Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.396
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(11): 1888-1904.e24, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35623329

RESUMO

Cancer cells are featured with uncontrollable activation of cell cycle, and microRNA deficiency drives tumorigenesis. The RNA-dependent RNA polymerase (RDR) is essential for small-RNA-mediated immune response in plants but is absent in vertebrates. Here, we show that ectopic expression of plant RDR1 can generally inhibit cancer cell proliferation. In many human primary tumors, abnormal microRNA isoforms with 1-nt-shorter 3' ends are widely accumulated. RDR1 with nucleotidyltransferase activity can recognize and modify the problematic AGO2-free microRNA duplexes with mononucleotides to restore their 2 nt overhang structure, which eventually rescues AGO2-loading efficiency and elevates global miRNA expression to inhibit cancer cell-cycle specifically. The broad antitumor effects of RDR1, which can be delivered by an adeno-associated virus, are visualized in multiple xenograft tumor models in vivo. Altogether, we reveal the widespread accumulation of aberrant microRNA isoforms in tumors and develop a plant RDR1-mediated antitumor stratagem by editing and repairing defective microRNAs.


Assuntos
MicroRNAs , Animais , Humanos , Imunidade , MicroRNAs/química , Proteínas de Plantas , Plantas/genética , RNA Polimerase Dependente de RNA
2.
Cell ; 180(1): 188-204.e22, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31883794

RESUMO

Glioblastomas exhibit vast inter- and intra-tumoral heterogeneity, complicating the development of effective therapeutic strategies. Current in vitro models are limited in preserving the cellular and mutational diversity of parental tumors and require a prolonged generation time. Here, we report methods for generating and biobanking patient-derived glioblastoma organoids (GBOs) that recapitulate the histological features, cellular diversity, gene expression, and mutational profiles of their corresponding parental tumors. GBOs can be generated quickly with high reliability and exhibit rapid, aggressive infiltration when transplanted into adult rodent brains. We further demonstrate the utility of GBOs to test personalized therapies by correlating GBO mutational profiles with responses to specific drugs and by modeling chimeric antigen receptor T cell immunotherapy. Our studies show that GBOs maintain many key features of glioblastomas and can be rapidly deployed to investigate patient-specific treatment strategies. Additionally, our live biobank establishes a rich resource for basic and translational glioblastoma research.


Assuntos
Técnicas de Cultura de Células/métodos , Glioblastoma/metabolismo , Organoides/crescimento & desenvolvimento , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Bancos de Espécimes Biológicos , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Organoides/metabolismo , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
3.
Cell ; 177(7): 1903-1914.e14, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31031007

RESUMO

Xenograft cell transplantation into immunodeficient mice has become the gold standard for assessing pre-clinical efficacy of cancer drugs, yet direct visualization of single-cell phenotypes is difficult. Here, we report an optically-clear prkdc-/-, il2rga-/- zebrafish that lacks adaptive and natural killer immune cells, can engraft a wide array of human cancers at 37°C, and permits the dynamic visualization of single engrafted cells. For example, photoconversion cell-lineage tracing identified migratory and proliferative cell states in human rhabdomyosarcoma, a pediatric cancer of muscle. Additional experiments identified the preclinical efficacy of combination olaparib PARP inhibitor and temozolomide DNA-damaging agent as an effective therapy for rhabdomyosarcoma and visualized therapeutic responses using a four-color FUCCI cell-cycle fluorescent reporter. These experiments identified that combination treatment arrested rhabdomyosarcoma cells in the G2 cell cycle prior to induction of apoptosis. Finally, patient-derived xenografts could be engrafted into our model, opening new avenues for developing personalized therapeutic approaches in the future.


Assuntos
Animais Geneticamente Modificados/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Musculares , Rabdomiossarcoma , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Feminino , Xenoenxertos , Humanos , Células K562 , Masculino , Neoplasias Musculares/tratamento farmacológico , Neoplasias Musculares/imunologia , Neoplasias Musculares/metabolismo , Neoplasias Musculares/patologia , Transplante de Neoplasias , Ftalazinas/farmacologia , Piperazinas/farmacologia , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/imunologia , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/genética , Peixe-Zebra/imunologia
4.
Cell ; 171(7): 1678-1691.e13, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29245013

RESUMO

Combination cancer therapies aim to improve the probability and magnitude of therapeutic responses and reduce the likelihood of acquired resistance in an individual patient. However, drugs are tested in clinical trials on genetically diverse patient populations. We show here that patient-to-patient variability and independent drug action are sufficient to explain the superiority of many FDA-approved drug combinations in the absence of drug synergy or additivity. This is also true for combinations tested in patient-derived tumor xenografts. In a combination exhibiting independent drug action, each patient benefits solely from the drug to which his or her tumor is most sensitive, with no added benefit from other drugs. Even when drug combinations exhibit additivity or synergy in pre-clinical models, patient-to-patient variability and low cross-resistance make independent action the dominant mechanism in clinical populations. This insight represents a different way to interpret trial data and a different way to design combination therapies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias/tratamento farmacológico , Animais , Variação Biológica Individual , Ensaios Clínicos como Assunto , Sistemas de Liberação de Medicamentos , Interações Medicamentosas , Resistencia a Medicamentos Antineoplásicos , Xenoenxertos , Humanos , Imunoterapia , Transplante de Neoplasias
5.
Proc Natl Acad Sci U S A ; 121(25): e2310793121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861592

RESUMO

mTORC1 is aberrantly activated in renal cell carcinoma (RCC) and is targeted by rapalogs. As for other targeted therapies, rapalogs clinical utility is limited by the development of resistance. Resistance often results from target mutation, but mTOR mutations are rarely found in RCC. As in humans, prolonged rapalog treatment of RCC tumorgrafts (TGs) led to resistance. Unexpectedly, explants from resistant tumors became sensitive both in culture and in subsequent transplants in mice. Notably, resistance developed despite persistent mTORC1 inhibition in tumor cells. In contrast, mTORC1 became reactivated in the tumor microenvironment (TME). To test the role of the TME, we engineered immunocompromised recipient mice with a resistance mTOR mutation (S2035T). Interestingly, TGs became resistant to rapalogs in mTORS2035T mice. Resistance occurred despite mTORC1 inhibition in tumor cells and could be induced by coculturing tumor cells with mutant fibroblasts. Thus, enforced mTORC1 activation in the TME is sufficient to confer resistance to rapalogs. These studies highlight the importance of mTORC1 inhibition in nontumor cells for rapalog antitumor activity and provide an explanation for the lack of mTOR resistance mutations in RCC patients.


Assuntos
Carcinoma de Células Renais , Resistencia a Medicamentos Antineoplásicos , Neoplasias Renais , Alvo Mecanístico do Complexo 1 de Rapamicina , Serina-Treonina Quinases TOR , Animais , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Camundongos , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Sirolimo/farmacologia , Mutação , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico
6.
Genes Dev ; 32(19-20): 1267-1284, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275043

RESUMO

The presence of inflammatory immune cells in human tumors raises a fundamental question in oncology: How do cancer cells avoid the destruction by immune attack? In principle, tumor development can be controlled by cytotoxic innate and adaptive immune cells; however, as the tumor develops from neoplastic tissue to clinically detectable tumors, cancer cells evolve different mechanisms that mimic peripheral immune tolerance in order to avoid tumoricidal attack. Here, we provide an update of recent accomplishments, unifying concepts, and future challenges to study tumor-associated immune cells, with an emphasis on metastatic carcinomas.


Assuntos
Metástase Neoplásica/imunologia , Neoplasias/imunologia , Linfócitos B/imunologia , Carcinoma/imunologia , Carcinoma/secundário , Células Dendríticas/imunologia , Progressão da Doença , Humanos , Vigilância Imunológica , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Linfócitos T/imunologia
7.
J Biol Chem ; 300(6): 107378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762179

RESUMO

The stepwise addition of monosaccharides to N-glycans attached to client proteins to generate a repertoire of mature proteins involves a concerted action of many glycosidases and glycosyltransferases. Here, we report that Golgi α-mannosidase II (GMII), a pivotal enzyme catalyzing the first step in the conversion of hybrid- to complex-type N-glycans, is activated by Zn2+ supplied by the early secretory compartment-resident ZNT5-ZNT6 heterodimers (ZNT5-6) and ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in marked accumulation of hybrid-type and complex/hybrid glycans with concomitant reduction of complex- and high-mannose-type glycans. In cells lacking the ZNT5-6 and ZNT7 functions, the GMII activity is substantially decreased. In contrast, the activity of its homolog, lysosomal mannosidase (LAMAN), is not decreased. Moreover, we show that the growth of pancreatic cancer MIA PaCa-2 cells lacking ZNT5-6 and ZNT7 is significantly decreased in a nude mouse xenograft model. Our results indicate the integral roles of ZNT5-6 and ZNT7 in N-glycosylation and highlight their potential as novel target proteins for cancer therapy.


Assuntos
Proteínas de Transporte de Cátions , Complexo de Golgi , Zinco , Humanos , Glicosilação , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Animais , Zinco/metabolismo , Camundongos , Complexo de Golgi/metabolismo , Manosidases/metabolismo , Manosidases/genética , Polissacarídeos/metabolismo , Linhagem Celular Tumoral , Camundongos Nus , Transportador 8 de Zinco
8.
Exp Cell Res ; 438(1): 114033, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593916

RESUMO

Regardless of the clinical response and improved patient survival observed following treatment with BRAFi like Vemurafenib (Vem), rapid development of resistance still remains as a major obstacle in melanoma therapy. In this context, we developed and characterized two acquired Vem-resistant melanoma cell lines, A375V and SK-MEL-28V, and an intrinsically Vem-resistant cell line, RPMI-7951. Altered morphology and growth rate of the resistant cell lines displayed spindle-shaped cells with filopodia formation and enhanced proliferation rate as compared to parental cells. Further in vitro characterization in 2D models confirmed the emergence of a resistant phenotype in melanoma cells. To mimic the in vivo tumor microenvironment, spheroids were developed for both parental and resistant cell lines to recognize materialization of invadopodia structures demonstrating elevated invasiveness and proliferation of resistant cells-based spheroids, especially A375V. Importantly, we validated A375V cell line in vivo to prove its tumorigenicity and drug resistance in tumor xenograft model. Taken together, our established clinically relevant Vem-resistant tumor model could be beneficial to elucidate drug resistance mechanisms, screen and identify novel anticancer therapies to overcome BRAFi resistance in melanoma.


Assuntos
Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Melanoma , Proteínas Proto-Oncogênicas B-raf , Vemurafenib , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Vemurafenib/farmacologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Inibidores de Proteínas Quinases/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/farmacologia , Camundongos Nus
9.
Exp Cell Res ; 435(1): 113907, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184222

RESUMO

Neosetophomone B (NSP-B) is a unique meroterpenoid fungal secondary metabolite that has previously demonstrated promising anti-cancer properties against various cancer cell lines in vitro. However, its in vivo anti-cancer potential remaines unexplored. To fill this gap in our knowledge, we tested NSP-B's in vivo anti-cancer activity using a zebrafish model, an organism that has gained significant traction in biomedical research due to its genetic similarities with humans and its transparent nature, allowing real-time tumor growth observation. For our experiments, we employed the K562-injected zebrafish xenograft model. Upon treating these zebrafish with NSP-B, we observed a marked reduction in the size and number of tumor xenografts. Delving deeper, our analyses indicated that NSP-B curtailed tumor growth and proliferation of leukemic grafted xenograft within the zebrafish. These results show that NSP-B possesses potent in vivo anti-cancer properties, making it a potential novel therapeutic agent for addressing hematological malignancies.


Assuntos
Neoplasias , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Xenoenxertos , Modelos Animais de Doenças , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Mol Life Sci ; 81(1): 145, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498222

RESUMO

Cisplatin is a chemotherapy drug that causes a plethora of DNA lesions and inhibits DNA transcription and replication, resulting in the induction of apoptosis in cancer cells. However, over time, patients develop resistance to cisplatin due to repeated treatment and thus the treatment efficacy is limited. Therefore, identifying an alternative therapeutic strategy combining cisplatin treatment along with targeting factors that drive cisplatin resistance is needed. CRISPR/Cas9 system-based genome-wide screening for the deubiquitinating enzyme (DUB) subfamily identified USP28 as a potential DUB that governs cisplatin resistance. USP28 regulates the protein level of microtubule-associated serine/threonine kinase 1 (MAST1), a common kinase whose expression is elevated in several cisplatin-resistant cancer cells. The expression level and protein turnover of MAST1 is a major factor driving cisplatin resistance in many cancer types. Here we report that the USP28 interacts and extends the half-life of MAST1 protein by its deubiquitinating activity. The expression pattern of USP28 and MAST1 showed a positive correlation across a panel of tested cancer cell lines and human clinical tissues. Additionally, CRISPR/Cas9-mediated gene knockout of USP28 in A549 and NCI-H1299 cells blocked MAST1-driven cisplatin resistance, resulting in suppressed cell proliferation, colony formation ability, migration and invasion in vitro. Finally, loss of USP28 destabilized MAST1 protein and attenuated tumor growth by sensitizing cells to cisplatin treatment in mouse xenograft model. We envision that targeting the USP28-MAST1 axis along with cisplatin treatment might be an alternative therapeutic strategy to overcome cisplatin resistance in cancer patients.


Assuntos
Cisplatino , Neoplasias , Animais , Humanos , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proteínas Associadas aos Microtúbulos , Microtúbulos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Ubiquitina Tiolesterase
11.
Breast Cancer Res ; 26(1): 30, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378689

RESUMO

INTRODUCTION: Overexpression of prostate-specific membrane antigen (PSMA) on the vasculature of triple-negative breast cancer (TNBC) presents a promising avenue for targeted endogenous radiotherapy with [177Lu]Lu-PSMA-I&T. This study aimed to assess and compare the therapeutic efficacy of a single dose with a fractionated dose of [177Lu]Lu-PSMA-I&T in an orthotopic model of TNBC. METHODS: Rj:NMRI-Foxn1nu/nu mice were used as recipients of MDA-MB-231 xenografts. The single dose group was treated with 1 × 60 ± 5 MBq dose of [177Lu]Lu-PSMA-I&T, while the fractionated dose group received 4 × a 15 ± 2 MBq dose of [177Lu]Lu-PSMA-I&T at 7 day intervals. The control group received 0.9% NaCl. Tumor progression was monitored using [18F]FDG-PET/CT. Ex vivo analysis encompassed immunostaining, TUNEL staining, H&E staining, microautoradiography, and autoradiography. RESULTS: Tumor volumes were significantly smaller in the single dose (p < 0.001) and fractionated dose (p < 0.001) groups. Tumor growth inhibition rates were 38% (single dose) and 30% (fractionated dose). Median survival was notably prolonged in the treated groups compared to the control groups (31d, 28d and 19d for single dose, fractionated dose and control, respectively). [177Lu]Lu-PSMA-I&T decreased the size of viable tumor areas. We further demonstrated, that [177Lu]Lu-PSMA-I&T binds specifically to the tumor-associated vasculature. CONCLUSION: This study highlights the potential of [177Lu]Lu-PSMA-I&T for endogenous radiotherapy of TNBC.


Assuntos
Radioisótopos , Neoplasias de Mama Triplo Negativas , Humanos , Masculino , Animais , Camundongos , Radioisótopos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Compostos Radiofarmacêuticos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Próstata/metabolismo , Linhagem Celular Tumoral , Dipeptídeos/uso terapêutico
12.
Breast Cancer Res ; 26(1): 49, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515107

RESUMO

BACKGROUND: Patient-derived xenograft (PDX) models serve as a valuable tool for the preclinical evaluation of novel therapies. They closely replicate the genetic, phenotypic, and histopathological characteristics of primary breast tumors. Despite their promise, the rate of successful PDX engraftment is various in the literature. This study aimed to identify the key factors associated with successful PDX engraftment of primary breast cancer. METHODS: We integrated clinicopathological data with morphological attributes quantified using a trained artificial intelligence (AI) model to identify the principal factors affecting PDX engraftment. RESULTS: Multivariate logistic regression analyses demonstrated that several factors, including a high Ki-67 labeling index (Ki-67LI) (p < 0.001), younger age at diagnosis (p = 0.032), post neoadjuvant chemotherapy (NAC) (p = 0.006), higher histologic grade (p = 0.039), larger tumor size (p = 0.029), and AI-assessed higher intratumoral necrosis (p = 0.027) and intratumoral invasive carcinoma (p = 0.040) proportions, were significant factors for successful PDX engraftment (area under the curve [AUC] 0.905). In the NAC group, a higher Ki-67LI (p < 0.001), lower Miller-Payne grade (p < 0.001), and reduced proportion of intratumoral normal breast glands as assessed by AI (p = 0.06) collectively provided excellent prediction accuracy for successful PDX engraftment (AUC 0.89). CONCLUSIONS: We found that high Ki-67LI, younger age, post-NAC status, higher histologic grade, larger tumor size, and specific morphological attributes were significant factors for predicting successful PDX engraftment of primary breast cancer.


Assuntos
Neoplasias da Mama , Animais , Humanos , Feminino , Neoplasias da Mama/terapia , Neoplasias da Mama/diagnóstico , Xenoenxertos , Inteligência Artificial , Modelos Animais de Doenças , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Cancer ; 23(1): 12, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200517

RESUMO

BACKGROUND: Malignant peritoneal mesothelioma (MPM) is an extremely rare and highly invasive tumor. Due to the lack of accurate models that reflect the biological characteristics of primary tumors, studying MPM remains challenging and is associated with an exceedingly unfavorable prognosis. This study was aimed to establish a new potential preclinical model for MPM using patient-derived MPM organoids (MPMOs) and to comprehensively evaluate the practicality of this model in medical research and its feasibility in guiding individualized patient treatment. METHODS: MPMOs were constructed using tumor tissue from MPM patients. Histopathological analysis and whole genome sequencing (WGS) were employed to determine the ability of MPMOs to replicate the original tumor's genetic and histological characteristics. The subcutaneous and orthotopic xenograft models were employed to assess the feasibility of establishing an in vivo model of MPM. MPMOs were also used to conduct drug screening and compare the results with retrospective analysis of patients after treatment, in order to evaluate the potential of MPMOs in predicting the effectiveness of drugs in MPM patients. RESULTS: We successfully established a culture method for human MPM organoids using tumor tissue from MPM patients and provided a comprehensive description of the necessary medium components for MPMOs. Pathological examination and WGS revealed that MPMOs accurately represented the histological characteristics and genomic heterogeneity of the original tumors. In terms of application, the success rate of creating subcutaneous and orthotopic xenograft models using MPMOs was 88% and 100% respectively. Drug sensitivity assays demonstrated that MPMOs have different medication responses, and these differences were compatible with the real situation of the patients. CONCLUSION: This study presents a method for generating human MPM organoids, which can serve as a valuable research tool and contribute to the advancement of MPM research. Additionally, these organoids can be utilized as a means to evaluate the effectiveness of drug treatments for MPM patients, offering a model for personalized treatment approaches.


Assuntos
Mesotelioma Maligno , Mesilatos , Neoplasias Peritoneais , Piperidinas , Humanos , Animais , Estudos Retrospectivos , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/genética , Modelos Animais de Doenças , Organoides
14.
Mol Cancer ; 23(1): 83, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38730475

RESUMO

BACKGROUND: Active targeting by surface-modified nanoplatforms enables a more precise and elevated accumulation of nanoparticles within the tumor, thereby enhancing drug delivery and efficacy for a successful cancer treatment. However, surface functionalization involves complex procedures that increase costs and timelines, presenting challenges for clinical implementation. Biomimetic nanoparticles (BNPs) have emerged as unique drug delivery platforms that overcome the limitations of actively targeted nanoparticles. Nevertheless, BNPs coated with unmodified cells show reduced functionalities such as specific tumor targeting, decreasing the therapeutic efficacy. Those challenges can be overcome by engineering non-patient-derived cells for BNP coating, but these are complex and cost-effective approaches that hinder their wider clinical application. Here we present an immune-driven strategy to improve nanotherapeutic delivery to tumors. Our unique perspective harnesses T-cell exhaustion and tumor immune evasion to develop a groundbreaking new class of BNPs crafted from exhausted T-cells (NExT) of triple-negative breast cancer (TNBC) patients by specific culture methods without sophisticated engineering. METHODS: NExT were generated by coating PLGA (poly(lactic-co-glycolic acid)) nanoparticles with TNBC-derived T-cells exhausted in vitro by acute activation. Physicochemical characterization of NExT was made by dynamic light scattering, electrophoretic light scattering and transmission electron microscopy, and preservation and orientation of immune checkpoint receptors by flow cytometry. The efficacy of chemotherapy-loaded NExT was assessed in TNBC cell lines in vitro. In vivo toxicity was made in CD1 mice. Biodistribution and therapeutic activity of NExT were determined in cell-line- and autologous patient-derived xenografts in immunodeficient mice. RESULTS: We report a cost-effective approach with a good performance that provides NExT naturally endowed with immune checkpoint receptors (PD1, LAG3, TIM3), augmenting specific tumor targeting by engaging cognate ligands, enhancing the therapeutic efficacy of chemotherapy, and disrupting the PD1/PDL1 axis in an immunotherapy-like way. Autologous patient-derived NExT revealed exceptional intratumor accumulation, heightened chemotherapeutic index and efficiency, and targeted the tumor stroma in a PDL1+ patient-derived xenograft model of triple-negative breast cancer. CONCLUSIONS: These advantages underline the potential of autologous patient-derived NExT to revolutionize tailored adoptive cancer nanotherapy and chemoimmunotherapy, which endorses their widespread clinical application of autologous patient-derived NExT.


Assuntos
Nanopartículas , Linfócitos T , Humanos , Animais , Camundongos , Nanopartículas/química , Feminino , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Evasão da Resposta Imune , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Cancer ; 154(7): 1272-1284, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38151776

RESUMO

Despite recent advances in the development of therapeutic antibodies, the prognosis of unresectable or metastatic gastric cancer (GC) remains poor. Here, we searched for genes involved in the malignant phenotype of GC and investigated the potential of one candidate gene to serve as a novel therapeutic target. Analysis of transcriptome datasets of GC identified natriuretic peptide receptor 1 (NPR1), a plasma membrane protein, as a potential target. We employed a panel of human GC cell lines and gene-specific small interfering RNA-mediated NPR1 silencing to investigate the roles of NPR1 in malignancy-associated functions and intracellular signaling pathways. We generated an anti-NPR1 polyclonal antibody and examined its efficacy in a mouse xenograft model of GC peritoneal dissemination. Associations between NPR1 expression in GC tissue and clinicopathological factors were also evaluated. NPR1 mRNA was significantly upregulated in several GC cell lines compared with normal epithelial cells. NPR1 silencing attenuated GC cell proliferation, invasion, and migration, and additionally induced the intrinsic apoptosis pathway associated with mitochondrial dysfunction and caspase activation via downregulation of BCL-2. Administration of anti-NPR1 antibody significantly reduced the number and volume of GC peritoneal tumors in xenografted mice. High expression of NPR1 mRNA in clinical GC specimens was associated with a significantly higher rate of postoperative recurrence and poorer prognosis. NPR1 regulates the intrinsic apoptosis pathway and plays an important role in promoting the GC malignant phenotype. Inhibition of NPR1 with antibodies may have potential as a novel therapeutic modality for unresectable or metastatic GC.


Assuntos
Receptores do Fator Natriurético Atrial , Neoplasias Gástricas , Humanos , Camundongos , Animais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Apoptose , Proliferação de Células , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
16.
Int J Cancer ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38938062

RESUMO

Prognosis of glioblastoma patients is still poor despite multimodal therapy. The highly brain-infiltrating growth in concert with a pronounced therapy resistance particularly of mesenchymal glioblastoma stem-like cells (GSCs) has been proposed to contribute to therapy failure. Recently, we have shown that a mesenchymal-to-proneural mRNA signature of patient derived GSC-enriched (pGSC) cultures associates with in vitro radioresistance and gel invasion. Importantly, this pGSC mRNA signature is prognostic for patients' tumor recurrence pattern and overall survival. Two mesenchymal markers of the mRNA signature encode for IKCa and BKCa Ca2+-activated K+ channels. Therefore, we analyzed here the effect of IKCa- and BKCa-targeting concomitant to (fractionated) irradiation on radioresistance and glioblastoma spreading in pGSC cultures and in pGSC-derived orthotopic xenograft glioma mouse models. To this end, in vitro gel invasion, clonogenic survival, in vitro and in vivo residual DNA double strand breaks (DSBs), tumor growth, and brain invasion were assessed in the dependence on tumor irradiation and K+ channel targeting. As a result, the IKCa- and BKCa-blocker TRAM-34 and paxilline, respectively, increased number of residual DSBs and (numerically) decreased clonogenic survival in some but not in all IKCa- and BKCa-expressing pGSC cultures, respectively. In addition, BKCa- but not IKCa-blockade slowed-down gel invasion in vitro. Moreover, systemic administration of TRAM-34 or paxilline concomitant to fractionated tumor irradiation increased in the xenograft model(s) residual number of DSBs and attenuated glioblastoma brain invasion and (numerically) tumor growth. We conclude, that KCa-blockade concomitant to fractionated radiotherapy might be a promising new strategy in glioblastoma therapy.

17.
Am J Transplant ; 24(1): 30-36, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633449

RESUMO

De novo membranous nephropathy (dnMN) is an uncommon immune complex-mediated late complication of human kidney allografts that causes proteinuria. We report here the first case of dnMN in a pig-to-baboon kidney xenograft. The donor was a double knockout (GGTA1 and ß4GalNT1) genetically engineered pig with a knockout of the growth hormone receptor and addition of 6 human transgenes (hCD46, hCD55, hTBM, hEPCR, hHO1, and hCD47). The recipient developed proteinuria at 42 days posttransplant, which progressively rose to the nephrotic-range at 106 days, associated with an increase in serum antidonor IgG. Kidney biopsies showed antibody-mediated rejection (AMR) with C4d and thrombotic microangiopathy that eventually led to graft failure at 120 days. In addition to AMR, the xenograft had diffuse, global granular deposition of C4d and IgG along the glomerular basement membrane on days 111 and 120. Electron microscopy showed extensive amorphous subepithelial electron-dense deposits with intervening spikes along the glomerular basement membrane. These findings, in analogy to human renal allografts, are interpreted as dnMN in the xenograft superimposed on AMR. The target was not identified but is hypothesized to be a pig xenoantigen expressed on podocytes. Whether dnMN will be a significant problem in other longer-term xenokidneys remains to be determined.


Assuntos
Glomerulonefrite Membranosa , Nefropatias , Transplante de Rim , Humanos , Suínos , Animais , Glomerulonefrite Membranosa/etiologia , Transplante de Rim/efeitos adversos , Xenoenxertos , Rim/patologia , Nefropatias/patologia , Proteinúria/etiologia , Imunoglobulina G , Rejeição de Enxerto/patologia
18.
Biochem Biophys Res Commun ; 728: 150324, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38968772

RESUMO

Ras homolog gene family member C (RhoC) is a GTPase involved in cell migration, implicated in epithelial-mesenchymal transition and treatment resistance and metastasis of cancer. For example, RhoC has been shown to be involved in resistance to radiation in cervical carcinoma. Here, the effect of X-ray irradiation on RhoC expression in prostate cancer (PCa) xenografts was investigated in both xenografts in regression and relapse. Male BALB/cAnNRj-Foxn1nu/nu mice were inoculated with 4-6 million LNCaP-FGC cells and established xenografts were irradiated with X-rays (200 kV, 1 Gymin-1), 5, 10 or 15 Gy using a Gulmay Medical X-ray system. Expression of RhoC and Ki67, a known proliferation marker, was investigated in xenografts, given 15 Gy, 7 days (midst response as measured by size) or 3 weeks (relapse) post irradiation. Staining was quantified using the Halo software (v2.3.2089.34) with the Indica Labs - cytonuclear v1.6 algorithm. RhoC and Ki67 staining was divided into weak, medium, and strong staining and the percentage of cells stained, single and dual staining, was quantified. The HALO software was further used to classify the tissue in each section so that analysis of RhoC and Ki67 expression in cancer cells, stroma and necrotic areas could be done separately. The results showed that RhoC expression in cancer and stroma cells was significantly higher in relapsed xenografts than in those in regression. This was not seen for Ki67 staining, where the percentage of stained cells were the same in regressing and relapsing tumors. RhoC could be a useful biomarker to confirm relapse following external beam radiation therapy.

19.
Dev Neurosci ; 46(1): 22-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37231843

RESUMO

In depth study of pediatric gliomas has been hampered due to difficulties in accessing patient tissue and a lack of clinically representative tumor models. Over the last decade, however, profiling of carefully curated cohorts of pediatric tumors has identified genetic drivers that molecularly segregate pediatric gliomas from adult gliomas. This information has inspired the development of a new set of powerful in vitro and in vivo tumor models that can aid in identifying pediatric-specific oncogenic mechanisms and tumor microenvironment interactions. Single-cell analyses of both human tumors and these newly developed models have revealed that pediatric gliomas arise from spatiotemporally discrete neural progenitor populations in which developmental programs have become dysregulated. Pediatric high-grade gliomas also harbor distinct sets of co-segregating genetic and epigenetic alterations, often accompanied by unique features within the tumor microenvironment. The development of these novel tools and data resources has led to insights into the biology and heterogeneity of these tumors, including identification of distinctive sets of driver mutations, developmentally restricted cells of origin, recognizable patterns of tumor progression, characteristic immune environments, and tumor hijacking of normal microenvironmental and neural programs. As concerted efforts have broadened our understanding of these tumors, new therapeutic vulnerabilities have been identified, and for the first time, promising new strategies are being evaluated in the preclinical and clinical settings. Even so, dedicated and sustained collaborative efforts are necessary to refine our knowledge and bring these new strategies into general clinical use. In this review, we will discuss the range of currently available glioma models, the way in which they have each contributed to recent developments in the field, their benefits and drawbacks for addressing specific research questions, and their future utility in advancing biological understanding and treatment of pediatric glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Criança , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , Glioma/terapia , Microambiente Tumoral
20.
J Virol ; 97(5): e0045923, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37097154

RESUMO

Numerous studies have illustrated that the Seneca Valley virus (SVV) shows sufficient oncolytic efficacy targeting small cell lung cancer (SCLC). However, the therapeutics of nonsmall cell lung carcinoma (NSCLC, accounts for 85% of lung cancer cases) using oncolytic virus have been resisting due to the filtration of neutralizing antibody and limited reproduction capacity. Here, we employed structural biology and reverse genetics to optimize novel oncolytic SVV mutants (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related variant SVV-S177A/P60S) with increased infectivity and lower immunogenicity. The results of the NSCLC-bearing athymic mouse model demonstrated that wild-type (wt) SVV-HB extended the median overall survival (mOS) from 11 days in the PBS group to 19 days. Notably, the newly discovered mutations significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort. Taken together, we present a structure-guided genetic modification strategy for oncolytic SVV optimization and provide a candidate for developing oncolytic viral therapy against nonsensitive NSCLC. IMPORTANCE Nonsmall cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases (more than 1.85 million cases with 1.48 million deaths in 2020). In the present study, two novel oncolytic SVV mutants modified based on structural biology and reverse genetics (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related mutant SVV-S177A/P60S) with increased infectivity or lower immunogenicity significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort in the NSCLC-bearing athymic mouse model, which may provide the direction for modifying SVV to improve the effect of oncolysis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Picornaviridae , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Pulmão , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Camundongos Nus , Picornaviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA