Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.093
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 104, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918836

RESUMO

BACKGROUND: Immune-positron emission tomography (PET) imaging with tracers that target CD8 and granzyme B has shown promise in predicting the therapeutic response following immune checkpoint blockade (ICB) in immunologically "hot" tumors. However, immune dynamics in the low T-cell infiltrating "cold" tumor immune microenvironment during ICB remain poorly understood. This study uses molecular imaging to evaluate changes in CD4 + T cells and CD8 + T cells during ICB in breast cancer models and examines biomarkers of response. METHODS: [89Zr]Zr-DFO-CD4 and [89Zr]Zr-DFO-CD8 radiotracers were used to quantify changes in intratumoral and splenic CD4 T cells and CD8 T cells in response to ICB treatment in 4T1 and MMTV-HER2 mouse models, which represent immunologically "cold" tumors. A correlation between PET quantification metrics and long-term anti-tumor response was observed. Further biological validation was obtained by autoradiography and immunofluorescence. RESULTS: Following ICB treatment, an increase in the CD8-specific PET signal was observed within 6 days, and an increase in the CD4-specific PET signal was observed within 2 days in tumors that eventually responded to immunotherapy, while no significant differences in CD4 or CD8 were found at the baseline of treatment that differentiated responders from nonresponders. Furthermore, mice whose tumors responded to ICB had a lower CD8 PET signal in the spleen and a higher CD4 PET signal in the spleen compared to non-responders. Intratumoral spatial heterogeneity of the CD8 and CD4-specific PET signals was lower in responders compared to non-responders. Finally, PET imaging, autoradiography, and immunofluorescence signals were correlated when comparing in vivo imaging to ex vivo validations. CONCLUSIONS: CD4- and CD8-specific immuno-PET imaging can be used to characterize the in vivo distribution of CD4 + and CD8 + T cells in response to immune checkpoint blockade. Imaging metrics that describe the overall levels and distribution of CD8 + T cells and CD4 + T cells can provide insight into immunological alterations, predict biomarkers of response to immunotherapy, and guide clinical decision-making in those tumors where the kinetics of the response differ.


Assuntos
Neoplasias da Mama , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Inibidores de Checkpoint Imunológico , Tomografia por Emissão de Pósitrons , Microambiente Tumoral , Animais , Microambiente Tumoral/imunologia , Feminino , Camundongos , Linfócitos T CD8-Positivos/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linhagem Celular Tumoral , Zircônio , Compostos Radiofarmacêuticos , Radioisótopos
2.
Small ; 20(15): e2306353, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37997226

RESUMO

Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.

3.
Small ; : e2311249, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482932

RESUMO

Host-guest catalyst provides new opportunities for targeted applications and the development of new strategies for preparing host-guest catalysts is highly desired. Herein, an in situ solvent-free approach is developed for implanting ZrW2 O7 (OH)2 (H2 O)2 nanorods (ZrW-NR) in nitro-functionalized UiO-66(Zr) (UiO-66(Zr)-NO2 ) with hierarchical porosity, and the encapsulation of ZrW-NR enables the as-prepared host-guest catalyst remarkably enhanced catalytic performance for both for oxidative desulfurization (ODS) and acetalization reactions. ZrW-NR@UiO-66(Zr)-NO2 can eliminate 500 ppm sulfur within 9 min at 40 °C in ODS, and can transform 5.6 mmol benzaldehyde after 3 min at room temperature in acetalization reaction. Its turnover frequencies reach 72.3 h-1 at 40 °C for ODS which is 33.4 times higher than UiO-66(Zr)-NO2 , and 28140 h-1 for acetalization which is the highest among previous reports. Density functional theory calculation result indicates that the W sites in ZrW-NR can decompose H2 O2 to WVI -peroxo intermediates that contribute to catalytic activity for the ODS reaction. This work opens a new solvent-free approach for preparing MOFs-based host-guest catalysts to upgrade their redox and acid performance.

4.
Small ; : e2403174, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031672

RESUMO

Porosity in bulky solvents can be created by the methods of dispersing and dissolving porous hosts or by their chemical adornment. And the ensuing liquids with cavities offer requisite high gas uptakes. Intriguingly, metal-organic cages (MOCs) as discrete nanoporous hosts have been utilized recently as soluble entities to obtain a series of interesting type II porous liquids (PLs). Yet, factors affecting the fabrication of type II PLs have not been disclosed. Herein, three metallocages (NUT-101, ZrT-1-NH2, and ZrT-1) with the same zirconocene nodes but different organic ligands are chosen as porous hosts and a polyethylene-glycol (PEG) linked bis-imidazolium based IL, IL(NTf2), is used as a bulky solvent. It is revealed for the first time that the generation of type II PL depends upon the flexibility of MOCs and the interaction between MOCs and solvent molecules. The maximum solubility is observed with NUT-101 (5%) in IL(NTf2) while ZrT-1-NH2 and ZrT-1 remain least soluble (0.5% and 0.2%). As a result, PL-NUT-101-5% with most intrinsic cavities shows higher CO2 uptake (0.576 mmol g-1) than PL-ZrT-1-NH2-0.5% and PL-ZrT-1-0.2% as well as those reported type II PLs.

5.
Small ; 20(15): e2306381, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38013253

RESUMO

All-solid-state lithium metal batteries (LMBs) are regarded as one of the most viable energy storage devices and their comprehensive properties are mainly controlled by solid electrolytes and interface compatibility. This work proposes an advanced poly(vinylidene fluoride-hexafluoropropylene) based gel polymer electrolyte (AP-GPEs) via functional superposition strategy, which involves incorporating butyl acrylate and polyethylene glycol diacrylate as elastic optimization framework, triethyl phosphate and fluoroethylene carbonate as flameproof liquid plasticizers, and Li7La3Zr2O12 nanowires (LLZO-w) as ion-conductive fillers, endowing the designed AP-GPEs/LLZO-w membrane with high mechanical strength, excellent flexibility, low flammability, low activation energy (0.137 eV), and improved ionic conductivity (0.42 × 10-3 S cm-1 at 20 °C) due to continuous ionic transport pathways. Additionally, the AP-GPEs/LLZO-w membrane shows good safety and chemical/electrochemical compatibility with the lithium anode, owing to the synergistic effect of LLZO-w filler, flexible frameworks, and flame retardants. Consequently, the LiFePO4/Li batteries assembled with AP-GPEs/LLZO-w electrolyte exhibit enhanced cycling performance (87.3% capacity retention after 600 cycles at 1 C) and notable high-rate capacity (93.3 mAh g-1 at 5 C). This work proposes a novel functional superposition strategy for the synthesis of high-performance comprehensive GPEs for LMBs.

6.
Small ; 20(6): e2304799, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37786289

RESUMO

Garnet-type Li7 La3 Zr2 O12 (LLZO) solid-state electrolytes hold great promise for the next-generation all-solid-state batteries. An in-depth understanding of the phase transformation during synthetic processes is required for better control of the crystallinity and improvement of the ionic conductivity of LLZO. Herein, the phase transformation pathways and the associated surface amorphization are comparatively investigated during the sol-gel and solid-state syntheses of LLZO using in situ heating transmission electron microscopy (TEM). The combined ex situ X-ray diffraction and in situ TEM techniques are used to reveal two distinct phase transformation pathways (precursors â†’ La2 Zr2 O7  â†’ LLZO and precursors â†’ LLZO) and the subsequent layer-by-layer crystal growth of LLZO on the atomic scale. It is also demonstrated that the surface amorphization surrounding the LLZO crystals is sensitive to the postsynthesis cooling rate and significantly affects the ionic conductivity of pelletized LLZO. This work brings up a critical but often overlooked issue that may greatly exacerbate the Li-ion conductivity by undesired synthetic conditions, which can be leveraged to ameliorate the overall crystallinity to improve the electrochemical performance of LLZO. These findings also shed light on the significance of optimizing surface structure to ensure superior performance of Li-ion conductors.

7.
J Synchrotron Radiat ; 31(Pt 4): 810-820, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819844

RESUMO

The in situ measurement technique for a metal/metal-oxide mixture at extra-high temperature above 2000 K has been desired in the field of nuclear safety engineering. In the present study, we succeeded in simultaneous XAFS-XRD measurements of the Zr oxidation [Zr + O → Zr(O) + ZrO2] up to 1952 K and ZrO2-Y2O3 reaction from 1952 to 2519 K. The chemical shift during Zr oxidation was observed in the absorption spectra around the Zr K-edge, and the interatomic cation-cation and cation-oxygen distances obtained by the fitting analysis of EXAFS during the Y2O3-ZrO2 reaction are explained. Also, the temperature dependency of the anharmonic effect was investigated by comparing the fitted second- and third-order cumulants with the theoretical ones in which the Morse potential was applied as an interatomic potential, giving a good explanation about the local structure dynamics. Finally, the applicability of the developed system to investigation of nuclear fuel materials, such as UO2-Zr, is discussed.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38888612

RESUMO

PURPOSE: Hepatic fibrosis develops as a response to chronic liver injury, resulting in the formation of fibrous scars. This process is initiated and driven by collagen-producing activated myofibroblasts which reportedly express high levels of platelet derived growth factor receptor-ß (PDGFRß). We therefore regard PDGFRß as an anchor for diagnosis and therapy. The Fibrobody® SP02SP26-ABD is a biparatopic VHH-construct targeting PDGFRß. Here, we explore its potential as a theranostic vector for liver fibrosis. METHODS: Specificity, cross-species binding, and cellular uptake of SP02SP26-ABD was assessed using human, mouse and rat PDGFRß ectodomains and PDGFRß-expressing cells. Cellular uptake by PDGFRß-expressing cells was also evaluated by equipping the Fibrobody® with auristatinF and reading out in vitro cytotoxicity. The validity of PDGFRß as a marker for active fibrosis was confirmed in human liver samples and 3 mouse models of liver fibrosis (DDC, CCl4, CDA-HFD) through immunohistochemistry and RT-PCR. After radiolabeling of DFO*-SP02SP26-ABD with 89Zr, its in vivo targeting ability was assessed in healthy mice and mice with liver fibrosis by PET-CT imaging, ex vivo biodistribution and autoradiography. RESULTS: SP02SP26-ABD shows similar nanomolar affinity for human, mouse and rat PDGFRß. Cellular uptake and hence subnanomolar cytotoxic potency of auristatinF-conjugated SP02SP26-ABD was observed in PDGFRß-expressing cell lines. Immunohistochemistry of mouse and human fibrotic livers confirmed co-localization of PDGFRß with markers of active fibrosis. In all three liver fibrosis models, PET-CT imaging and biodistribution analysis of [89Zr]Zr-SP02SP26-ABD revealed increased PDGFRß-specific uptake in fibrotic livers. In the DDC model, liver uptake was 12.15 ± 0.45, 15.07 ± 0.90, 20.23 ± 1.34, and 20.93 ± 4.35%ID/g after 1,2,3 and 4 weeks of fibrogenesis, respectively, compared to 7.56 ± 0.85%ID/g in healthy mice. Autoradiography revealed preferential uptake in the fibrotic (PDGFRß-expressing) periportal areas. CONCLUSION: The anti-PDGFRß Fibrobody® SP02SP26-ABD shows selective and high-degree targeting of activated myofibroblasts in liver fibrosis, and qualifies as a vector for diagnostic and therapeutic purposes.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38987489

RESUMO

PURPOSE: Immune cells are capable of eliminating leukemic cells, as evidenced by outcomes in hematopoietic cell transplantation (HCT). However, patients who fail induction therapy will not benefit from HCT due to their minimal residual disease (MRD) status. Thus, we aimed to develop an immunomodulatory agent to reduce MRD by activating immune effector cells in the presence of leukaemia cells via a novel fusion protein that chimerises two clinically tolerated biologics: a CD33 antibody and the IL15Ra/IL15 complex (CD33xIL15). METHODS: We generated a set of CD33xIL15 fusion protein constructs with varying configurations and identified those with the best in vitro AML-binding, T cell activation, and NK cell potentiation. Using 89Zr-immunoPET imaging we then evaluated the biodistribution and in vivo tumour retention of the most favourable CD33xIL15 constructs in an AML xenograft model. Ex vivo biodistribution studies were used to confirm the pharmacokinetics of the constructs. RESULTS: Two of the generated fusion proteins, CD33xIL15 (N72D) and CD33xIL15wt, demonstrated optimal in vitro behaviour and were further evaluated in vivo. These studies revealed that the CD33xIL15wt candidate was capable of being retained in the tumour for as long as its parental CD33 antibody, Lintuzumab (13.9 ± 3.1%ID/g vs 18.6 ± 1.1%ID/g at 120 h). CONCLUSION: This work demonstrates that CD33xIL15 fusion proteins are capable of targeting leukemic cells and stimulating local T cells in vitro and of concentrating in the tumour in AML xenografts. It also highlights the importance of 89Zr-immunoPET to guide the development and selection of tumour-targeted antibody-cytokine fusion proteins.

10.
Chemistry ; 30(12): e202302731, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38227358

RESUMO

The Zr-based Metal Organic Framework (MOF) UiO-66(Zr) is widely employed owing to its good thermal and chemical stabilities. Although the long-range structure of this MOF is preserved in the presence of water during several days, little is known about the formation of defects, which cannot be detected using diffraction techniques. We apply here 17 O solid-state NMR spectroscopy at 18.8 T to investigate the reactivity of UiO-66, through the exchange of oxygen atoms between the different sites of the MOF and water. For that purpose, we have selectively enriched in 17 O isotope the carboxylate groups of UiO-66(Zr) by using it with 17 O-labeled terephthalic acid prepared using mechanochemistry. In the presence of water at 50 °C and a following dehydration at 150 °C, we observe an overall exchange of O atoms between COO- and µ3 -O2- sites. Furthermore, we demonstrate that the three distinct oxygen sites, µ3 -OH, µ3 -O2- and COO- , of UiO-66(Zr) MOF can be enriched in 17 O isotope by post-synthetic hydrothermal treatment in the presence of 17 O-enriched water. These results demonstrate the lability of Zr-O bonds and the reactivity of UiO-66(Zr) with water.

11.
Mol Pharm ; 21(3): 1353-1363, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38282332

RESUMO

Very late antigen-4 (VLA4; CD49d) is a promising immune therapy target in treatment-resistant leukemia and multiple myeloma, and there is growing interest in repurposing the humanized monoclonal antibody (Ab), natalizumab, for this purpose. Positron emission tomography with radiolabeled Abs (immuno-PET) could facilitate this effort by providing information on natalizumab's in vivo pharmacokinetic and target delivery properties. In this study, we labeled natalizumab with 89Zr specifically on sulfhydryl moieties via maleimide-deferoxamine conjugation. High VLA4-expressing MOLT4 human T cell acute lymphoblastic leukemia cells showed specific 89Zr-natalizumab binding that was markedly blocked by excess Ab. In nude mice bearing MOLT4 tumors, 89Zr-natalizumab PET showed high-contrast tumor uptake at 7 days postinjection. Biodistribution studies confirmed that uptake was the highest in MOLT4 tumors (2.22 ± 0.41%ID/g) and the liver (2.33 ± 0.76%ID/g), followed by the spleen (1.51 ± 0.42%ID/g), while blood activity was lower at 1.12 ± 0.21%ID/g. VLA4-specific targeting in vivo was confirmed by a 58.1% suppression of tumor uptake (0.93 ± 0.15%ID/g) when excess Ab was injected 1 h earlier. In cultured MOLT4 cells, short-term 3 day exposure to the proteasome inhibitor bortezomib (BTZ) did not affect the α4 integrin level, but BTZ-resistant cells that survived the treatment showed increased α4 integrin expression. When the effects of BTZ treatment were tested in mice, there was no change of the α4 integrin level or 89Zr-natalizumab uptake in MOLT4 leukemia tumors, which underscores the complexity of tumor VLA4 regulation in vivo. In conclusion, 89Zr-natalizumab PET may be useful for noninvasive monitoring of tumor VLA4 and may assist in a more rational application of Ab-based therapies for hematologic malignancies.


Assuntos
Integrina alfa4beta1 , Leucemia , Humanos , Animais , Camundongos , Natalizumab/uso terapêutico , Cisteína , Integrina alfa4 , Camundongos Nus , Distribuição Tecidual , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Zircônio/química
12.
Nanotechnology ; 35(42)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39019047

RESUMO

We report the fabrication of Hf0.5Zr0.5O2(HZO) based ferroelectric memory crosspoints using a complementary metal-oxide-semiconductor-compatible damascene process. In this work, we compared 12 and 56µm2crosspoint devices with the 0.02 mm2round devices commonly used as a benchmark. For all devices, a 9 nm thick ferroelectric thin film was deposited by plasma-enhanced atomic layer deposition on planarized bottom electrodes. The wake-up appeared to be longer for the crosspoint memories compared to 0.02 mm2benchmark, while all the devices reached a 2Prvalue of ∼50µC cm-2after 105cycles with 3 V/10µs squared pulses. The crosspoints stand out for their superior endurance, which was increased by an order of magnitude. Nucleation limited switching experiments were performed, revealing a switching time <170 ns for our 12 and 56µm2devices, while it remained in theµs range for the larger round devices. The downscaled devices demonstrate notable advantages with a rise in endurance and switching speed.

13.
Biometals ; 37(1): 131-142, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37682402

RESUMO

The repair and reconstruction of large bone defects after bone tumor resection is still a great clinical challenge. At present, orthopedic implant reconstruction is the mainstream treatment for repairing bone defects. However, according to clinical feedback, local tumor recurrence and nonunion of bone graft are common reasons leading to the failure of bone defect repair and reconstruction after bone tumor resection, which seriously threaten the physical and mental health of patients. On this basis, here the self-developed low modulus Ti-12Mo-10Zr alloy (TMZ) was chosen as substrate material. To improve its biological activity and osteointegration, calcium, oxygen, and phosphorus co-doped microporous coating was prepared on TMZ alloy by microarc oxidation (MAO). Then, black phosphorus (BP) nanosheets were incorporated onto MAO treated TMZ alloy to obtain multifunctional composites. The obtained BP-MAO-TMZ implant exhibited excellent photothermal effects and effective ablation of osteosarcoma cancer cells under the irradiation of 808 nm near infrared laser, while no photothermal or therapeutic effects were observed for TMZ alloy. Meanwhile, the structure/component bionic coating obtained after MAO treatment as well as the P-driven in situ biomineralization performance after incorporation of BP nanosheets endowed BP-MAO-TMZ implant with synergistic promoting effect on MC3T3-E1 osteoblasts' activity, proliferation and differentiation ability. This study is expected to provide effective clinical solutions for problems of difficult bone regeneration and tumor recurrence after tumor resection in patients with bone tumors and to solve a series of medical problems such as poor prognosis and poor postoperative quality of patients life with malignant bone tumors.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Fósforo , Titânio/farmacologia , Recidiva Local de Neoplasia , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Terapia Combinada , Ligas/farmacologia
14.
BMC Cardiovasc Disord ; 24(1): 185, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539067

RESUMO

BACKGROUND: Downregulated expression of cold-inducible RNA binding protein (CIRP), a stress-response protein, has been demonstrated in the hearts of patients with heart failure (HF). However, whether CIRP plays a critical role in the pathogenesis of HF remains unknown. Zr17-2 is a recently identified CIRP agonist, which can enhance the expression of CIRP in hearts. Herein, we evaluated the effects of zr17-2 on the development of HF in a rat model of myocardial infarction (MI). METHODS: Male SD rats were pretreated with CIRP agonist zr17-2 or vehicle saline for 6 consecutive days, followed by MI induction. 1-week post-MI, cardiac function, and structural and molecular changes were determined by echocardiography and molecular biology methods. RESULTS: Excitingly, we found that pretreatment with zr17-2 significantly attenuated MI-induced cardiac dysfunction and dilation, coupled with reduced infarction size and cardiac remodeling. In addition, increased inflammatory response in the peri-infarcted heart including macrophage infiltration and the expression of inflammatory genes were all significantly decreased by zr17-2 pretreatment, suggesting an anti-inflammatory effect of zr17-2. Moreover, zr17-2 pretreatment also upregulated the antioxidant genes (e.g. NQO-1, Nrf2, and HO-1) level in the hearts. In isolated cultured cardiomyocytes, pretreatment with zr17-2 markedly attenuated cell injury and apoptosis induced by oxidative injury, along with elevation of Nrf2-related antioxidant genes and CIRP. However, silencing CIRP abolished zr17-2's antioxidant effects against oxidative injury, confirming that zr17-2's role is dependent on CIRP. CONCLUSION: Collectively, our study suggests CIRP plays a crucial role in the development of HF and a beneficial effect of CIRP agonist in preventing MI-induced HF, possibly via anti-inflammatory and anti-oxidant pathways.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Humanos , Masculino , Ratos , Anti-Inflamatórios , Antioxidantes , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/complicações , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Regulação para Cima
15.
Jpn J Clin Oncol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864246

RESUMO

BACKGROUND: PET/CT imaging with Zirconium-89 labeled [89Zr]Zr-DFO-girentuximab, which targets tumor antigen CAIX, may aid in the differentiation and characterization of clear cell renal cell carcinomas (RCC) and other renal and extrarenal lesions, and has been studied in European and American cohorts. We report results from a phase I study that evaluated the safety profile, biodistribution, and dosimetry of [89Zr]Zr-DFO-girentuximab in Japanese patients with suspected RCC. METHODS: Eligible adult patients received 37 MBq (± 10%; 10 mg mass dose) of intravenous [89Zr]Zr-DFO-girentuximab. Safety and tolerability profile was assessed based on adverse events, concomitant medications, physical examination, vital signs, hematology, serum chemistry, urinalysis, human anti-chimeric antibody measurement, and 12-lead electrocardiograms at predefined intervals. Biodistribution and normal organ and tumor dosimetry were evaluated with PET/CT images acquired at 0.5, 4, 24, 72 h and Day 5 ± 2 d after administration. RESULTS: [89Zr]Zr-DFO-girentuximab was administered in six patients as per protocol. No treatment-emergent adverse events were reported. Dosimetry analysis showed that radioactivity was widely distributed in the body, and that the absorbed dose in healthy organs was highest in the liver (mean ± standard deviation) (1.365 ± 0.245 mGy/MBq), kidney (1.126 ± 0.190 mGy/MBq), heart wall (1.096 ± 0.232 mGy/MBq), and spleen (1.072 ± 0.466 mGy/MBq). The mean effective dose, adjusted by the radioactive dose administered, was 0.470 mSv/MBq. The radiation dose was highly accumulated in the targeted tumor, while any abnormal accumulation in other organs was not reported. CONCLUSIONS: This study demonstrates that [89Zr]Zr-DFO-girentuximab administered to Japanese patients with suspected RCC has a favorable safety profile and is well tolerated and has a similar dosimetry profile to previously studied populations.

16.
Environ Res ; 258: 119477, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909943

RESUMO

In this study, UiO-67 (Zr)/g-C3N4 composites (U67N) were synthesized at wt.% ratios of 05:95, 15:85, and 30:70 using the solvothermal method at 80 °C for 24 h followed by calcination at 350 °C. The composites were characterized using UV-Vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray spectroscopy, transmission electron microscopy, and nitrogen physisorption analysis. In addition, thermal stability analysis of UiO-67 was conducted using thermogravimetric analysis. The photocatalytic performance of the composites was assessed during the degradation and mineralization of a mixture of methylparaben (MeP) and propylparaben (PrP) under simulated sunlight. The adsorption process of U67N 15:85 was characterized through kinetic studies and adsorption capacity experiments, which were modeled using pseudo-first-order and pseudo-second-order kinetics and Langmuir and Freundlich isotherms, respectively. The influence of pH levels 3, 5, and 7 on the photocatalytic degradation of the mixture was investigated, revealing enhanced degradation and mineralization at pH 3. The U67N composite exhibited dual capability in removing contaminants through adsorption and photocatalytic processes. Among the prepared composites, U67N 15:85 demonstrated the highest photocatalytic activity, achieving removal efficiencies of 96.8% for MeP, 92.5% for PrP, and 45.7% for total organic carbon in 300 kJ/m2 accumulated energy (3 h of reaction time). The detoxification of the effluent was confirmed through acute toxicity evaluation using the Vibrio fischeri method. The oxidation mechanism of the heterojunction formed between UiO-67 (Zr) and g-C3N4 was proposed based on PL analysis, photoelectrochemistry studies (including photocurrent response, Nyquist, and Mott-Schottky analyses), and scavenger assays.

17.
Environ Res ; 252(Pt 4): 119058, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704015

RESUMO

For metal-based phosphate adsorbents, the dispersity and utilization of surface metal active sites are crucial factors in their adsorption performance and synthesis cost. In this study, a biochar material modified with amorphous Zr-Ce (carbonate) oxides (BZCCO-13) was synthesized for the phosphate uptake, and the adsorption process was enhanced by magnetic field. The beside-magnetic field was shown to have a better influence than under-magnetic field on adsorption, with maximum adsorption capacities (123.67 mg P/g) 1.14-fold greater than that without magnetic field. The beside-magnetic field could also accelerate the adsorption rate, and the time to reach 90% maximum adsorption capacity decreased by 83%. BZCCO-13 has a wide range of application pHs from 5.0 to 10.0, with great selectivity and reusability. The results of XPS and ELNES showed that the "magnetophoresis" of Ce3+ under the magnetic field was the main reason for the enhanced adsorption performance. In addition, increased surface roughness, pore size and oxygen vacancies, enhanced mass transfer by Lorentz force under a magnetic field, all beneficially influenced the adsorption process. The mechanism of phosphate adsorption by BZCCO-13 could be attributed to electrostatic attraction and CO32-dominated ligand exchange. This study not only provided an effective strategy for designing highly effective phosphate adsorbents, but also provides a new light on the application of rare earth metal-based adsorbent in magnetic field.


Assuntos
Carvão Vegetal , Fosfatos , Zircônio , Adsorção , Carvão Vegetal/química , Zircônio/química , Fosfatos/química , Campos Magnéticos , Óxidos/química , Carbonatos/química
18.
Proc Natl Acad Sci U S A ; 118(8)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33608458

RESUMO

The niobium-92-zirconium-92 (92Nb-92Zr) decay system with a half-life of 37 Ma has great potential to date the evolution of planetary materials in the early Solar System. Moreover, the initial abundance of the p-process isotope 92Nb in the Solar System is important for quantifying the contribution of p-process nucleosynthesis in astrophysical models. Current estimates of the initial 92Nb/93Nb ratios have large uncertainties compromising the use of the 92Nb-92Zr cosmochronometer and leaving nucleosynthetic models poorly constrained. Here, the initial 92Nb abundance is determined to high precision by combining the 92Nb-92Zr systematics of cogenetic rutiles and zircons from mesosiderites with U-Pb dating of the same zircons. The mineral pair indicates that the 92Nb/93Nb ratio of the Solar System started with (1.66 ± 0.10) × 10-5, and their 92Zr/90Zr ratios can be explained by a three-stage Nb-Zr evolution on the mesosiderite parent body. Because of the improvement by a factor of 6 of the precision of the initial Solar System 92Nb/93Nb, we can show that the presence of 92Nb in the early Solar System provides further evidence that both type Ia supernovae and core-collapse supernovae contributed to the light p-process nuclei.

19.
Magn Reson Chem ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946056

RESUMO

The defect models of the orthorhombical and tetragonal Cu2+ centers in Pb[Zr0.54Ti0.46]O3 are attributed to Cu2+ ions occupying the sixfold coordinated octahedral Ti4+ site with and without charge compensation, respectively. The electron paramagnetic resonance (EPR) g factors gi (i = x, y, z) of the Cu2+ centers in Pb[Zr0.54Ti0.46]O3 are theoretically studied by using the perturbation formulas of a 3d9 ion under orthorhombically and tetragonally elongated octahedra. Based on the calculation, the impurity off-center displacements are about 0.253 and 0.162 Å for the orthorhombical and tetragonal Cu2+ centers, respectively. Meanwhile, the planar Cu2+-O2- bonds are found to experience the relative variation ΔR (≈0.102 Å) along the a- and b-axes for the orthorhombical Cu2+ center due to the Jahn-Teller (JT) effect. The theoretical EPR g factors based on the above local structures agree well with the observed values.

20.
Mikrochim Acta ; 191(5): 236, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570402

RESUMO

Three different types of Zr-based MOFs derived from benzene dicarboxylic acid (BDC) and naphthalene dicarboxylic acid as organic linkers (ZrBDC, 2,6-ZrNDC, and 1,4-ZrNDC) were synthesized. They were characterized using X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform IR spectroscopy (FT-IR), and Transmission electron microscopy (TEM). Their hydrophilic/hydrophobic nature was investigated via contact angle measurements; ZrBDC MOF was hydrophilic and the other two (ZrNDC) MOFs were hydrophobic. The three MOFs were combined with MWCNTs as electrode modifiers for the determination of a hydrophobic analyte, flibanserin (FLB), as a proof-of-concept analyte. Under the optimized experimental conditions, a significant enhancement in the oxidation peak current of FLB was observed when utilizing 2,6-ZrNDC and 1,4-ZrNDC, being the highest when using 1,4-ZrNDC. Furthermore, a thorough investigation of the complex oxidation pathway of FLB was performed by carrying out simultaneous spectroelectrochemical measurements. Based on the obtained results, it was verified that the piperazine moiety of FLB is the primary site for electrochemical oxidation. The fabricated sensor based on 1,4-ZrNDC/MW/CPE showed an oxidation peak of FLB at 0.8 V vs Ag/AgCl. Moreover, it showed excellent linearity for the determination of FLB in the range 0.05 to 0.80 µmol L-1 with a correlation coefficient (r) = 0.9973 and limit of detection of 3.0 nmol L-1. The applicability of the developed approach was demonstrated by determination of FLB in pharmaceutical tablets and human urine samples with acceptable repeatability (% RSD values were below 1.9% and 2.1%, respectively) and reasonable recovery values (ranged between 97 and 103% for pharmaceutical tablets and between 96 and 102% for human urine samples). The outcomes of the suggested methodology can be utilized for the determination of other hydrophobic compounds of pharmaceutical or biological interest with the aim of achieving low detection limits of these compounds in various matrices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA