Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(10): 2232-2252, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226899

RESUMO

The BAF chromatin remodeler regulates lineage commitment including cranial neural crest cell (CNCC) specification. Variants in BAF subunits cause Coffin-Siris syndrome (CSS), a congenital disorder characterized by coarse craniofacial features and intellectual disability. Approximately 50% of individuals with CSS harbor variants in one of the mutually exclusive BAF subunits, ARID1A/ARID1B. While Arid1a deletion in mouse neural crest causes severe craniofacial phenotypes, little is known about the role of ARID1A in CNCC specification. Using CSS-patient-derived ARID1A+/- induced pluripotent stem cells to model CNCC specification, we discovered that ARID1A-haploinsufficiency impairs epithelial-to-mesenchymal transition (EMT), a process necessary for CNCC delamination and migration from the neural tube. Furthermore, wild-type ARID1A-BAF regulates enhancers associated with EMT genes. ARID1A-BAF binding at these enhancers is impaired in heterozygotes while binding at promoters is unaffected. At the sequence level, these EMT enhancers contain binding motifs for ZIC2, and ZIC2 binding at these sites is ARID1A-dependent. When excluded from EMT enhancers, ZIC2 relocates to neuronal enhancers, triggering aberrant neuronal gene activation. In mice, deletion of Zic2 impairs NCC delamination, while ZIC2 overexpression in chick embryos at post-migratory neural crest stages elicits ectopic delamination from the neural tube. These findings reveal an essential ARID1A-ZIC2 axis essential for EMT and CNCC delamination.


Assuntos
Proteínas de Ligação a DNA , Transição Epitelial-Mesenquimal , Face , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Pescoço , Crista Neural , Fatores de Transcrição , Crista Neural/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transição Epitelial-Mesenquimal/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Deficiência Intelectual/genética , Micrognatismo/genética , Animais , Face/anormalidades , Face/embriologia , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/patologia , Pescoço/anormalidades , Pescoço/embriologia , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Haploinsuficiência , Elementos Facilitadores Genéticos/genética , Deformidades Congênitas do Pé/genética , Deformidades Congênitas do Pé/patologia , Regulação da Expressão Gênica no Desenvolvimento , Anormalidades Múltiplas
2.
Development ; 150(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756587

RESUMO

The Foxi3 transcription factor, expressed in the neural plate border at the end of gastrulation, is necessary for the formation of posterior placodes and is thus important for ectodermal patterning. We have created two knock-in mouse lines expressing GFP or a tamoxifen-inducible Cre recombinase to show that Foxi3 is one of the earliest genes to label the border between the neural tube and epidermis, and that Foxi3-expressing neural plate border progenitors contribute primarily to cranial placodes and epidermis from the onset of expression, but not to the neural crest or neural tube lineages. By simultaneously knocking out Foxi3 in neural plate border cells and following their fates, we show that neural plate border cells lacking Foxi3 contribute to all four lineages of the ectoderm - placodes, epidermis, crest and neural tube. We contrast Foxi3 with another neural plate border transcription factor, Zic5, the progenitors of which initially contribute broadly to all germ layers until gastrulation and gradually become restricted to the neural crest lineage and dorsal neural tube cells. Our study demonstrates that Foxi3 uniquely acts early at the neural plate border to restrict progenitors to a placodal and epidermal fate.


Assuntos
Placa Neural , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Placa Neural/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ectoderma/metabolismo , Crista Neural/metabolismo , Fatores de Transcrição Forkhead/metabolismo
3.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38857185

RESUMO

Body shape and size diversity and their evolutionary rates correlate with species richness at the macroevolutionary scale. However, the molecular genetic mechanisms underlying the morphological diversification across related species are poorly understood. In beetles, which account for one-fourth of the known species, adaptation to different trophic niches through morphological diversification appears to have contributed to species radiation. Here, we explored the key genes for the morphological divergence of the slender to stout body shape related to divergent feeding methods on large to small snails within the genus Carabus. We show that the zinc-finger transcription factor encoded by odd-paired (opa) controls morphological variation in the snail-feeding ground beetle Carabus blaptoides. Specifically, opa was identified as the gene underlying the slender to stout morphological difference between subspecies through genetic mapping and functional analysis via gene knockdown. Further analyses revealed that changes in opa cis-regulatory sequences likely contributed to the differences in body shape and size between C. blaptoides subspecies. Among opa cis-regulatory sequences, single nucleotide polymorphisms on the transcription factor binding sites may be associated with the morphological differences between C. blaptoides subspecies. opa was highly conserved in a wide range of taxa, especially in beetles. Therefore, opa may play an important role in adaptive morphological divergence in beetles.


Assuntos
Besouros , Caramujos , Fatores de Transcrição , Animais , Besouros/genética , Besouros/anatomia & histologia , Caramujos/genética , Caramujos/anatomia & histologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Evolução Biológica , Polimorfismo de Nucleotídeo Único
4.
BMC Biol ; 22(1): 189, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218853

RESUMO

BACKGROUND: The Zic family of transcription factors (TFs) promote both proliferation and maturation of cerebellar granule neurons (CGNs), raising the question of how a single, constitutively expressed TF family can support distinct developmental processes. Here we use an integrative experimental and bioinformatic approach to discover the regulatory relationship between Zic TF binding and changing programs of gene transcription during postnatal CGN differentiation. RESULTS: We first established a bioinformatic pipeline to integrate Zic ChIP-seq data from the developing mouse cerebellum with other genomic datasets from the same tissue. In newborn CGNs, Zic TF binding predominates at active enhancers that are co-bound by developmentally regulated TFs including Atoh1, whereas in mature CGNs, Zic TF binding consolidates toward promoters where it co-localizes with activity-regulated TFs. We then performed CUT&RUN-seq in differentiating CGNs to define both the time course of developmental shifts in Zic TF binding and their relationship to gene expression. Mapping Zic TF binding sites to genes using chromatin looping, we identified the set of Zic target genes that have altered expression in RNA-seq from Zic1 or Zic2 knockdown CGNs. CONCLUSIONS: Our data show that Zic TFs are required for both induction and repression of distinct, developmentally regulated target genes through a mechanism that is largely independent of changes in Zic TF binding. We suggest that the differential collaboration of Zic TFs with other TF families underlies the shift in their biological functions across CGN development.


Assuntos
Neurônios , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos , Neurônios/metabolismo , Cerebelo/metabolismo , Diferenciação Celular/genética , Genoma , Regulação da Expressão Gênica no Desenvolvimento
5.
J Cell Sci ; 135(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35302162

RESUMO

SMAD2, an effector of the NODAL/Activin signalling pathway, regulates developmental processes by sensing distinct chromatin states and interacting with different transcriptional partners. However, the network of factors that controls SMAD2 chromatin binding and shapes its transcriptional programme over time is poorly characterised. Here, we combine ATAC-seq with computational footprinting to identify temporal changes in chromatin accessibility and transcription factor activity upon NODAL/Activin signalling. We show that SMAD2 binding induces chromatin opening genome wide. We discover footprints for FOXI3, FOXO3 and ZIC3 at the SMAD2-bound enhancers of the early response genes, Pmepa1 and Wnt3, respectively, and demonstrate their functionality. Finally, we determine a mechanism by which NODAL/Activin signalling induces delayed gene expression, by uncovering a self-enabling transcriptional cascade whereby activated SMADs, together with ZIC3, induce the expression of Wnt3. The resultant activated WNT pathway then acts together with the NODAL/Activin pathway to regulate expression of delayed target genes in prolonged NODAL/Activin signalling conditions. This article has an associated First Person interview with the first author of the paper.


Assuntos
Ativinas , Fatores de Transcrição , Ativinas/metabolismo , Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas de Membrana/metabolismo , Proteína Nodal/metabolismo , Proteína Smad2 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo
6.
J Gene Med ; 26(1): e3654, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282153

RESUMO

BACKGROUND: The present study aimed to explore the biological role and underlying mechanism of the long non-coding RNA actin filament-associated protein 1-antisense RNA1 (lncRNA AFAP1-AS1) in the progression of tongue squamous cell carcinoma (TSCC). METHODS: A quantitative reverse transcriptase-PCR (RT-qPCR) was conducted to assess relative levels of the miR-133a-5p, lncRNAs AFAP1-AS1 and zinc finger family member 2 (ZIC2) in TSCC cell lines and specimens, whereas ZIC2 protein levels were measured using western blotting. After modifying the levels of expression of lncRNA AFP1-AS1, miR-133a-5p and ZIC2 using lentivirus or plasmid transfection, we examined AKT/epithelial-mesenchymal transition signaling pathway alterations, in vivo carcinogenesis of TSCC in nude mice and in vitro malignant phenotypes. A dual-luciferase reporter assay was conducted to confirm the targeting relationship between ZIC2 and miR-133a-5p, as well as between miR-133a-5p and lncRNA AFAP1-AS1. Based on The Cancer Genome Atlas (TCGA) database, we additionally validated AFP1-AS1. The potential biological pathway for AFP1-AS1 was investigated using gene set enrichment analysis (GSEA). We also evaluated the clinical diagnostic capacities of AFP1-AS1 and clustered the most potential biomarkers with the Mfuzz expression pattern. Finally, we also made relevant drug predictions for AFP1-AS1. RESULTS: In TSCC cell lines and specimens, lncRNA AFAP1-AS1 was upregulated. ZIC2 was upregulated in TSCC cells as a result of lncRNA AFAP1-AS1 overexpression, which also promoted TSCC cell migration, invasion, viability, and proliferation. Via the microRNA sponge effect, it was found that lncRNA AFAP1-AS1 could upregulate ZIC2 by competitively inhibiting miR-133a-5p. Interestingly, knockdown of ZIC2 reversed the biological roles of lncRNA AFAP1-AS1 with respect to inducing malignant phenotypes in TSCC cells. In addition, in vivo overexpression of lncRNA AFAP1-AS1 triggered subcutaneous tumor growth in nude mice implanted with TSCC cells and upregulated ZIC2 in the tumors. The TCGA database findings revealed that AFAP1-AS1 was significantly upregulated in TSCC specimens and had good clinical diagnostic value. The results of GSEA showed that peroxisome proliferator-activated receptor signaling pathway was significantly correlated with low expression of AFP1-AS1. Finally, the results of drug prediction indicated that the group with high AFAP1-AS1 expression was more sensitive to docetaxel, AZD4547, AZD7762 and nilotinib. CONCLUSIONS: The upregulation of lncRNA AFAP1-AS1, which increases TSCC cell viability, migration, proliferation and invasion via the AFAP1-AS1/miR-133a-5p/ZIC2 axis, aids in the progression of TSCC.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , RNA Antissenso , RNA Longo não Codificante , Neoplasias da Língua , Animais , Camundongos , Citoesqueleto de Actina/metabolismo , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Proteínas dos Microfilamentos/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Língua/genética , RNA Antissenso/genética
7.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100063

RESUMO

Zic-r.a, a maternal transcription factor, specifies posterior fate in ascidian embryos. However, its direct target, Tbx6-r.b, does not contain typical Zic-r.a-binding sites in its regulatory region. Using an in vitro selection assay, we found that Zic-r.a binds to sites dissimilar to the canonical motif, by which it activates Tbx6-r.b in a sub-lineage of muscle cells. These sites with non-canonical motifs have weak affinity for Zic-r.a; therefore, it activates Tbx6-r.b only in cells expressing Zic-r.a abundantly. Meanwhile, we found that Zic-r.a expressed zygotically in late embryos activates neural genes through canonical sites. Because different zinc-finger domains of Zic-r.a are important for driving reporters with canonical and non-canonical sites, it is likely that the non-canonical motif is not a divergent version of the canonical motif. In other words, our data indicate that the non-canonical motif represents a motif distinct from the canonical motif. Thus, Zic-r.a recognizes two distinct motifs to activate two sets of genes at two timepoints in development. This article has an associated 'The people behind the papers' interview.


Assuntos
Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Expressão Gênica , Dedos de Zinco/genética , Animais , Sítios de Ligação , Ciona intestinalis/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Urocordados/embriologia , Urocordados/genética
8.
Biochem Soc Trans ; 52(3): 1363-1372, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38747731

RESUMO

The zinc finger protein of the cerebellum (ZIC) family comprises five members (ZIC1-5), homologous with the odd-paired (OPA) gene in Drosophila melanogila. These transcription factors contain five Cys2His zinc finger domains, constituting one of the most abundant transcription factor families in human cells. ZIC proteins significantly contribute to transcriptional regulation and chromatin remodeling. As a member of the ZIC family, ZIC5 is essential for animal growth and development. Numerous studies have investigated the connection between ZIC proteins and cancer as well as tumor metastases in recent years. Many studies have found that within tumor tissues, the transcription and translation processes increase the expression of ZIC5 which is linked to tumor aggressiveness. This review aims to provide an objective summary of the impact of ZIC5 on tumor metastasis and consider the potential application of ZIC5 targets in both tumor therapy and the early detection of cancer.


Assuntos
Metástase Neoplásica , Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Animais , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica
9.
Stem Cells ; 41(9): 862-876, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37317792

RESUMO

Numerous intrinsic factors regulate mesenchymal progenitor commitment to a specific cell fate, such as osteogenic or adipogenic lineages. Identification and modulation of novel intrinsic regulatory factors represent an opportunity to harness the regenerative potential of mesenchymal progenitors. In the present study, the transcription factor (TF) ZIC1 was identified to be differentially expressed among adipose compared with skeletal-derived mesenchymal progenitor cells. We observed that ZIC1 overexpression in human mesenchymal progenitors promotes osteogenesis and prevents adipogenesis. ZIC1 knockdown demonstrated the converse effects on cell differentiation. ZIC1 misexpression was associated with altered Hedgehog signaling, and the Hedgehog antagonist cyclopamine reversed the osteo/adipogenic differentiation alterations associated with ZIC1 overexpression. Finally, human mesenchymal progenitor cells with or without ZIC1 overexpression were implanted in an ossicle assay in NOD-SCID gamma mice. ZIC1 overexpression led to significantly increased ossicle formation in comparison to the control, as assessed by radiographic and histologic measures. Together, these data suggest that ZIC1 represents a TF at the center of osteo/adipogenic cell fate determinations-findings that have relevance in the fields of stem cell biology and therapeutic regenerative medicine.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Animais , Camundongos , Humanos , Adipogenia/genética , Proteínas Hedgehog , Osteogênese/fisiologia , Camundongos Endogâmicos NOD , Camundongos SCID , Diferenciação Celular , Fatores de Transcrição/genética
10.
Mol Cell Probes ; 76: 101971, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977039

RESUMO

OBJECTIVE: This study aimed to conclude the effect and mechanism of ZIC2 on immune infiltration in lung adenocarcinoma (LUAD). METHODS: Expression of ZIC2 in several kinds of normal tissues of TCGA data was analyzed and its correlation with the baseline characteristic of LUAD patients were analyzed. The immune infiltration analysis of LUAD patients was performed by CIBERSORT algorithm. The correlation analysis between ZIC2 and immune cell composition was performed. Additionally, the potential upstream regulatory mechanisms of ZIC2 were predicted to identify the possible miRNAs and lncRNAs that regulated ZIC2 in LUAD. In vitro and in vivo experiments were also conducted to confirm the potential effect of ZIC2 on cell proliferation and invasion ability of LUAD cells. RESULTS: ZIC2 expression was decreased in various normal tissues, but increased in multiple tumors, including LUAD, and correlated with the prognosis of LUAD patients. Enrichment by GO and KEGG suggested the possible association of ZIC2 with cell cycle and p53 signal pathway. ZIC2 expression was significantly correlated with T cells CD4 memory resting, Macrophages M1, and plasma cells, indicating that dysregulated ZIC2 expression in LUAD may directly influence immune infiltration. ZIC2 might be regulated by several different lncRNA-mediated ceRNA mechanisms. In vitro experiments validated the promotive effect of ZIC2 on cell viability and invasion ability of LUAD cells. In vivo experiments validated ZIC2 can accelerate tumor growth in nude mouse. CONCLUSION: ZIC2 regulated by different lncRNA-mediated ceRNA mechanisms may play a critical regulatory role in LUAD through mediating the composition of immune cells in tumor microenvironment.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Endógeno Competitivo
11.
Adv Exp Med Biol ; 1441: 167-183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884711

RESUMO

Formation of the vertebrate heart with its complex arterial and venous connections is critically dependent on patterning of the left-right axis during early embryonic development. Abnormalities in left-right patterning can lead to a variety of complex life-threatening congenital heart defects. A highly conserved pathway responsible for left-right axis specification has been uncovered. This pathway involves initial asymmetric activation of a nodal signaling cascade at the embryonic node, followed by its propagation to the left lateral plate mesoderm and activation of left-sided expression of the Pitx2 transcription factor specifying visceral organ asymmetry. Intriguingly, recent work suggests that cardiac laterality is encoded by intrinsic cell and tissue chirality independent of Nodal signaling. Thus, Nodal signaling may be superimposed on this intrinsic chirality, providing additional instructive cues to pattern cardiac situs. The impact of intrinsic chirality and the perturbation of left-right patterning on myofiber organization and cardiac function warrants further investigation. We summarize recent insights gained from studies in animal models and also some human clinical studies in a brief overview of the complex processes regulating cardiac asymmetry and their impact on cardiac function and the pathogenesis of congenital heart defects.


Assuntos
Padronização Corporal , Cardiopatias Congênitas , Coração , Humanos , Animais , Coração/embriologia , Coração/fisiologia , Padronização Corporal/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Transdução de Sinais , Regulação da Expressão Gênica no Desenvolvimento , Proteína Nodal/metabolismo , Proteína Nodal/genética
12.
Adv Exp Med Biol ; 1441: 937-945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884762

RESUMO

Hypoplastic left heart syndrome (HLHS) is a severe congenital cardiovascular malformation characterized by hypoplasia of the left ventricle, aorta, and other structures on the left side of the heart. The pathologic definition includes atresia or stenosis of both the aortic and mitral valves. Despite considerable progress in clinical and surgical management of HLHS, mortality and morbidity remain concerns. One barrier to progress in HLHS management is poor understanding of its cause. Several lines of evidence point to genetic origins of HLHS. First, some HLHS cases have been associated with cytogenetic abnormalities (e.g., Turner syndrome). Second, studies of family clustering of HLHS and related cardiovascular malformations have determined HLHS is heritable. Third, genomic regions that encode genes influencing the inheritance of HLHS have been identified. Taken together, these diverse studies provide strong evidence for genetic origins of HLHS and related cardiac phenotypes. However, using simple Mendelian inheritance models, identification of single genetic variants that "cause" HLHS has remained elusive, and in most cases, the genetic cause remains unknown. These results suggest that HLHS inheritance is complex rather than simple. The implication of this conclusion is that researchers must move beyond the expectation that a single disease-causing variant can be found. Utilization of complex models to analyze high-throughput genetic data requires careful consideration of study design.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico , Humanos , Predisposição Genética para Doença/genética , Síndrome do Coração Esquerdo Hipoplásico/genética , Fenótipo
13.
Adv Exp Med Biol ; 1441: 313-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884719

RESUMO

Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.


Assuntos
Processamento Pós-Transcricional do RNA , RNA não Traduzido , Animais , Humanos , Processamento Alternativo/genética , Regulação da Expressão Gênica , Edição de RNA , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
14.
Adv Exp Med Biol ; 1441: 125-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884708

RESUMO

This chapter discusses the role of cardiac neural crest cells in the formation of the septum that divides the cardiac arterial pole into separate systemic and pulmonary arteries. Further, cardiac neural crest cells directly support the normal development and patterning of derivatives of the caudal pharyngeal arches, including the great arteries, thymus, thyroid, and parathyroids. Recently, cardiac neural crest cells have also been shown to indirectly influence the development of the secondary heart field, another derivative of the caudal pharynx, by modulating signaling in the pharynx. The contribution and function of the cardiac neural crest cells has been learned in avian models; most of the genes associated with cardiac neural crest function have been identified using mouse models. Together these studies show that the neural crest cells may not only critical for normal cardiovascular development but also may be involved secondarily because they represent a major component in the complex tissue interactions in the caudal pharynx and outflow tract. Cardiac neural crest cells span from the caudal pharynx into the outflow tract, and therefore may be susceptible to any perturbation in or by other cells in these regions. Thus, understanding congenital cardiac outflow malformations in human sequences of malformations resulting from genetic and/or environmental insults necessarily requires better understanding the role of cardiac neural crest cells in cardiac development.


Assuntos
Crista Neural , Crista Neural/embriologia , Crista Neural/citologia , Crista Neural/metabolismo , Animais , Humanos , Coração/embriologia , Camundongos
15.
Adv Exp Med Biol ; 1441: 705-717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884744

RESUMO

Defects of situs are associated with complex sets of congenital heart defects in which the normal concordance of asymmetric thoracic and abdominal organs is disturbed. The cellular and molecular mechanisms underlying the formation of the embryonic left-right axis have been investigated extensively in the past decade. This has led to the identification of mutations in at least 33 different genes in humans with heterotaxy and situs defects. Those mutations affect a broad range of molecular components, from transcription factors, signaling molecules, and chromatin modifiers to ciliary proteins. A substantial overlap of these genes is observed with genes associated with other congenital heart diseases such as tetralogy of Fallot and double-outlet right ventricle, d-transposition of the great arteries, and atrioventricular septal defects. In this chapter, we present the broad genetic heterogeneity of situs defects including recent human genomics efforts.


Assuntos
Mutação , Humanos , Síndrome de Heterotaxia/genética , Cardiopatias Congênitas/genética , Situs Inversus/genética
16.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884729

RESUMO

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Assuntos
Comunicação Interventricular , Humanos , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Comunicação Interventricular/genética , Mutação , Fatores de Transcrição/genética
17.
Chembiochem ; 24(20): e202300522, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37489880

RESUMO

Multicolor labeling for monitoring the intracellular localization of the same target type in the native environment using chemical fluorescent dyes is a challenging task. This approach requires both bioorthogonal and biocompatible ligations with an excellent fluorescence signal-to-noise ratio. Here, we present a metabolic glycan labeling technique that uses homemade fluorogenic dyes to investigate glycosylation patterns in live cells. These dyes allowed us to demonstrate rapid and efficient simultaneous multilabeling of glycoconjugates with minimum fluorescence noise. Our results demonstrate that this approach is capable of not only probing sialylation and GlcNAcylation in cells but also specifically labeling the cell-surface and intracellular sialylated glycoconjugates in live cells. In particular, we performed site-specific dual-channel fluorescence imaging of extra and intracellular sialylated glycans in HeLa and PC9 cancer cells as well as identified fluorescently labeled sialylated glycoproteins and glycans by a direct enrichment approach combined with an MS-based proteomic analysis in the same experiment. In conclusion, this study provides multilabeling tools in cellular systems for simultaneous site-specific glycan imaging and glycoproteomic analysis to study potential cancer- and disease-associated glycoconjugates.


Assuntos
Glicoproteínas , Proteômica , Humanos , Corantes Fluorescentes/metabolismo , Glicoconjugados/metabolismo , Polissacarídeos/metabolismo
18.
Biol Chem ; 404(10): 961-975, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36752150

RESUMO

This study aims to explore the mechanism of microRNA (miR)-101-3p-mediated SOX2/ZIC5 axis in the progression of cisplatin resistance of nasopharyngeal carcinoma (NPC). ZIC5 expression was analyzed with a bioinformatics database and detected in NPC cell lines. Cisplatin-resistant cells (HNE-1/DDP and C666-1/DDP) were transfected with sh-ZIC5, sh-SOX2, sh-SOX2 + pcDNA3.1-ZIC5, or miR-101-3p Agomir + pcDNA3.1-SOX2. MiR-101-3p, SOX2, and ZIC5 expression was assessed after transfection, and cancer associated phenotypes were evaluated after cisplatin treatment. The potential relationships among miR-101-3p, SOX2, and ZIC5 were analyzed. A xenograft mouse model of NPC was established with HNE-1 cells stably transfected or not transfected with oe-ZIC5 and subjected to tail vein injection of miR-101-3p Agomir and intraperitoneal injection of cisplatin. Overexpression of ZIC5 was found in cisplatin-resistant NPC cells. Downregulating ZIC5 in NPC cells decreased cell viability, promoted apoptosis, and reduced cisplatin resistance. SOX2 had a binding site on ZIC5, and SOX2 promoted proliferation, migration, and cisplatin resistance and inhibited cell apoptosis by up-regulating ZIC5. Mechanistically, miR-101-3p was decreased in cisplatin-resistant NPC cells and negatively targeted SOX2. Overexpression of miR-101-3p inhibited tumor growth and cisplatin resistance in xenograft mouse model, which was reversed by ZIC5 overexpression. In conclusion, the miR-101-3p/SOX2/ZIC5 axis was implicated in cancer associated phenotypes and cisplatin resistance in NPC.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , Humanos , Animais , Camundongos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Cisplatino/farmacologia , Regulação para Baixo , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
19.
Exp Cell Res ; 415(2): 113118, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35390314

RESUMO

ZIC2 is involved in the tumor progression of many types of cancers. The role of ZIC2 in the metastasis of colorectal cancer and its mechanism are not yet clear. In this study, we found that high ZIC2 expression was not only associated with poor prognosis, relapse-free survival and advanced metastasis but was also an independent prognostic factor in colorectal cancer patients. Moreover, ZIC2 knockdown inhibited cell proliferation, migration and invasion, while the upregulation of ZIC2 had the opposite effect in vitro. ZIC2 overexpression induced TGF-ß1 expression and increased Smad3 phosphorylation. The carcinogenic effects of elevated ZIC2 expression can be eliminated by interfering with the TGF-ß1 receptor with inhibitors. This further verified the promoting effect of ZIC2 on the TGF-ß signaling pathway. In vivo experiments have also confirmed that ZIC2 can promote liver metastases of colorectal cancer. The results suggest that ZIC2 is associated with poor prognosis and relapse-free survival in colorectal cancer patients. Moreover, ZIC2 promoted colorectal cancer progression and metastasis by activating the TGF-ß signaling pathway. Hence, ZIC2 is expected to be a new therapeutic and prognostic target for colorectal cancer in the future.


Assuntos
Neoplasias Colorretais , Proteínas Nucleares , Fatores de Transcrição , Fator de Crescimento Transformador beta1 , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Recidiva Local de Neoplasia , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
20.
Biomed Chromatogr ; 37(8): e5642, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37016500

RESUMO

The hexosamine biosynthesis pathway (HBP) is a glucose metabolism pathway that produces uridine diphosphate N-acetyl glucosamine (UDP-GlcNAc). Substantial changes in HBP, including elevated HBP flux and UDP-GlcNAc levels, are associated with cancer pathogenesis. Particularly, cancer cells expressing oncogenic Kirsten rat sarcoma virus (KRAS) are highly dependent on HBP for growth and survival. To differentiate between HBP metabolites in KRAS wild-type (WT) and mutant (MT) lung cancer cells, a simultaneous quantitative method for analyzing seven HPB metabolites was developed using ultra-high-performance liquid chromatography-tandem mass spectrometry. A simple method without complicated preparation steps, such as derivatization or isotope labeling, was optimized for the simultaneous analysis of highly hydrophilic HBP metabolites, and the developed method was successfully verified. The intra- and inter-day coefficients of variation were less than 15% for all HBP metabolites, and the recovery was 89.67-114.5%. All results of the validation list were in accordance with ICM M10 guidelines. Through this method, HBP metabolites in lung cancer cells were accurately quantified, and it was confirmed that all HBP metabolites were upregulated in KRAS MT cells compared with KRAS WT lung cancer cells. We expect that this will be a useful tool for metabolic research on cancer and for the development of new drugs for cancer treatment.


Assuntos
Hexosaminas , Neoplasias Pulmonares , Humanos , Hexosaminas/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Proteínas Proto-Oncogênicas p21(ras)/genética , Glucosamina , Difosfato de Uridina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA