone desorbs contaminants deposited on the separation media and the average contaminant residual rate decreases from 3.3 to 0.2 wt%. We propose an industrial application for treating and reusing MTO wastewater (200 m3/h) using the SRMS technology based on the experimental results. The costs of the wastewater treatment process are as low as 0.25 CNY/m3, and the wastewater reuse rate is over 97% without chemical consumption. This work can provide an environmentally friendly and economically sustainable approach to the source management of MTO wastewater.


Assuntos
Metanol , Águas Residuárias , Alcenos , Carvão Mineral , Poeira
7.
Environ Sci Technol ; 56(18): 13066-13075, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36053113

RESUMO

The interfacial interaction between pollutants and organisms is a critical process in controlling the environmental fates of pollutants; however, in situ assay of the interaction is still a great challenge. Here, in situ determination of dissociation constants (Kd) for ZnO nanoparticles (ZnO NPs) from live algal cells disturbed by different-charged surfactants was established using microscale thermophoresis (MST). Moreover, in situ measurement of the adhesion force between the ZnO NPs probe and live single cell was performed using an atomic force microscope (AFM). Results showed that the cationic cetyltrimethylammonium chloride (CTAC) and anionic sodium dodecylbenzenesulfonate (SDBS) increased but nonionic Triton X-100 (TX-100) decreased the adhesion of ZnO NPs on cells. However, the force signature exhibited a smooth single retracted peak at short distances in the SDBS- and TX-100-treated groups, distinguished from the "see-saw" pattern peak in the CTAC-treated groups. The extended Derjaguin-Landau-Verway-Overbeek (XDLVO) calculation further confirmed that SDBS and TX-100 mainly disturbed the short-range hydration on the NP-cell interface, while CTAC reduced the long-range electrostatic repulsion. Furthermore, an excellent linear correlation between Zn bioaccumulation and two parameters (Kd and adhesion force) indicated that NP-cell interfacial interactions affected Zn bioaccumulation. Thus, in situ assay provides a quantitative basis for the pollutant-organism interfacial interaction to evaluate the environmental fate and ecological risk of pollutants.


Assuntos
Poluentes Ambientais , Óxido de Zinco , Cetrimônio , Octoxinol , Polietilenoglicóis , Tensoativos
8.
Environ Sci Technol ; 56(7): 4121-4131, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312300

RESUMO

This study conducted saturated column experiments to systematically investigate deposition of 1 µm positively charged polystyrene latex micro-colloids (representing microplastic particles) on negatively charged rough sand, glass beads, and soil with pore water velocities (PWV) from 4.9 × 10-5 to 8.8 × 10-4 m/s. A critical value of PWV was found below which colloidal attachment efficiency (AE) increased with increasing PWV. The increase in AE with PWV was attributed to enhanced delivery of the colloids and subsequent attachment at concave locations of rough collector surfaces. The AE decreased with further increasing PWV beyond the threshold because the convex sites became unavailable for colloid attachment. By simulating the rough surfaces using the Weierstrass-Mandelbrot equation, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) interaction energy calculations and torque analysis revealed that the adhesive torques could be reduced to be comparable or smaller than hydrodynamic torques even under the favorable conditions. Interestingly, scanning electron microscopic experiments showed that blocking occurred at convex sites at all ionic strengths (ISs) (e.g., even when the colloid-colloid interaction was attractive), whereas at concave sites, blocking and ripening (i.e., attached colloids favor subsequent attachment) occurred at low and high ISs, respectively. To our knowledge, our work was the first to show coexistence of blocking and ripening at high ISs due to variation of the collector surface morphology.


Assuntos
Coloides , Plásticos , Concentração Osmolar , Porosidade , Água
9.
Biofouling ; 38(1): 42-54, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34886732

RESUMO

Previous work in the authors' lab demonstrated that tea extracts significantly suppressed streptococcal colonization of abiotic substrata by coating the bacterial cell surfaces with tea components. In this study, the physico-chemical mechanisms by which the tea coating inhibits cellular attachment are demonstrated. The changes in the cell surface physico-chemical properties of streptococci, induced by tea extracts, were measured. Using these results, surface interaction energies were calculated between streptococcal cells and hard surfaces (glass, stainless steel, hydroxyapatite and titanium) within the cellular attachment system exploiting the extended Derjaguin-Landau-Verwey-Overbeek theory. The net energy outcomes were compared with experiment results of attachment assays to validate the predictability of the model. The results showed that the tea extracts inhibited the attachment of the bacteria by 11.1%-91.5%, and reduced the interaction energy by 15.4%-94.9%. It was also demonstrated that the abilities of the bacteria to attach to hard surfaces correlated well with their net interaction energies. The predominant interaction in the systems was found to be hydrogen bonding. In conclusion, tea extracts suppress streptococcal attachment to hard substrata by limiting the formation of hydrogen bonds.


Assuntos
Aderência Bacteriana , Biofilmes , Ligação de Hidrogênio , Extratos Vegetais/farmacologia , Streptococcus , Propriedades de Superfície , Chá/química
10.
Biofouling ; 37(8): 844-861, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34538160

RESUMO

Adhesion of microalgal cells to photobioreactor walls reduces productivity resulting in significant economic losses. The physico-chemical surface properties and the fluid dynamics present in the photobioreactor during cultivation are relevant. However, to date, no multiphysical model has been able to predict biofouling formation in these systems. In this work, to model the microalgal adhesion, a Computational Fluid Dynamic simulation was performed using a Eulerian-Lagrangian particle-tracking model. The adhesion criterion was based on the balance of forces and moments included in the XDLVO model. A cell suspension of the marine microalga Nannochloropsis gaditana was fed into a commercial flow cell composed of poly-methyl-methacrylate coupons for validation. Overall, the simulated adhesion criterion qualitatively predicted the initial distribution of adhered cells on the coupons. In conclusion, the combined Computational Fluid Dynamics-Discrete Phase Model (CFD-DPM) approach can be used to overcome the challenge of predicting microalgal cell adhesion in photobioreactors.


Assuntos
Incrustação Biológica , Microalgas , Hidrodinâmica , Fotobiorreatores , Propriedades de Superfície
11.
Ecotoxicol Environ Saf ; 218: 112291, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33957420

RESUMO

Bacteria often respond to dynamic soil environment through the secretion of extracellular polymeric substances (EPS). The EPS modifies cell surface properties and soil pore-scale hydration status, which in turn, influences bacteria transport in soil. However, the effect of soil particle size and EPS-mediated surface properties on bacterial transport in the soil is not well understood. In this study, the simultaneous impacts of EPS and collector size on Escherichia coli (E. coli) transport and deposition in a sand column were investigated. E. coli transport experiments were carried out under steady-state flow in saturated columns packed with quartz sand with different size ranges, including 0.300-0.425 mm (sand-I), 0.212-0.300 mm (sand-II), 0.106-0.150 mm (sand-III) and 0.075-0.106 mm (sand-IV). Bacterial retention increased with decreasing sand collector size, suggesting that straining played an important role in fine-textured media. Both experiment and simulation results showed a clear drop in the retention rate of the bacterial population with the presence of additional EPS (200 mg L-1) (EPS+). The inhibited retention of cells in sand columns under EPS+ scenario was likely attributed to enhanced bacteria hydrophilicity and electrostatic repulsion between cells and sand particles as well as reduced straining. Calculations of the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) interactions energies revealed that high repulsive energy barrier existed between bacterial cells and sand particles in EPS+ environment, primarily due to high repulsive electrostatic force and Lewis acid-base force, as well as low attractive Lifshitz-van der Waals force, which retarded bacterial population deposition. Steric stabilization of EPS would also prevent the approaching of cells close to the quartz surface and thereby hinder cell attachment. This study was the first to show that EPS reduced bacterial straining in saturated porous media. These findings provide new insight into the functional effects of extrinsic EPS on bacterial transport behavior in the saturated soil environment, e.g., aquifers.

12.
Colloids Surf A Physicochem Eng Asp ; 585: 1-7, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35520373

RESUMO

Virus adsorption to colloidal particles is an important issue in the water quality community. Namely, if viruses can quickly and strongly associate to colloids, this can potentially lead to significant implications for the management of biohazardous wastes at water reclamation facilities. This research evaluated the adsorption of bacteriophage MS2 to colloidal suspensions of kaolinite (KAO) and fiberglass (FG). Observed pseudo first-order MS2 removal rate constants were between 0.53 and 5.1 min-1 and between 2.4 and 3.5 min-1 for KAO and FG, respectively. These kinetics were at least an order of magnitude faster than previously reported values when compared to data retrieved at similar colloid concentrations. Fluorescent and bright field microscopic images showed clusters of MS2 on and around the edges of the colloids, and the majority of the bound MS2 was not readily removed during a vigorous wash step, suggesting comparatively strong, operationally relevant adsorption. MS2 aggregation was observed experimentally and predicted on the basis of interaction energies calculated with XDLVO models. When virus-containing biohazardous wastes are introduced into wastewater treatment plants, removing colloids is essential.

13.
Arch Microbiol ; 201(5): 679-690, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30796474

RESUMO

This study investigated the effect of the growth temperature (20 and 37 °C) of Escherichia coli strains isolated from pigs on their adhesion to stainless steel and polycarbonate. This study also evaluated the ability of the DLVO and XDLVO mathematical models to predict this adhesion. The rise of growth temperature from 20 to 37 °C significantly influenced the adhesion of studied E. coli strains. The data also underlined that the mathematical prediction did not fully match with the experimental bacterial adhesion to surfaces. Furthermore, results showed that the colistin-resistant and sensitive E. coli strains adhesion depends on the type of abiotic surface. Based on these results, the mathematical models are limited in the prediction of the bacterial adhesion to abiotic surfaces. The surface roughness is a major parameter of the bacterial adhesion and should be included in the future mathematical models predicting the bacterial adhesion.


Assuntos
Aderência Bacteriana/fisiologia , Escherichia coli O157/fisiologia , Microbiologia de Alimentos/métodos , Cimento de Policarboxilato , Aço Inoxidável , Animais , Colistina/farmacologia , Escherichia coli O157/efeitos dos fármacos , Modelos Teóricos , Suínos , Temperatura
14.
Extremophiles ; 23(2): 219-227, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30656425

RESUMO

Acidothermophilic bacteria of the genus Alicyclobacillus are frequent contaminants of fruit-based products. This study is the first attempt to characterize the physico-chemical surface properties of two Alicyclobacillus sp. and quantify their adhesion disposition to model materials [diethylaminoethyl (DEAE), carboxyl- and octyl-modified magnetic beads] representing materials with different surface properties used in the food industry. An insight into the mechanism of adhesion was gained through comparison of experimental adhesion intensities with predictions of a colloidal interaction model (XDLVO). Experimental data (contact angles, zeta potentials, size) on interacting surfaces (cells and materials) were used as inputs into the XDLVO model. The results revealed that the most significant adhesion occurred at pH 3. Adhesion of both vegetative cells and spores of two Alicyclobacillus sp. to all materials studied was the most pronounced under acidic conditions, and adhesion was influenced mostly by electrostatic attractions. The most intensive adhesion of vegetative cells and spores at pH 3 was observed for DEAE followed by hydrophobic octyl and hydrophilic carboxyl surfaces. Overall, the lowest rate of adhesion between cells and model materials was observed at an alkaline pH. Consequently, prevention of adhesion should be based on the use of alkaline sanitizers and/or alkaline rinse water.


Assuntos
Alicyclobacillus/química , Aderência Bacteriana , Esporos Bacterianos/química , Alicyclobacillus/fisiologia , Concentração de Íons de Hidrogênio , Esporos Bacterianos/fisiologia , Propriedades de Superfície
15.
Environ Res ; 171: 153-160, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30665117

RESUMO

The mechanism by which soil organic matter (SOM) controls nanoparticle transport through natural soils is unclear. In this study, we distinguished the specific effects of two primary SOM fractions, mineral-associated organic matter (MOM) and dissolved organic matter (DOM), on the transport of hydroxyapatite nanoparticles (nHAP) through a loamy soil under the conditions of saturated steady flow and environmentally relevant solution chemistry (1 mM NaCl at pH 7). The results showed that MOM could inhibit the transport of nHAP by decreasing electrostatic repulsion and increasing mechanical straining and hydrophobic interactions. Specifically, the presence of MOM reduced the mobility of nHAP in the bulk soil and its macroaggregates by ~4 fold and ~6 fold, respectively, and this hindered effect became further conspicuous in microaggregates (~36 fold decrease). An analysis of extended Derjaguin-Landau-Vervey-Overbeek (abbreviated as XDLVO) interactions indicated that MOM could decrease the primary energy barrier (Φmax1), primary minimum (Φmin1), and secondary minimum (Φmin2) to promote nHAP attachment. Conversely, DOM (10-50 mg L-1) favored nHAP mobility due to an increase in electrostatic repulsion among nHAP particles and between nHAP and soil surfaces. Pre-flushing soil with DOM (causing DOM sorption on soil) increased nHAP mobility by ~2 fold in the bulk soil and its macroaggregates, and this facilitated effect was furthered in microaggregates (~11 fold increase). The results of XDLVO interactions showed that DOM increased Φmax1, Φmin1, and Φmin2, producing an unfavorable effect on nHAP attachment. Mass recovery data revealed that the MOM-hindered effect was stronger than the DOM-facilitated effect on nHAP transport. This study suggested that changing SOM fractions could control the mobility of nanoparticles in the subsurface considerably.


Assuntos
Durapatita/química , Nanopartículas , Poluentes do Solo , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Solo
16.
J Environ Sci (China) ; 77: 85-96, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30573109

RESUMO

In dynamic membrane bioreactors (DMBRs), a dynamic membrane (DM) forms on a support material to act as the separation membrane for solids and liquids. In this study, batch filtration tests were carried out in a DMBR using nylon mesh (25 µm) as support material to filtrate sludge suspensions of variable properties from three different sources to evaluate the effects on the short-term DM formation process (within 240 min). Furthermore, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was applied to analyze the sludge adhesion and cohesion behaviors on the mesh surface to predict quantitative parameters of the short-term DM formation process (including initial formation and maturation stage). The filtration results showed that the order of the initial DM formation time (permeate turbidity <1 NTU as an indicator) was as follows: sludge with poor settleability and dewaterability < normal sludge < sludge with poor flocculability. Moreover, normal sludge (regarding settleability, dewaterability, flocculability, and extracellular polymeric substance) showed a more acceptable DM formation performance (short DM formation time, low permeate turbidity, and high permeate flux) than sludge with poor settleability, dewaterability and flocculability. The influence of sludge properties on the initial DM formation time corroborates the prediction of sludge adhesion behaviors by XDLVO theory. Additionally, the XDLVO calculation results showed that acid-based interaction, energy barrier, and secondary energy minimum were important determinants of the sludge adhesion and cohesion behaviors. Therefore, short-term DM formation process may be enhanced to achieve stable long-term DMBR operation through positive modification of the sludge properties.


Assuntos
Reatores Biológicos , Membranas Artificiais , Esgotos , Reatores Biológicos/microbiologia , Estudos de Viabilidade , Filtração , Nylons/química , Esgotos/microbiologia , Termodinâmica , Fatores de Tempo
17.
J Environ Sci (China) ; 67: 154-160, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29778148

RESUMO

Inexact mechanism of aerobic granulation still impedes optimization and application of aerobic granules. In this study, the extended Derjaguin, Landau, Verwey, and Overbeek (XDLVO) theory and physicochemical properties were combined to assess the aggregation ability of sludge during aerobic granulation process qualitatively and quantitatively. Results show that relative hydrophobicity of sludge and polysaccharide content of extracellular polymeric substances (EPS) increased, while electronegativity of sludge decreased during acclimation phase. After 20days' acclimation, small granules began to form due to high aggregation ability of sludge. Since then, coexisted flocs and granules possessed distinct physicochemical properties during granulation and maturation phase. The relative hydrophobicity decreased while electronegativity increased for flocs, whereas that for granules presented reverse trend. Through analyzing the interaction energy using the XDLVO theory, small granules tended to self-grow rather than self-aggregate or attach of flocs due to poor aggregation ability between flocs and granules during the granulation phase. Besides, remaining flocs were unlikely to self-aggregate owing to poor aggregation ability, low hydrophobicity and high electronegativity.


Assuntos
Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Reatores Biológicos , Floculação , Polímeros/química , Polissacarídeos/química
18.
Crit Rev Biotechnol ; 37(8): 1006-1023, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28427282

RESUMO

The economic and/or energetic feasibility of processes based on using microalgae biomass requires an efficient cultivation system. In photobioreactors (PBRs), the adhesion of microalgae to the transparent PBR surfaces leads to biofouling and reduces the solar radiation penetrating the PBR. Light reduction within the PBR decreases biomass productivity and, therefore, the photosynthetic efficiency of the cultivation system. Additionally, PBR biofouling leads to a series of further undesirable events including changes in cell pigmentation, culture degradation, and contamination by invasive microorganisms; all of which can result in the cultivation process having to be stopped. Designing PBR surfaces with proper materials, functional groups or surface coatings, to prevent microalgal adhesion is essential for solving the biofouling problem. Such a significant advance in microalgal biotechnology would enable extended operational periods at high productivity and reduce maintenance costs. In this paper, we review the few systematic studies performed so far and applied the existing thermodynamic and colloidal theories for microbial biofouling formation in order to understand microalgal adhesion on PBR surfaces and the microalgae-microalgae cell interactions. Their relationship to the physicochemical properties of the solid PBR surface, the microalgae cell surfaces, and the ionic strength of the culture medium is discussed. The suitability and the applicability of such theories are reviewed. To this end, an example of biofouling formation on a commercial glass surface is presented for the marine microalgae Nannochloropsis gaditana. It highlights the adhesion dynamics and the inaccuracies of the process and the need for further refinement of previous theories so as to apply them to flowing systems, such as is the case for PBRs used to culture microalgae.


Assuntos
Incrustação Biológica , Microalgas , Biomassa , Fotobiorreatores , Fotossíntese
19.
J Memb Sci ; 536: 44-51, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28936029

RESUMO

Microelectromechanical systems (MEMS), a technology that resulted from significant innovation in semiconductor fabrication, have recently been applied to the development of silicon nanopore membranes (SNM). In contrast to membranes fabricated from polymeric materials, SNM exhibit slit-shaped pores, monodisperse pore size, constant surface porosity, zero pore overlap, and sub-micron thickness. This development in membrane fabrication is applied herein for the validation of the XDLVO (extended Derjaguin, Landau, Verwey, and Overbeek) theory of membrane transport within the context of hemofiltration. In this work, the XDLVO model has been derived for the unique slit pore structure of SNM. Beta-2-microglobulin (B2M), a clinically relevant "middle molecular weight" solute in kidney disease, is highlighted in this study as the solute of interest. In order to determine interaction parameters within the XDLVO model for B2M and SNM, goniometric measurements were conducted, yielding a Hamaker constant of 4.61× 10-21 J and an acid-base Gibbs free energy at contact of 41 mJ/m2. The XDLVO model was combined with existing models for membrane sieving, with predictions of the refined model in good agreement with experimental data. Furthermore, the results show a significant difference between the XDLVO model and the simpler steric predictions typically applied in membrane transport. The refined model can be used as a tool to tailor membrane chemistry and maximize sieving or rejection of different biomolecules.

20.
Appl Microbiol Biotechnol ; 100(20): 8843-53, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27568380

RESUMO

Studies have shown that external stress induces biofilm formation, but the underlying details are not clearly understood. This study investigates the changes in cell surface properties leading to increase in biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa in the presence of streptomycin. Bacterial attachment in the presence and absence of streptomycin was quantified by fluorescence spectroscopy. In addition, cell surface charge and contact angle were measured and the free energy barrier for attachment was modeled using extended Derjaguin-Landau-Verwey-Overbeek (xDLVO) theory. Peptides from bacterial cell surface were shaved by protease treatment and identified with ultra-performance liquid chromatography (UPLC)-QTOF and a homology search program SPIDER. Biofilm formation increased significantly in the presence of streptomycin (10 mg/L) in the culture. Bacterial cell surface charge reduced, and hydrophobicity increased leading to a net decrease in the free energy barrier for attachment. Extracellular matrix-binding protein was positively regulated in S. aureus under stress, indicating stronger interaction between bacterial cells and solid surface. In addition, several other proteins including biofilm regulatory proteins, multidrug efflux pumps, transporters, signaling proteins, and virulence factors were differentially expressed on bacterial cell surface, which is indicative of a strong stress response by bacteria to streptomycin treatment.


Assuntos
Antibacterianos/metabolismo , Biofilmes/crescimento & desenvolvimento , Inibidores da Síntese de Proteínas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Estreptomicina/metabolismo , Propriedades de Superfície/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/análise , Perfilação da Expressão Gênica , Proteínas de Membrana/análise , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA