Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 982
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(8): 1848-1863.e7, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38889716

RESUMO

Expression of the transcriptional regulator ZFP318 is induced in germinal center (GC)-exiting memory B cell precursors and memory B cells (MBCs). Using a conditional ZFP318 fluorescence reporter that also enables ablation of ZFP318-expressing cells, we found that ZFP318-expressing MBCs were highly enriched with GC-derived cells. Although ZFP318-expressing MBCs constituted only a minority of the antigen-specific MBC compartment, their ablation severely impaired recall responses. Deletion of Zfp318 did not alter the magnitude of primary responses but markedly reduced MBC participation in recall. CD40 ligation promoted Zfp318 expression, whereas B cell receptor (BCR) signaling was inhibitory. Enforced ZFP318 expression enhanced recall performance of MBCs that otherwise responded poorly. ZFP318-deficient MBCs expressed less mitochondrial genes, had structurally compromised mitochondria, and were susceptible to reactivation-induced cell death. The abundance of ZFP318-expressing MBCs, instead of the number of antigen-specific MBCs, correlated with the potency of prime-boost vaccination. Therefore, ZFP318 controls the MBC recallability and represents a quality checkpoint of humoral immune memory.


Assuntos
Centro Germinativo , Memória Imunológica , Células B de Memória , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Camundongos , Memória Imunológica/genética , Memória Imunológica/imunologia , Células B de Memória/imunologia , Células B de Memória/metabolismo , Centro Germinativo/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Regulação da Expressão Gênica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transdução de Sinais/imunologia , Antígenos CD40/metabolismo , Antígenos CD40/genética , Antígenos CD40/imunologia , Imunidade Humoral , Transcrição Gênica , Proteínas de Membrana , Proteínas Mitocondriais
2.
Immunity ; 57(10): 2296-2309.e5, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39353440

RESUMO

The surface of the skin is continually exposed to pro-inflammatory stimuli; however, it is unclear why it is not constantly inflamed due to this exposure. Here, we showed undifferentiated keratinocytes residing in the deep epidermis could trigger a strong inflammatory response due to their high expression of pattern recognition receptors (PRRs) that detect damage or pathogens. As keratinocytes differentiated, they migrated outward toward the surface of the skin and decreased their PRR expression, which led to dampened immune responses. ZNF750, a transcription factor expressed only in differentiated keratinocytes, recruited the histone demethylase KDM1A/LSD1 to silence genes coding for PRRs (TLR3, IFIH1/MDA5, and DDX58/RIG1). Loss of ZNF750 or KDM1A in human keratinocytes or mice resulted in sustained and excessive inflammation resembling psoriatic skin, which could be restored to homeostatic conditions upon silencing of TLR3. Our findings explain how the skin's surface prevents excessive inflammation through ZNF750- and KDM1A-mediated suppression of PRRs.


Assuntos
Histona Desmetilases , Inflamação , Queratinócitos , Receptores de Reconhecimento de Padrão , Pele , Fatores de Transcrição , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Humanos , Queratinócitos/metabolismo , Animais , Camundongos , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Pele/imunologia , Pele/patologia , Pele/metabolismo , Inflamação/imunologia , Diferenciação Celular/imunologia , Psoríase/imunologia , Psoríase/genética , Psoríase/metabolismo , Camundongos Knockout , Inativação Gênica , Camundongos Endogâmicos C57BL , Proteínas Supressoras de Tumor
3.
Mol Cell ; 84(19): 3826-3842.e8, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39303722

RESUMO

RNA interactome studies have revealed that hundreds of zinc-finger proteins (ZFPs) are candidate RNA-binding proteins (RBPs), yet their RNA substrates and functional significance remain largely uncharacterized. Here, we present a systematic multi-omics analysis of the DNA- and RNA-binding targets and regulatory roles of more than 100 ZFPs representing 37 zinc-finger families. We show that multiple ZFPs are previously unknown regulators of RNA splicing, alternative polyadenylation, stability, or translation. The examined ZFPs show widespread sequence-specific RNA binding and preferentially bind proximal to transcription start sites. Additionally, several ZFPs associate with their targets at both the DNA and RNA levels. We highlight ZNF277, a C2H2 ZFP that binds thousands of RNA targets and acts as a multi-functional RBP. We also show that ZNF473 is a DNA/RNA-associated protein that regulates the expression and splicing of cell cycle genes. Our results reveal diverse roles for ZFPs in transcriptional and post-transcriptional gene regulation.


Assuntos
Splicing de RNA , Proteínas de Ligação a RNA , Dedos de Zinco , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Regulação da Expressão Gênica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , RNA/metabolismo , RNA/genética , Ligação Proteica , Células HEK293 , Células HeLa , Processamento Alternativo , Sítios de Ligação , Multiômica
4.
Mol Cell ; 84(13): 2542-2552.e5, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38823386

RESUMO

Integrator is a multi-subunit protein complex responsible for premature transcription termination of coding and non-coding RNAs. This is achieved via two enzymatic activities, RNA endonuclease and protein phosphatase, acting on the promoter-proximally paused RNA polymerase Ⅱ (RNAPⅡ). Yet, it remains unclear how Integrator assembly and recruitment are regulated and what the functions of many of its core subunits are. Here, we report the structures of two human Integrator sub-complexes: INTS10/13/14/15 and INTS5/8/10/15, and an integrative model of the fully assembled Integrator bound to the RNAPⅡ paused elongating complex (PEC). An in silico protein-protein interaction screen of over 1,500 human transcription factors (TFs) identified ZNF655 as a direct interacting partner of INTS13 within the fully assembled Integrator. We propose a model wherein INTS13 acts as a platform for the recruitment of TFs that could modulate the stability of the Integrator's association at specific loci and regulate transcription attenuation of the target genes.


Assuntos
Ligação Proteica , RNA Polimerase II , Fatores de Transcrição , Humanos , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/química , Modelos Moleculares , Microscopia Crioeletrônica , Regiões Promotoras Genéticas , Células HEK293 , Sítios de Ligação , Endorribonucleases
5.
Annu Rev Cell Dev Biol ; 33: 343-368, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28715909

RESUMO

Cells of all organisms survey problems during translation elongation, which may happen as a consequence of mRNA aberrations, inefficient decoding, or other sources. In eukaryotes, ribosome-associated quality control (RQC) senses elongation-stalled ribosomes and promotes dissociation of ribosomal subunits. This so-called ribosomal rescue releases the mRNA for degradation and allows 40S subunits to be recycled for new rounds of translation. However, the nascent polypeptide chains remain linked to tRNA and associated with the rescued 60S subunits. As a final critical step in this pathway, the Ltn1/Listerin E3 ligase subunit of the RQC complex (RQCc) ubiquitylates the nascent chain, which promotes clearance of the 60S subunit while simultaneously marking the nascent chain for elimination. Here we review the ribosomal stalling and rescue steps upstream of the RQCc, where one witnesses intersection with cellular machineries implicated in translation elongation, translation termination, ribosomal subunit recycling, and mRNA quality control. We emphasize both recent progress and future directions in this area, as well as examples linking ribosomal rescue with the production of Ltn1-RQCc substrates.


Assuntos
Biossíntese de Proteínas , Proteínas/metabolismo , Ribossomos/metabolismo , Animais , Humanos , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Ubiquitinação
6.
Mol Cell ; 81(13): 2808-2822.e10, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111399

RESUMO

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic DNA and induces interferon-stimulated genes (ISGs) to activate the innate immune system. Here, we report the unexpected discovery that cGAS also senses dysfunctional protein production. Purified ribosomes interact directly with cGAS and stimulate its DNA-dependent activity in vitro. Disruption of the ribosome-associated protein quality control (RQC) pathway, which detects and resolves ribosome collision during translation, results in cGAS-dependent ISG expression and causes re-localization of cGAS from the nucleus to the cytosol. Indeed, cGAS preferentially binds collided ribosomes in vitro, and orthogonal perturbations that result in elevated levels of collided ribosomes and RQC activation cause sub-cellular re-localization of cGAS and ribosome binding in vivo as well. Thus, translation stress potently increases DNA-dependent cGAS activation. These findings have implications for the inflammatory response to viral infection and tumorigenesis, both of which substantially reprogram cellular protein synthesis.


Assuntos
Núcleo Celular , Nucleotidiltransferases , Biossíntese de Proteínas , Ribossomos , Transdução de Sinais , Estresse Fisiológico , Transporte Ativo do Núcleo Celular , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo
7.
Mol Cell ; 81(2): 239-254.e8, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33301730

RESUMO

Metazoan transcription factors typically regulate large numbers of genes. Here we identify via a CRISPR-Cas9 genetic screen ZNF410, a pentadactyl DNA-binding protein that in human erythroid cells directly activates only a single gene, the NuRD component CHD4. Specificity is conveyed by two highly evolutionarily conserved clusters of ZNF410 binding sites near the CHD4 gene with no counterparts elsewhere in the genome. Loss of ZNF410 in adult-type human erythroid cell culture systems and xenotransplantation settings diminishes CHD4 levels and derepresses the fetal hemoglobin genes. While previously known to be silenced by CHD4, the fetal globin genes are exposed here as among the most sensitive to reduced CHD4 levels.. In vitro DNA binding assays and crystallographic studies reveal the ZNF410-DNA binding mode. ZNF410 is a remarkably selective transcriptional activator in erythroid cells, and its perturbation might offer new opportunities for treatment of hemoglobinopathies.


Assuntos
DNA/genética , Células Precursoras Eritroides/metabolismo , Hemoglobina Fetal/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Fatores de Transcrição/genética , Animais , Sítios de Ligação , Células COS , Sistemas CRISPR-Cas , Chlorocebus aethiops , DNA/metabolismo , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/transplante , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Hemoglobina Fetal/metabolismo , Feto , Edição de Genes , Células HEK293 , Xenoenxertos , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Modelos Moleculares , Células-Tronco Embrionárias Murinas/citologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Ativação Transcricional
8.
Mol Cell ; 79(4): 588-602.e6, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32615089

RESUMO

The ribosome-associated protein quality control (RQC) system that resolves stalled translation events is activated when ribosomes collide and form disome, trisome, or higher-order complexes. However, it is unclear whether this system distinguishes collision complexes formed on defective mRNAs from those with functional roles on endogenous transcripts. Here, we performed disome and trisome footprint profiling in yeast and found collisions were enriched on diverse sequence motifs known to slow translation. When 60S recycling was inhibited, disomes accumulated at stop codons and could move into the 3' UTR to reinitiate translation. The ubiquitin ligase and RQC factor Hel2/ZNF598 generally recognized collisions but did not induce degradation of endogenous transcripts. However, loss of Hel2 triggered the integrated stress response, via phosphorylation of eIF2α, thus linking these pathways. Our results suggest that Hel2 has a role in sensing ribosome collisions on endogenous mRNAs, and such events may be important for cellular homeostasis.


Assuntos
Pegada de DNA/métodos , Genoma Fúngico , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/metabolismo , Regiões 3' não Traduzidas , Anisomicina/farmacologia , Códon de Terminação , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Mutação , Fosforilação , Estabilidade de RNA , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética
9.
Proc Natl Acad Sci U S A ; 121(33): e2401217121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39102544

RESUMO

X-linked dystonia-parkinsonism (XDP) is a severe neurodegenerative disorder resulting from an inherited intronic SINE-Alu-VNTR (SVA) retrotransposon in the TAF1 gene that causes dysregulation of TAF1 transcription. The specific mechanism underlying this dysregulation remains unclear, but it is hypothesized to involve the formation of G-quadruplexes (G4) structures within the XDP-SVA that impede transcription. In this study, we show that ZNF91, a critical repressor of SVA retrotransposons, specifically binds to G4-forming DNA sequences. Further, we found that genetic deletion of ZNF91 exacerbates the molecular phenotype associated with the XDP-SVA insertion in patient cells, while no difference was observed when ZNF91 was deleted from isogenic control cells. Additionally, we observed a significant age-related reduction in ZNF91 expression in whole blood and brain, indicating a progressive loss of repression of the XDP-SVA in XDP. These findings indicate that ZNF91 plays a crucial role in controlling the molecular phenotype associated with XDP. Since ZNF91 binds to G4-forming DNA sequences in SVAs, this suggests that interactions between ZNF91 and G4-forming sequences in the XDP-SVA minimize the severity of the molecular phenotype. Our results showing that ZNF91 expression levels significantly decrease with age provide a potential explanation for the age-related progressive neurodegenerative character of XDP. Collectively, our study provides important insights into the protective role of ZNF91 in XDP pathogenesis and suggests that restoring ZNF91 expression, destabilization of G4s, or targeted repression of the XDP-SVA could be future therapeutic strategies to prevent or treat XDP.


Assuntos
Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Fenótipo , Humanos , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Quadruplex G , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Masculino , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Retroelementos/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo
10.
Genes Dev ; 33(19-20): 1441-1455, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31467088

RESUMO

Rapid perturbation of protein function permits the ability to define primary molecular responses while avoiding downstream cumulative effects of protein dysregulation. The auxin-inducible degron (AID) system was developed as a tool to achieve rapid and inducible protein degradation in nonplant systems. However, tagging proteins at their endogenous loci results in chronic auxin-independent degradation by the proteasome. To correct this deficiency, we expressed the auxin response transcription factor (ARF) in an improved inducible degron system. ARF is absent from previously engineered AID systems but is a critical component of native auxin signaling. In plants, ARF directly interacts with AID in the absence of auxin, and we found that expression of the ARF PB1 (Phox and Bem1) domain suppresses constitutive degradation of AID-tagged proteins. Moreover, the rate of auxin-induced AID degradation is substantially faster in the ARF-AID system. To test the ARF-AID system in a quantitative and sensitive manner, we measured genome-wide changes in nascent transcription after rapidly depleting the ZNF143 transcription factor. Transcriptional profiling indicates that ZNF143 activates transcription in cis and regulates promoter-proximal paused RNA polymerase density. Rapidly inducible degradation systems that preserve the target protein's native expression levels and patterns will revolutionize the study of biological systems by enabling specific and temporally defined protein dysregulation.


Assuntos
Técnicas Genéticas , Proteínas/metabolismo , Proteólise , Linhagem Celular , Inibidores de Cisteína Proteinase/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ácidos Indolacéticos/farmacologia , Leupeptinas/farmacologia , Células MCF-7 , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Transativadores/genética , Transativadores/metabolismo
11.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37497597

RESUMO

Morphological development of the lung requires complex signal crosstalk between the mesenchymal and epithelial progenitors. Elucidating the genetic cascades underlying signal crosstalk is essential to understanding lung morphogenesis. Here, we identified Nolz1 as a mesenchymal lineage-specific transcriptional regulator that plays a key role in lung morphogenesis. Nolz1 null mutation resulted in a severe hypoplasia phenotype, including a decreased proliferation of mesenchymal cells, aberrant differentiation of epithelial cells and defective growth of epithelial branches. Nolz1 deletion also downregulated Wnt2, Lef1, Fgf10, Gli3 and Bmp4 mRNAs. Mechanistically, Nolz1 regulates lung morphogenesis primarily through Wnt2 signaling. Loss-of-function and overexpression studies demonstrated that Nolz1 transcriptionally activated Wnt2 and downstream ß-catenin signaling to control mesenchymal cell proliferation and epithelial branching. Exogenous Wnt2 could rescue defective proliferation and epithelial branching in Nolz1 knockout lungs. Finally, we identified Fgf9 as an upstream regulator of Nolz1. Collectively, Fgf9-Nolz1-Wnt2 signaling represents a novel axis in the control of lung morphogenesis. These findings are relevant to lung tumorigenesis, in which a pathological function of Nolz1 is implicated.


Assuntos
Pulmão , Transdução de Sinais , Transdução de Sinais/fisiologia , Diferenciação Celular/genética , Células Epiteliais , Morfogênese/genética , Mesoderma , Regulação da Expressão Gênica no Desenvolvimento
12.
J Biol Chem ; 300(3): 105773, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382671

RESUMO

The nucleolus, a membrane-less organelle, is responsible for ribosomal RNA transcription, ribosomal RNA processing, and ribosome assembly. Nucleolar size and number are indicative of a cell's protein synthesis rate and proliferative capacity, and abnormalities in the nucleolus have been linked to neurodegenerative diseases and cancer. In this study, we demonstrated that the nucleolar protein ZNF692 directly interacts with nucleophosmin 1 (NPM1). Knocking down ZNF692 resulted in the nucleolar redistribution of NPM1 in ring-like structures and reduced protein synthesis. Purified NPM1 forms spherical condensates in vitro but mixing it with ZNF692 produces irregular condensates more closely resembling living cell nucleoli. Our findings indicate that ZNF692, by interacting with NPM1, plays a critical role in regulating nucleolar architecture and function in living cells.


Assuntos
Nucléolo Celular , Proteínas de Ligação a DNA , Nucleofosmina , Fatores de Transcrição , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Ribossômico/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(22): e2120633119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35605119

RESUMO

Dysregulated epigenetic and transcriptional programming due to abnormalities of transcription factors (TFs) contributes to and sustains the oncogenicity of cancer cells. Here, we unveiled the role of zinc finger protein 280C (ZNF280C), a known DNA damage response protein, as a tumorigenic TF in colorectal cancer (CRC), required for colitis-associated carcinogenesis and Apc deficiency­driven intestinal tumorigenesis in mice. Consistently, ZNF280C silencing in human CRC cells inhibited proliferation, clonogenicity, migration, xenograft growth, and liver metastasis. As a C2H2 (Cys2-His2) zinc finger-containing TF, ZNF280C occupied genomic intervals with both transcriptionally active and repressive states and coincided with CCCTC-binding factor (CTCF) and cohesin binding. Notably, ZNF280C was crucial for the repression program of trimethylation of histone H3 at lysine 27 (H3K27me3)-marked genes and the maintenance of both focal and broad H3K27me3 levels. Mechanistically, ZNF280C counteracted CTCF/cohesin activities and condensed the chromatin environment at the cis elements of certain tumor suppressor genes marked by H3K27me3, at least partially through recruiting the epigenetic repressor structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1). In clinical relevance, ZNF280C was highly expressed in primary CRCs and distant metastases, and a higher ZNF280C level independently predicted worse prognosis of CRC patients. Thus, our study uncovered a contributor with good prognostic value to CRC pathogenesis and also elucidated the essence of DNA-binding TFs in orchestrating the epigenetic programming of gene regulation.


Assuntos
Cromatina , Neoplasias Colorretais , Repressão Epigenética , Fator de Ligação a CCCTC/metabolismo , Carcinogênese/genética , Cromatina/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA , Histonas/genética , Histonas/metabolismo , Humanos , Prognóstico , Fatores de Transcrição , Dedos de Zinco
14.
Artigo em Inglês | MEDLINE | ID: mdl-39308299

RESUMO

This study investigates the role of the long non-coding RNA (lncRNA) ZNF197-AS1 in uveal melanoma (UM), focusing on its function within a competing endogenous RNA (ceRNA) network. Utilizing the UM-related TCGA dataset, we analyzed the expression levels of ZNF197-AS1 and its correlation with miR-425 and GABARAPL1, an essential autophagy-related gene. Our analysis revealed that ZNF197-AS1 acts as a ceRNA by competitively binding to miR-425, resulting in the upregulation of GABARAPL1. This interaction plays a crucial role in the growth and metastasis of UM. The expression of GABARAPL1 showed a strong correlation with the clinical outcomes of UM patients. Furthermore, in vitro assays confirmed that ZNF197-AS1 impedes UM cell proliferation, migration, and invasion by modulating the miR-425/GABARAPL1 axis. These findings suggest that ZNF197-AS1 can effectively inhibit UM progression through this ceRNA regulatory network. This study provides valuable insights into the molecular mechanisms underlying UM and highlights the potential of targeting the ZNF197-AS1/miR-425/GABARAPL1 axis as a therapeutic strategy for UM.

15.
J Proteome Res ; 23(8): 3659-3673, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39022804

RESUMO

MicroRNAs are short, noncoding RNA molecules that exert pivotal roles in cancer development and progression by modulating various target genes. There is growing evidence that miR-138-5p is significantly involved in cervical cancer (CC). However, its precise molecular mechanism has yet to be fully understood. In the current investigation, a quantitative proteomics approach was utilized to detect possible miR-138-5p targets in HeLa cells systematically. In total, 364 proteins were downregulated, and 150 were upregulated after miR-138-5p overexpression. Bioinformatic analysis of these differentially expressed proteins (DEPs) revealed significant enrichment in several cancer-related pathways. Zinc finger protein 385A (ZNF385A) was determined as a novel direct target of miR-138-5p and discovered to facilitate the proliferation, migration, and cell cycle progression of HeLa cells. SFN and Fas cell surface death receptor(FAS) were then identified as functional downstream effectors of ZNF385A and miR-138-5p. Moreover, a tumor xenograft experiment was conducted to validate the association of miR-138-5p-ZNF385A-SFN/FAS axis with the development of CC in vivo. Our findings have collectively established a catalog of proteins mediated by miR-138-5p and have provided an in-depth comprehension of the molecular mechanisms responsible for the inhibitory effect of miR-138-5p on CC. The miR-138-5p-ZNF385A-SFN/FAS axis could also be beneficial to the identification of new therapeutic targets.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Proteômica , Neoplasias do Colo do Útero , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Feminino , Células HeLa , Proteômica/métodos , Proliferação de Células/genética , Animais , Movimento Celular/genética , Camundongos
16.
J Biol Chem ; 299(12): 105428, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926288

RESUMO

Sufficient activation of interferon signaling is critical for the host to fight against invading viruses, in which post-translational modifications have been demonstrated to play a pivotal role. Here, we demonstrate that the human KRAB-zinc finger protein ZNF268a is essential for virus-induced interferon signaling. We find that cytoplasmic ZNF268a is constantly degraded by lysosome and thus remains low expressed in resting cell cytoplasm. Upon viral infection, TBK1 interacts with cytosolic ZNF268a to catalyze the phosphorylation of Serine 178 of ZNF268a, which prevents the degradation of ZNF268a, resulting in the stabilization and accumulation of ZNF268a in the cytoplasm. Furthermore, we provide evidence that stabilized ZNF268a recruits the lysine methyltransferase SETD4 to TBK1 to induce the mono-methylation of TBK1 on lysine 607, which is critical for the assembly of the TBK1 signaling complex. Notably, ZNF268 S178 is conserved among higher primates but absent in rodents. Meanwhile, rodent TBK1 607th aa happens to be replaced by arginine, possibly indicating a species-specific role of ZNF268a in regulating TBK1 during evolution. These findings reveal novel functions of ZNF268a and SETD4 in regulating antiviral interferon signaling.


Assuntos
Interferon Tipo I , Proteínas Serina-Treonina Quinases , Animais , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Interferons/metabolismo , Lisina/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Linhagem Celular , Proteínas Repressoras/metabolismo , Metiltransferases/metabolismo
17.
J Cell Physiol ; 239(6): e31259, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38515383

RESUMO

The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is attribute to the aggressive local invasion, distant metastasis and drug resistance of PDAC patients, which was strongly accelerated by epithelial-mesenchymal transition (EMT). In current study, we systematically investigate the role of ZNF263/RNF126 axis in the initiation of EMT in PDAC in vitro and vivo. ZNF263 is firstly identified as a novel transactivation factor of RNF126. Both ZNF263 and RNF126 were overexpressed in PDAC tissues, which were associated with multiple advanced clinical stages and poor prognosis of PDAC patients. ZNF263 overexpression promoted cell proliferation, drug resistance and EMT in vitro via activating RNF126 following by the upregulation of Cyclin D1, N-cad, and MMP9, and the downregulation of E-cad, p21, and p27. ZNF263 silencing contributed to the opposite phenotype. Mechanistically, ZNF263 transactivated RNF126 via binding to its promoter. Further investigations revealed that ZNF263 interacted with ZNF31 to coregulate the transcription of RNF126, which in turn promoted ubiquitination-mediated degradation of PTEN. The downregulation of PTEN activated AKT/Cyclin D1 and AKT/GSK-3ß/ß-catenin signaling, thereby promoting the malignant phenotype of PDAC. Finally, the coordination of ZNF263 and RNF126 promotes subcutaneous tumor size and distant liver metastasis in vivo. ZNF263, as an oncogene, promotes proliferation, drug resistance and EMT of PDAC through transactivating RNF126.


Assuntos
Carcinoma Ductal Pancreático , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Fatores de Transcrição , Ubiquitina-Proteína Ligases , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Domínios RING Finger , Dedos de Zinco , Prognóstico , Neoplasias Hepáticas/secundário
18.
J Cell Biochem ; 125(2): e30507, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38047497

RESUMO

The underlying mechanism of colorectal cells developing into cancer cells has been extensively investigated, yet is still not fully delineated, resulting in the treatment of advanced colorectal cancer (CRC) remains regrettably an unmet need. Zinc Finger Protein 746/Parkin-interacting substrate (ZNF746/PARIS) has previously been identified to play a fundamental role on bladder cancer cell proliferation and metastasis that were effectively inhibited by melatonin (Mel). In this study, we utilized ex vivo/in vivo studies to verify whether the ZNF746 signaling was also crucial in CRC growth/invasion/migration. Tissue-bank specimens showed that the protein expression of ZNF746 was significantly increased in CRC than that of healthy colorectal tissues (p < 0.001). Additionally, in vitro study demonstrated that excessive expression of ZNF746 significantly inhibited mitochondrial activity via (1) interfering with the dynamic balance of mitochondrial fusion/fission and (2) inhibiting the protein expression of MFN1/MFN2/PGC1a (all p < 0.001). Furthermore, we identified that inhibition of ZNF746 protein expression significantly reduced the resistance of CRC cell lines to the anticancer drug of 5-FU (p < 0.001), whereas overexpression of ZNF746 significantly augmented resistance of CRC cells to 5-FU (all p < 0.001). Finally, using the cell culture method, we found that combined Mel and 5-FU was superior to merely one on promoting the CRC cell apoptosis (p < 0.001). Our results confirmed that ZNF746 signaling played a cardinal role of CRC cell proliferation/survival and combined Mel and 5-FU treatment attenuated the resistance of CRC cells to the drug mainly through suppressing this signaling.


Assuntos
Neoplasias Colorretais , Melatonina , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Linhagem Celular Tumoral , Melatonina/farmacologia , Melatonina/uso terapêutico , Dinâmica Mitocondrial , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Proteínas Repressoras/metabolismo
19.
Eur J Neurosci ; 59(8): 2102-2117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279611

RESUMO

The zinc finger protein 804A (ZNF804A) and the 5'-nucleotidase cytosolic II (NT5C2) genes are amongst the first schizophrenia susceptibility genes to have been identified in large-scale genome-wide association studies. ZNF804A has been implicated in the regulation of neuronal morphology and is required for activity-dependent changes to dendritic spines. Conversely, NT5C2 has been shown to regulate 5' adenosine monophosphate-activated protein kinase activity and has been implicated in protein synthesis in human neural progenitor cells. Schizophrenia risk genotype is associated with reduced levels of both NT5C2 and ZNF804A in the developing brain, and a yeast two-hybrid screening suggests that their encoded proteins physically interact. However, it remains unknown whether this interaction also occurs in cortical neurons and whether they could jointly regulate neuronal function. Here, we show that ZNF804A and NT5C2 colocalise and interact in HEK293T cells and that their rodent homologues, ZFP804A and NT5C2, colocalise and form a protein complex in cortical neurons. Knockdown of the Zfp804a or Nt5c2 genes resulted in a redistribution of both proteins, suggesting that both proteins influence the subcellular targeting of each other. The identified interaction between ZNF804A/ZFP804A and NT5C2 suggests a shared biological pathway pertinent to schizophrenia susceptibility within a neuronal cell type thought to be central to the neurobiology of the disorder, providing a better understanding of its genetic landscape.


Assuntos
Esquizofrenia , Humanos , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Estudo de Associação Genômica Ampla , Células HEK293 , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neurônios/fisiologia , Esquizofrenia/genética , Esquizofrenia/metabolismo
20.
Funct Integr Genomics ; 24(2): 53, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453820

RESUMO

Hepatocellular carcinoma (HCC) is one of the malignancies with the worst prognosis worldwide, in the occurrence and development of which glycolysis plays a central role. This study uncovered a mechanism by which ZNF692 regulates ALDOA-dependent glycolysis in HCC cells. RT-qPCR and western blotting were used to detect the expression of ZNF692, KAT5, and ALDOA in HCC cell lines and a normal liver cell line. The influences of transfection-induced alterations in the expression of ZNF692, KAT5, and ALDOA on the functions of HepG2 cells were detected by performing MTT, flow cytometry, Transwell, cell scratch, and colony formation assays, and the levels of glucose and lactate were determined using assay kits. ChIP and luciferase reporter assays were conducted to validate the binding of ZNF692 to the KAT5 promoter, and co-IP assays to detect the interaction between KAT5 and ALDOA and the acetylation of ALDOA. ZNF692, KAT5, and ALDOA were highly expressed in human HCC samples and cell lines, and their expression levels were positively correlated in HCC. ZNF692, ALDOA, or KAT5 knockdown inhibited glycolysis, proliferation, invasion, and migration and promoted apoptosis in HepG2 cells. ZNF692 bound to the KAT5 promoter and promoted its activity. ALDOA acetylation levels were elevated in HCC cell lines. KAT5 bound to ALDOA and catalyzed ALDOA acetylation. ALDOA or KAT5 overexpression in the same time of ZNF692 knockdown, compared to ZNF692 knockdown only, stimulated glycolysis, proliferation, invasion, and migration and reduced apoptosis in HepG2 cells. ZNF692 promotes the acetylation modification and protein expression of ALDOA by catalyzing KAT5 transcription, thereby accelerating glycolysis to drive HCC cell development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Células Hep G2 , Glicólise , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA