Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Genes Dev ; 35(21-22): 1461-1474, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34620682

RESUMO

Energy-storing white adipocytes maintain their identity by suppressing the energy-burning thermogenic gene program of brown and beige adipocytes. Here, we reveal that the protein-protein interaction between the transcriptional coregulator ZFP423 and brown fat determination factor EBF2 is essential for restraining the thermogenic phenotype of white adipose tissue (WAT). Disruption of the ZFP423-EBF2 protein interaction through CRISPR-Cas9 gene editing triggers widespread "browning" of WAT in adult mice. Mechanistically, ZFP423 recruits the NuRD corepressor complex to EBF2-bound thermogenic gene enhancers. Loss of adipocyte Zfp423 induces an EBF2 NuRD-to-BAF coregulator switch and a shift in PPARγ occupancy to thermogenic genes. This shift in PPARγ occupancy increases the antidiabetic efficacy of the PPARγ agonist rosiglitazone in obesity while diminishing the unwanted weight-gaining effect of the drug. These data indicate that ZFP423 controls EBF2 coactivator recruitment and PPARγ occupancy to determine the thermogenic plasticity of adipocytes and highlight the potential of therapeutically targeting transcriptional brakes to induce beige adipocyte biogenesis in obesity.


Assuntos
PPAR gama , Termogênese , Adipócitos Marrons/metabolismo , Adipócitos Brancos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA , Camundongos , PPAR gama/genética , Termogênese/genética , Fatores de Transcrição
2.
Genes Dev ; 35(21-22): 1395-1397, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725126

RESUMO

Adipose tissue is a complex organ consisting of a mixture of mature adipocytes and stromal vascular cells. It displays a remarkable ability to adapt to environmental and dietary cues by changing its morphology and metabolic capacity. This plasticity is demonstrated by the emergence of interspersed thermogenic beige adipocytes within white depots in response to catecholamines secretion. Coordinated cellular interaction between different cell types within the tissue and a fine-tuned transcriptional program synergistically take place to promote beige remodeling. However, both cell-cell interactions and molecular mechanisms governing beige adipocyte appearance and maintenance are poorly understood. In this and the previous issue of Genes & Development, Shao and colleagues (pp. 1461-1474) and Shan and colleagues (pp. 1333-1338) advance our understanding of these issues and, in doing so, highlight potential therapeutic strategies to combat obesity-associated diseases.


Assuntos
Adipócitos Bege , Termogênese , Adipócitos Bege/metabolismo , Tecido Adiposo , Tecido Adiposo Branco/metabolismo , Termogênese/genética
3.
Development ; 147(22)2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33046507

RESUMO

The choroid plexus (ChP) is a secretory tissue that produces cerebrospinal fluid (CSF) secreted into the ventricular system. It is a monolayer of secretory, multiciliated epithelial cells derived from neuroepithelial progenitors and overlying a stroma of mesenchymal cells of mesodermal origin. Zfp423, which encodes a Kruppel-type zinc-finger transcription factor essential for cerebellar development and mutated in rare cases of cerebellar vermis hypoplasia/Joubert syndrome and other ciliopathies, is expressed in the hindbrain roof plate, from which the IV ventricle ChP arises, and, later, in mesenchymal cells, which give rise to the stroma and leptomeninges. Mouse Zfp423 mutants display a marked reduction of the hindbrain ChP (hChP), which: (1) fails to express established markers of its secretory function and genes implicated in its development and maintenance (Lmx1a and Otx2); (2) shows a perturbed expression of signaling pathways previously unexplored in hChP patterning (Wnt3); and (3) displays a lack of multiciliated epithelial cells and a profound dysregulation of master genes of multiciliogenesis (Gmnc). Our results propose that Zfp423 is a master gene and one of the earliest known determinants of hChP development.


Assuntos
Plexo Corióideo/embriologia , Proteínas de Ligação a DNA/metabolismo , Rombencéfalo/embriologia , Fatores de Transcrição/metabolismo , Animais , Plexo Corióideo/citologia , Proteínas de Ligação a DNA/genética , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Mutantes , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Rombencéfalo/citologia , Fatores de Transcrição/genética , Proteína Wnt3/genética , Proteína Wnt3/metabolismo
4.
BMC Cancer ; 22(1): 300, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313831

RESUMO

BACKGROUND: Well-differentiated and dedifferentiated liposarcomas are rare soft tissue tumors originating in adipose tissue that share genetic abnormalities but have significantly different metastatic potential. Dedifferentiated liposarcoma (DDLPS) is highly aggressive and has an overall 5-year survival rate of 30% as compared to 90% for well-differentiated liposarcoma (WDLPS). This discrepancy may be connected to their potential to form adipocytes, where WDLPS is adipogenic but DDLPS is adipogenic-impaired. Normal adipogenesis requires Zinc Finger Protein 423 (ZFP423), a transcriptional coregulator of Perixosome Proliferator Activated Receptor gamma (PPARG2) mRNA expression that defines committed preadipocytes. Expression of ZFP423 in preadipocytes is promoted by Seven-In-Absentia Homolog 2 (SIAH2)-mediated degradation of Zinc Finger Protein 521 (ZFP521). This study investigated the potential role of ZFP423, SIAH2 and ZFP521 in the adipogenic potential of WDLPS and DDLPS. METHODS: Human WDLPS and DDLPS fresh and paraffin-embedded tissues were used to assess the gene and protein expression of proadipogenic regulators. In parallel, normal adipose tissue stromal cells along with WDLPS and DDLPS cell lines were cultured, genetically modified, and induced to undergo adipogenesis in vitro. RESULTS: Impaired adipogenic potential in DDLPS was associated with reduced ZFP423 protein levels in parallel with reduced PPARG2 expression, potentially involving regulation of ZFP521. SIAH2 protein levels did not define a clear distinction related to adipogenesis in these liposarcomas. However, in primary tumor specimens, SIAH2 mRNA was consistently upregulated in DDLPS compared to WDLPS when assayed by fluorescence in situ hybridization or real-time PCR. CONCLUSIONS: These data provide novel insights into ZFP423 expression in adipogenic regulation between WDLPS and DDLPS adipocytic tumor development. The data also introduces SIAH2 mRNA levels as a possible molecular marker to distinguish between WDLPS and DDLPS.


Assuntos
Adipogenia/genética , Biomarcadores Tumorais/genética , Proteínas de Ligação a DNA , Lipossarcoma/genética , Neoplasias de Tecidos Moles/genética , Dedos de Zinco/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Lipossarcoma/patologia , Proteínas Nucleares/genética , Neoplasias de Tecidos Moles/patologia , Ubiquitina-Proteína Ligases/genética
5.
Dev Biol ; 434(2): 231-248, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29305158

RESUMO

During cerebral cortex development, neural progenitors are required to elaborate a variety of cell differentiation signals to which they are continuously exposed. RA acid is a potent inducer of neuronal differentiation as it was found to influence cortical development. We report herein that TBR2, a transcription factor specific to Intermediate (Basal) Neural Progenitors (INPs), represses activation of the RA responsive element and expression of RA target genes in cell lines. This repressive action on RA signaling was functionally confirmed by the decrease of RA-mediated neuronal differentiation in neural stem cells stably overexpressing TBR2. In vivo mapping of RA activity in the developing cortex indicated that RA activity is detected in radial glial cells and subsequently downregulated in INPs, revealing a fine cell-type specific regulation of its signaling. Thus, TBR2 might be a molecular player in opposing RA signaling in INPs. Interestingly, this negative regulation is achieved at least in part by directly repressing the critical nuclear RA co-factor ZFP423. Indeed, we found ZFP423 to be expressed in the developing cortex and promote RA-dependent neuronal differentiation. These data indicate that TBR2 contributes to suppressing RA signaling in INPs, thereby enabling them to re-enter the cell cycle and delay neuronal differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Córtex Cerebral/embriologia , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Neurais/metabolismo , Organogênese/efeitos dos fármacos , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Córtex Cerebral/citologia , Proteínas de Ligação a DNA/genética , Camundongos , Células-Tronco Neurais/citologia , Organogênese/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas com Domínio T/genética , Fatores de Transcrição/genética
6.
Diabetologia ; 61(5): 1167-1179, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29478099

RESUMO

AIMS/HYPOTHESIS: Obesity results from a constant and complex interplay between environmental stimuli and predisposing genes. Recently, we identified the IFN-activated gene Ifi202b as the most likely gene responsible for the obesity quantitative trait locus Nob3 (New Zealand Obese [NZO] obesity 3). The aim of this study was to evaluate the effects of Ifi202b on body weight and adipose tissue biology, and to clarify the functional role of its human orthologue IFI16. METHODS: The impact of Ifi202b and its human orthologue IFI16 on adipogenesis was investigated by modulating their respective expression in murine 3T3-L1 and human Simpson-Golabi-Behmel syndrome (SGBS) pre-adipocytes. Furthermore, transgenic mice overexpressing IFI202b were generated and characterised with respect to metabolic traits. In humans, expression levels of IFI16 in adipose tissue were correlated with several variables of adipocyte function. RESULTS: In mice, IFI202b overexpression caused obesity (Δ body weight at the age of 30 weeks: 10.2 ± 1.9 g vs wild-type mice) marked by hypertrophic fat mass expansion, increased expression of Zfp423 (encoding the transcription factor zinc finger protein [ZFP] 423) and white-selective genes (Tcf21, Tle3), and decreased expression of thermogenic genes (e.g. Cidea, Ucp1). Compared with their wild-type littermates, Ifi202b transgenic mice displayed lower body temperature, hepatosteatosis and systemic insulin resistance. Suppression of IFI202b/IFI16 in pre-adipocytes impaired adipocyte differentiation and triacylglycerol storage. Humans with high levels of IFI16 exhibited larger adipocytes, an enhanced inflammatory state and impaired insulin-stimulated glucose uptake in white adipose tissue. CONCLUSIONS/INTERPRETATION: Our findings reveal novel functions of Ifi202b and IFI16, demonstrating their role as obesity genes. These genes promote white adipogenesis and fat storage, thereby facilitating the development of obesity-associated insulin resistance.


Assuntos
Adipogenia , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Nucleares/fisiologia , Obesidade/genética , Fosfoproteínas/fisiologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Feminino , Humanos , Inflamação , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/genética , Obesidade/metabolismo , Fenótipo , Fosfoproteínas/genética , Locos de Características Quantitativas , RNA Interferente Pequeno/metabolismo , Termogênese
7.
J Biol Chem ; 291(53): 27289-27297, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27864366

RESUMO

Adipose tissue expansion occurs by increasing the size of existing adipocytes or by increasing the number of adipocytes via adipogenesis. Adipose tissue dysfunction in obesity is associated with adipocyte hypertrophy and impaired adipogenesis. We recently demonstrated that deletion of the ubiquitin ligase Siah2 is associated with enlarged adipocytes in lean or obese mice. In this study, we find that adipogenesis is impaired in 3T3-L1 preadipocytes stably transfected with Siah2 shRNA and that overexpression of Siah2 in non-precursor fibroblasts promotes adipogenesis. In the 3T3-L1 model, loss of Siah2 is associated with sustained ß-catenin expression post-induction, but depletion of ß-catenin only partially restores PPARγ expression and adipocyte formation. Using wild-type and Siah2-/- adipose tissue and adipose stromal vascular cells, we observe that Siah2 influences the expression of several factors that control adipogenesis, including Wnt pathway genes, ß-catenin, Zfp432, and Bmp-4 Consistent with increased ß-catenin levels in shSiah2 preadipocytes, Wnt10b is elevated in Siah2-/- adipose tissue and remains elevated in Siah2-/- primary stromal cells after addition of the induction mixture. However, addition of BMP-4 to Siah2-/- stromal cells reduces Wnt10b expression, reduces Zfp521 protein levels, and increases expression of Zfp423, a transcriptional regulator of peroxisome proliferator-activated receptor γ expression that controls commitment to adipogenesis and is repressed by Zfp521. These results indicate that Siah2 acts upstream of BMP-4 to regulate factors that control the commitment of adipocyte progenitors to an adipogenic pathway. Our findings reveal an essential role for Siah2 in the early events that signal undifferentiated progenitor cells to become mature adipocytes.


Assuntos
Adipócitos/patologia , Adipogenia/fisiologia , Tecido Adiposo/patologia , Regulação da Expressão Gênica , Ubiquitina-Proteína Ligases/fisiologia , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
8.
BMC Biol ; 14: 19, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26984772

RESUMO

BACKGROUND: Epithelial-mesenchymal cross talk is centerpiece in the development of many branched organs, including the lungs. The embryonic lung mesoderm provides instructional information not only for lung architectural development, but also for patterning, commitment and differentiation of its many highly specialized cell types. The mesoderm also serves as a reservoir of progenitors for generation of differentiated mesenchymal cell types that include αSMA-expressing fibroblasts, lipofibroblasts, endothelial cells and others. Transforming Growth Factor ß (TGFß) is a key signaling pathway in epithelial-mesenchymal cross talk. Using a cre-loxP approach we have elucidated the role of the TGFß type I receptor tyrosine kinase, ALK5, in epithelial-mesenchymal cross talk during lung morphogenesis. RESULTS: Targeted early inactivation of Alk5 in mesodermal progenitors caused abnormal development and maturation of the lung that included reduced physical size of the sub-mesothelial mesoderm, an established source of specific mesodermal progenitors. Abrogation of mesodermal ALK5-mediated signaling also inhibited differentiation of cell populations in the epithelial and endothelial lineages. Importantly, Alk5 mutant lungs contained a reduced number of αSMA(pos) cells and correspondingly increased lipofibroblasts. Elucidation of the underlying mechanisms revealed that through direct and indirect modulation of target signaling pathways and transcription factors, including PDGFRα, PPARγ, PRRX1, and ZFP423, ALK5-mediated TGFß controls a process that regulates the commitment and differentiation of αSMA(pos) versus lipofibroblast cell populations during lung development. CONCLUSION: ALK5-mediated TGFß signaling controls an early pathway that regulates the commitment and differentiation of αSMA(pos) versus LIF cell lineages during lung development.


Assuntos
Pulmão/citologia , Pulmão/embriologia , Mesoderma/citologia , Mesoderma/embriologia , Miofibroblastos/citologia , Proteínas Serina-Treonina Quinases/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Células-Tronco/citologia , Animais , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Pulmão/anormalidades , Pulmão/metabolismo , Mesoderma/anormalidades , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Músculo Liso/anormalidades , Músculo Liso/citologia , Músculo Liso/embriologia , Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/metabolismo
9.
J Cell Biochem ; 116(11): 2589-97, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25903991

RESUMO

MicroRNAs (miRNAs) play essential roles in various cellular processes including proliferation and differentiation. In this study, we identified miRNA-195a (miR-195a) as a regulator of adipocyte differentiation. Differential expression of miR-195a in preadipocytes and adipocytes suggests its role in lipid accumulation and adipocyte differentiation. Forced expression of miR-195a mimics suppressed lipid accumulation and inhibited expression of adipocyte markers such as PPARγ and aP2 in 3T3-L1 and C3H10T1/2 cells. Conversely, downregulation of miR-195a by anti-miR-195a increased lipid accumulation and expression of adipocyte markers. Target prediction analysis suggested zinc finger protein 423 (Zfp423), a preadipogenic determinator, as a potential gene recognized by miR-195a. In line with this, mimicked expression of miR-195a reduced the expression of Zfp423, whereas anti-miR-195a increased its expression. Predicted targeting sequences in Zfp423 3'UTR, but not mutated sequences fused to luciferase, were regulated by miR-195a. Ectopic Zfp423 expression in 3T3-L1 cells increased lipid accumulation and expression of adipocyte markers, consistent with the observation that miR-195a targets Zfp423, resulting in suppressed adipocyte differentiation. In addition, miR-195a and Zfp423 were inversely correlated in obese fat tissues, raising the possibility of miRNA's role in obesity. Together, our data show that miR-195a is an anti-adipogenic regulator, which acts by targeting Zfp423, and further suggest the roles of miR-195a in obesity and metabolic diseases.


Assuntos
Adipócitos/citologia , Proteínas de Ligação a DNA/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/metabolismo , Fatores de Transcrição/genética , Regiões 3' não Traduzidas , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Camundongos , Obesidade/etiologia , Obesidade/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
10.
Biochim Biophys Acta ; 1833(12): 3218-3227, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24080087

RESUMO

The deregulation of B cell differentiation has been shown to contribute to autoimmune disorders, hematological cancers, and aging. We provide evidence that the retinoic acid-producing enzyme aldehyde dehydrogenase 1a1 (Aldh1a1) is an oncogene suppressor in specific splenic IgG1(+)/CD19(-) and IgG1(+)/CD19(+) B cell populations. Aldh1a1 regulated transcription factors during B cell differentiation in a sequential manner: 1) retinoic acid receptor alpha (Rara) in IgG1(+)/CD19(-) and 2) zinc finger protein Zfp423 and peroxisome proliferator-activated receptor gamma (Pparg) in IgG1(+)/CD19(+) splenocytes. In Aldh1a1(-/-) mice, splenic IgG1(+)/CD19(-) and IgG1(+)/CD19(+) B cells acquired expression of proto-oncogenic genes c-Fos, c-Jun, and Hoxa10 that resulted in splenomegaly. Human multiple myeloma B cell lines also lack Aldh1a1 expression; however, ectopic Aldh1a1 expression rescued Rara and Znf423 expressions in these cells. Our data highlight a mechanism by which an enzyme involved in vitamin A metabolism can improve B cell resistance to oncogenesis.


Assuntos
Aldeído Desidrogenase/metabolismo , Linfócitos B/metabolismo , Genes Supressores de Tumor , Aldeído Desidrogenase/deficiência , Família Aldeído Desidrogenase 1 , Animais , Antígenos CD19/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Modelos Biológicos , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , PPAR gama/metabolismo , Elementos de Resposta/genética , Retinal Desidrogenase , Baço/efeitos dos fármacos , Baço/patologia , Esplenomegalia/imunologia , Esplenomegalia/patologia , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia , Vitamina A/metabolismo
11.
Cell Rep ; 42(2): 112088, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36753417

RESUMO

The hypothalamic pituitary thyroid axis is a major regulator of many differentiation processes, including adipose tissue. However, it remains unclear whether and how thyroid hormone (TH) signaling contributes to preadipocyte commitment and differentiation into mature adipocytes. Here, we show a cell-autonomous effect of TH on the transcriptional regulation of zinc finger protein 423 (Zfp423), an early adipogenic determination factor, in murine adipose depots. Mechanistically, binding of the unliganded TH receptor to a negative TH responsive element within the Zfp423 promoter activates transcriptional activity that is reversed upon TH binding. Zfp423 upregulation is associated with increased GFP+ preadipocyte recruitment in stromal vascular fraction isolated from white fat of hypothyroid Zfp423GFP reporter mice. RNA sequencing identified Zfp423-driven gene programs that are modulated in response to TH during adipogenic differentiation. Collectively, we identified Zfp423 as a key molecule that integrates TH signaling into the regulation of adipose tissue plasticity.


Assuntos
Adipócitos , Proteínas de Ligação a DNA , Animais , Camundongos , Adipócitos/metabolismo , Adipogenia/fisiologia , Tecido Adiposo/metabolismo , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Obesidade/metabolismo , Hormônios Tireóideos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Genetics ; 216(1): 117-134, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641295

RESUMO

Drosophila Lobe (L) alleles were first discovered ∼100 years ago as spontaneous dominant mutants with characteristic developmental eye defects. However, the molecular basis for L dominant eye phenotypes has not been clearly understood. A previous work reported identification of CG10109/PRAS40 as the L gene, but subsequent analyses suggested that PRAS40 may not be related to L Here, we revisited the L gene to clarify this discrepancy and understand the basis for the dominance of L mutations. Genetic analysis localized the L gene to Oaz, which encodes a homolog of the vertebrate zinc finger protein 423 (Zfp423) family transcriptional regulators. We demonstrate that RNAi knockdown of Oaz almost completely restores all L dominant alleles tested. Lrev6-3 , a revertant allele of the L2 dominant eye phenotype, has an inframe deletion in the Oaz coding sequence. Molecular analysis of L dominant mutants identified allele-specific insertions of natural transposons (roo[ ]L1 , hopper[ ]L5 , and roo[ ]Lr ) or alterations of a preexisting transposon (L2 -specific mutations in roo[ ]Mohr) in the Oaz region. In addition, we generated additional L2 -reversion alleles by CRISPR targeting at Oaz These new loss-of-function Oaz mutations suppress the dominant L eye phenotype. Oaz protein is not expressed in wild-type eye disc but is expressed ectopically in L2/+ mutant eye disc. We induced male recombination between Oaz-GAL4 insertions and the L2 mutation through homologous recombination. By using the L2 -recombined GAL4 reporters, we show that Oaz-GAL4 is expressed ectopically in L2 eye imaginal disc. Taken together, our data suggest that neomorphic L eye phenotypes are likely due to misregulation of Oaz by spontaneous transposon insertions.


Assuntos
Olho Composto de Artrópodes/metabolismo , Elementos de DNA Transponíveis , Proteínas de Drosophila/genética , Proteínas do Olho/genética , Fatores de Transcrição/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas do Olho/metabolismo , Genes Dominantes , Recombinação Homóloga , Mutação com Perda de Função , Fenótipo , Fatores de Transcrição/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-29800720

RESUMO

White adipocytes represent the principle site for energy storage whereas brown/beige adipocytes emerge from seemingly distinct cellular lineages and burn chemical energy to produce heat. Thermogenic adipocytes utilize cell-type selective master regulatory transcription factors to drive the expression of their adipocyte thermogenic gene program. White adipocytes harbor transcriptional mechanisms to suppress the thermogenic gene program and maintain an energy-storing function. Here, we summarize some of the key developmental and transcriptional mechanisms leading to the postnatal recruitment of thermogenic adipocytes under physiological conditions, with a particular emphasis on the transcriptional "brakes" on the thermogenic gene program. We highlight a number of recent studies, including our own work on the transcription factor, ZFP423, that illustrate the potential to engineer the subcutaneous and visceral white fat lineages to adopt a thermogenic fat cell fate by releasing the inhibition of the adipocyte thermogenic gene program. These transcriptional brakes on adipocyte thermogenesis may represent potential targets of therapeutic interventions designed to combat obesity and associated metabolic disorders.


Assuntos
Adipócitos/fisiologia , Termogênese , Tecido Adiposo Branco/fisiologia , Animais , Engenharia Genética , Humanos , Transcrição Gênica
14.
Cell Metab ; 27(5): 1121-1137.e5, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29657031

RESUMO

Beige and brown adipocytes generate heat in response to reductions in ambient temperature. When warmed, both beige and brown adipocytes exhibit morphological "whitening," but it is unknown whether or to what extent this represents a true shift in cellular identity. Using cell-type-specific profiling in vivo, we uncover a unique paradigm of temperature-dependent epigenomic plasticity of beige, but not brown, adipocytes, with conversion from a brown to a white chromatin state. Despite this profound shift in cellular identity, warm whitened beige adipocytes retain an epigenomic memory of prior cold exposure defined by an array of poised enhancers that prime thermogenic genes for rapid response during a second bout of cold exposure. We further show that a transcriptional cascade involving glucocorticoid receptor and Zfp423 can drive warm-induced whitening of beige adipocytes. These studies identify the epigenomic and transcriptional bases of an extraordinary example of cellular plasticity in response to environmental signals.


Assuntos
Adipócitos Bege/citologia , Adipócitos Marrons/citologia , Adipócitos Brancos/citologia , Plasticidade Celular/genética , Reprogramação Celular/genética , Epigênese Genética , Termogênese/genética , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Animais , Temperatura Baixa , Proteínas de Ligação a DNA/genética , Interação Gene-Ambiente , Masculino , Camundongos , Camundongos Knockout , Receptores de Glucocorticoides/genética , Fatores de Transcrição/genética
15.
Mol Metab ; 6(1): 111-124, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123942

RESUMO

OBJECTIVE: Zfp423 is a multi zinc-finger transcription factor expressed in preadipocytes and mature adipocytes in vivo. Our recent work has revealed a critical role for Zfp423 in maintaining the fate of white adipocytes in adult mice through suppression of the beige cell thermogenic gene program; loss of Zfp423 in mature adipocytes of adult mice results in a white-to-beige phenotypic switch. However, the exact requirements of Zfp423 in the fetal stages of early adipose development in vivo have not been clarified. METHOD: Here, we utilize two models that confer adipose-specific Zfp423 inactivation during fetal adipose development (Adiponectin-Cre; Zfp423loxP/loxP and Adiponectin-rtTA; TRE-Cre; Zfp423loxP/loxP). We assess the impact of fetal adipose Zfp423 deletion on the initial formation of adipose tissue and evaluate the metabolic consequences of challenging these animals with high-fat diet feeding. RESULTS: Deletion of Zfp423 during fetal adipose development results in a different phenotype than is observed when deleting Zfp423 in adipocytes of adult mice. Inactivation of Zfp423 during fetal adipose development results in arrested differentiation, specifically of inguinal white adipocytes, rather than a white-to-beige phenotypic switch that occurs when Zfp423 is inactivated in adult mice. This is likely explained by the observation that adiponectin driven Cre expression is active at an earlier stage of the adipocyte life cycle during fetal subcutaneous adipose development than in adult mice. Upon high-fat diet feeding, obese adipose Zfp423-deficient animals undergo a pathological adipose tissue expansion, associated with ectopic lipid deposition and systemic insulin resistance. CONCLUSIONS: Our results reveal that Zfp423 is essential for the terminal differentiation of subcutaneous white adipocytes during fetal adipose tissue development. Moreover, our data highlight the striking adverse effects of pathological subcutaneous adipose tissue remodeling on visceral adipose function and systemic nutrient homeostasis in obesity. Importantly, these data reveal the distinct phenotypes that can occur when adiponectin driven transgenes are activated in fetal vs. adult adipose tissue.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Gordura Subcutânea/embriologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Adipócitos Brancos/metabolismo , Adipogenia , Tecido Adiposo/citologia , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Bege/fisiologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/fisiologia , Adiposidade , Animais , Diferenciação Celular/fisiologia , Dieta Hiperlipídica , Desenvolvimento Fetal/fisiologia , Resistência à Insulina/fisiologia , Camundongos/embriologia , Camundongos Transgênicos , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Termogênese
16.
J Mol Cell Biol ; 9(4): 338-349, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992291

RESUMO

Retinoic acid (RA), a bioactive metabolite of vitamin A, is a critical mediator of cell differentiation. RA blocks adipogenesis, but mechanisms remain to be established. ZFP423 is a key transcription factor maintaining white adipose identity. We found that RA inhibits Zfp423 expression and adipogenesis via blocking DNA demethylation in the promoter of Zfp423, a process mediated by growth arrest and DNA-damage-inducible protein alpha (GADD45A). RA induces the partnering between retinoic acid receptor (RAR) and tumor suppressor inhibitor of growth protein 1 (ING1), which prevents the formation of GADD45A and ING1 complex necessary for locus-specific Zfp423 DNA demethylation. In vivo, vitamin A supplementation prevents obesity, downregulates Gadd45a expression, and reduces GADD45A binding and DNA demethylation in the Zfp423 promoter. Inhibition of Zfp423 expression due to RA contributes to the enhanced brown adipogenesis. In summary, RA inhibits white adipogenesis by inducing RAR and ING1 interaction and inhibiting Gadd45a expression, which prevents GADD45A-mediated DNA demethylation.


Assuntos
Adipogenia , Proteínas de Ciclo Celular/metabolismo , Desmetilação do DNA , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Tretinoína/metabolismo , Células 3T3-L1 , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas , Fatores de Transcrição/metabolismo
17.
Elife ; 62017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28722653

RESUMO

Visceral adiposity confers significant risk for developing metabolic disease in obesity whereas preferential expansion of subcutaneous white adipose tissue (WAT) appears protective. Unlike subcutaneous WAT, visceral WAT is resistant to adopting a protective thermogenic phenotype characterized by the accumulation of Ucp1+ beige/BRITE adipocytes (termed 'browning'). In this study, we investigated the physiological consequences of browning murine visceral WAT by selective genetic ablation of Zfp423, a transcriptional suppressor of the adipocyte thermogenic program. Zfp423 deletion in fetal visceral adipose precursors (Zfp423loxP/loxP; Wt1-Cre), or adult visceral white adipose precursors (PdgfrbrtTA; TRE-Cre; Zfp423loxP/loxP), results in the accumulation of beige-like thermogenic adipocytes within multiple visceral adipose depots. Thermogenic visceral WAT improves cold tolerance and prevents and reverses insulin resistance in obesity. These data indicate that beneficial visceral WAT browning can be engineered by directing visceral white adipocyte precursors to a thermogenic adipocyte fate, and suggest a novel strategy to combat insulin resistance in obesity.


Assuntos
Adipócitos Brancos/fisiologia , Diferenciação Celular , Resistência à Insulina , Camundongos Obesos , Células-Tronco/fisiologia , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Proteínas de Ligação a DNA/deficiência , Termogênese , Fatores de Transcrição/deficiência
18.
Leuk Res ; 46: 10-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27107743

RESUMO

Leukemia arises due to the dysregulated proliferation of hematopoietic progenitor cells. Errors in the multi-step commitment process result in excessive numbers of immature lymphocytes, causing malignant disease. Genes involved in the differentiation of lymphocytes are often associated with leukemia. One such gene, Zfp521, has been found to cause B-cell leukemia in mice when over-expressed. The role of Zfp521 in B-cell differentiation, and the mechanisms by which it leads to leukemic transformation, are unclear. In this study we report that Zfp521 knockdown causes apoptosis in a B-cell culture system and promotes down-regulation of genes acting at late stages of B-cell differentiation. We identify Pax5 and cyclin D1 as Zfp521 target genes, and suggest that excessive B-cell proliferation observed in mice with retroviral insertions near the Zfp521 gene is due to an up-regulation of cyclin D1 in B-cells. Overall, these results suggest links between dysregulated Zfp521 and B-cell survival.


Assuntos
Linfócitos B/patologia , Ciclina D1/genética , Proteínas de Ligação a DNA/fisiologia , Fator de Transcrição PAX5/genética , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos
19.
Mol Cell Oncol ; 1(3): e969655, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27308357

RESUMO

Krüppel-like zinc finger proteins are versatile players in biology that have been implicated in mammalian development and disease. Among these proteins, ZNF423 and its mouse ortholog Zfp423 were initially implicated in midline patterning of the central nervous system but have emerged as critical transcriptional modulators in cancer. Epigenetically uncurbed ZNF423 interferes with lymphopoiesis by sequestration of the essential early B-cell factor 1 (EBF1) causing B-cell maturation arrest, a hallmark of acute lymphoblastic leukemia. Conversely, its presence in neuroblastoma, a primitive neuroectodermal tumor of childhood, allows retinoic acid-induced differentiation and is associated with a favorable outcome of neuroblastoma patients. Such opposing effects may be explained by the cellular context, but also by the multifunctionality of ZNF423 that is mediated by 30 zinc fingers forming various functional domains. This review summarizes current knowledge of ZNF423, focusing on its role in development and cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA