Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Cell Environ ; 47(6): 2228-2239, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38483021

RESUMO

The selection of oviposition sites by female moths is crucial in shaping their progeny performance and survival, and consequently in determining insect fitness. Selecting suitable plants that promote the performance of the progeny is referred to as the Preference-Performance hypothesis (or 'mother-knows-best'). While root infestation generally reduces the performance of leaf herbivores, little is known about its impact on female oviposition. We investigated whether maize root infestation by the Western corn rootworm (WCR) affects the oviposition preference and larval performance of the European corn borer (ECB). ECB females used leaf volatiles to select healthy plants over WCR-infested plants. Undecane, a compound absent from the volatile bouquet of healthy plants, was the sole compound to be upregulated upon root infestation and acted as a repellent for first oviposition. ECB larvae yet performed better on plants infested below-ground than on healthy plants, suggesting an example of 'bad motherhood'. The increased ECB performance on WCR-infested plants was mirrored by an increased leaf consumption, and no changes in the plant primary or secondary metabolism were detected. Understanding plant-mediated interactions between above- and below-ground herbivores may help to predict oviposition decisions, and ultimately, to manage pest outbreaks in the field.


Assuntos
Larva , Mariposas , Oviposição , Folhas de Planta , Raízes de Plantas , Compostos Orgânicos Voláteis , Zea mays , Animais , Oviposição/efeitos dos fármacos , Zea mays/fisiologia , Zea mays/parasitologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Mariposas/fisiologia , Feminino , Larva/fisiologia , Raízes de Plantas/parasitologia , Raízes de Plantas/fisiologia , Folhas de Planta/fisiologia , Herbivoria
2.
New Phytol ; 226(4): 1144-1157, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943213

RESUMO

Soil microorganisms can influence the development of complex plant phenotypes, including resistance to herbivores. This microbiome-mediated plasticity may be particularly important for plant species that persist in environments with drastically changing herbivore pressure, for example over community succession. We established a 15-yr gradient of old-field succession to examine the herbivore resistance and rhizosphere microbial communities of Solidago altissima plants in a large-scale field experiment. To assess the functional effects of these successional microbial shifts, we inoculated S. altissima plants with microbiomes from the 2nd , 6th and 15th successional years in a glasshouse and compared their herbivore resistance. The resistance of S. altissima plants to herbivores changed over succession, with concomitant shifts in the rhizosphere microbiome. Late succession microbiomes conferred the strongest herbivore resistance to S. altissima plants in a glasshouse experiment, paralleling the low levels of herbivory observed in the oldest communities in the field. While many factors change over succession and may contribute to the shifts in rhizosphere communities and herbivore resistance we observed, our results indicated that soil microbial shifts alone can alter plants' interactions with herbivores. Our findings suggest that changes in soil microbial communities over succession can play an important role in enhancing plant resistance to herbivores.


Assuntos
Herbivoria , Solidago , Fenótipo , Rizosfera , Solo
3.
Ecol Lett ; 22(1): 200-210, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30460738

RESUMO

Invasive plants affect soil biota through litter and rhizosphere inputs, but the direction and magnitude of these effects are variable. We conducted a meta-analysis to examine the different effects of litter and rhizosphere of invasive plants on soil communities and nutrient cycling. Our results showed that invasive plants increased bacterial biomass by 16%, detritivore abundance by 119% and microbivore abundance by 89% through litter pathway. In the rhizosphere, invasive plants reduced bacterial biomass by 12%, herbivore abundance by 55% and predator abundance by 52%, but increased AM fungal biomass by 36%. Moreover, CO2 efflux, N mineralisation rate and enzyme activities were all higher in invasive than native rhizosphere soils. These findings indicate that invasive plants may support more decomposers that in turn stimulate nutrient release via litter effect, and enhance nutrient uptake by reducing root grazing but forming more symbioses in the rhizosphere. Thus, we hypothesise that litter- and root-based loops are probably linked to generate positive feedback of invaders on soil systems through stimulating nutrient cycling, consequently facilitating plant invasion. Our findings from limited cases with diverse contexts suggest that more studies are needed to differentiate litter and rhizosphere effects within single systems to better understand invasive plant-soil interactions.


Assuntos
Ecossistema , Rizosfera , Microbiologia do Solo , Biota , Nitrogênio , Plantas , Solo
4.
Proc Biol Sci ; 286(1914): 20191647, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31662076

RESUMO

Nutrient cycling in most terrestrial ecosystems is controlled by moisture-dependent decomposer activity. In arid ecosystems, plant litter cycling exceeds rates predicted based on precipitation amounts, suggesting that additional factors are involved. Attempts to reveal these factors have focused on abiotic degradation, soil-litter mixing and alternative moisture sources. Our aim was to explore an additional hypothesis that macro-detritivores control litter cycling in deserts. We quantified the role different organisms play in clearing plant detritus from the desert surface, using litter baskets with different mesh sizes that allow selective entry of micro-, meso- or macrofauna. We also measured soil nutrient concentrations in increasing distances from the burrows of a highly abundant macro-detritivore, the desert isopod Hemilepistus reaumuri. Macro-detritivores controlled the clearing of plant litter in our field site. The highest rates of litter removal were measured during the hot and dry summer when isopod activity peaks and microbial activity is minimal. We also found substantial enrichment of inorganic nitrogen and phosphorous near isopod burrows. We conclude that burrowing macro-detritivores are important regulators of litter cycling in this arid ecosystem, providing a plausible general mechanism that explains the unexpectedly high rates of plant litter cycling in deserts.


Assuntos
Fenômenos Ecológicos e Ambientais , Ecossistema , Comportamento Alimentar , Isópodes/fisiologia , Animais , Clima Desértico
5.
Oecologia ; 191(3): 633-644, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31576425

RESUMO

Ungulate browse and invasive plants exert pressure on plant communities and alter the physical and chemical properties of soils, but little is known about their effects on litter-dwelling arthropods. In particular, ants (Formicidae) are ubiquitous in temperate forests and are sensitive to changes in habitat structure and resources. As ants play many functional roles, changes to ant communities may lead to changes in ecosystem processes. We conducted a long-term experiment that controlled white-tailed deer (Odocoileus virginianus) access and presence of an invasive understory shrub in deciduous forests located in southwestern Ohio, USA from 2011 to 2017. Several leaf-litter ant community responses and litter biomass were measured in five paired deer access and exclosure plots, each with a split-plot removal of Amur honeysuckle (Lonicera maackii). Ant abundance and species richness increased with time in deer exclosures, but not in deer access plots. Honeysuckle removal reduced abundance and richness of ants. There were additive effects of deer and honeysuckle on ant richness, and interactive effects of deer and honeysuckle on ant abundance. Deer exclusion reduced variation in ant composition relative to access plots. There was little evidence that treatments directly influenced species diversity of ants. However, all ant measures were positively related to litter biomass, which was greater in deer exclosures relative to access plots. Our results indicate strong indirect effects of herbivores and honeysuckle on litter-dwelling ants, mediated through changes in litter biomass and likely vegetation structure, which may alter ant-mediated ecosystem processes.


Assuntos
Formigas , Cervos , Animais , Ecossistema , Florestas , Ohio
6.
J Chem Ecol ; 44(2): 198-208, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29392532

RESUMO

Arbuscular mycorrhizal fungal (AMF) colonisation of plant roots is one of the most ancient and widespread interactions in ecology, yet the systemic consequences for plant secondary chemistry remain unclear. We performed the first metabolomic investigation into the impact of AMF colonisation by Rhizophagus irregularis on the chemical defences, spanning above- and below-ground tissues, in its host-plant ragwort (Senecio jacobaea). We used a non-targeted metabolomics approach to profile, and where possible identify, compounds induced by AMF colonisation in both roots and shoots. Metabolomics analyses revealed that 33 compounds were significantly increased in the root tissue of AMF colonised plants, including seven blumenols, plant-derived compounds known to be associated with AMF colonisation. One of these was a novel structure conjugated with a malonyl-sugar and uronic acid moiety, hitherto an unreported combination. Such structural modifications of blumenols could be significant for their previously reported functional roles associated with the establishment and maintenance of AM colonisation. Pyrrolizidine alkaloids (PAs), key anti-herbivore defence compounds in ragwort, dominated the metabolomic profiles of root and shoot extracts. Analyses of the metabolomic profiles revealed an increase in four PAs in roots (but not shoots) of AMF colonised plants, with the potential to protect colonised plants from below-ground organisms.


Assuntos
Glomeromycota/fisiologia , Metaboloma , Micorrizas/fisiologia , Senécio/fisiologia , Simbiose , Biomassa , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Alcaloides de Pirrolizidina/metabolismo
7.
J Chem Ecol ; 41(11): 1006-17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26552915

RESUMO

Plants often are exposed to antagonistic and symbiotic organisms both aboveground and belowground. Interactions between above- and belowground organisms may occur either simultaneously or sequentially, and jointly can determine plant responses to future enemies. However, little is known about time-dependency of such aboveground-belowground interactions. We examined how the timing of a 24 h period of aboveground herbivory by Spodoptera exigua (1-8 d prior to later arriving conspecifics) influenced the response of Plantago lanceolata and the performance of later arriving conspecifics. We also examined whether these induced responses were modulated by the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae. The amount of leaf area consumed by later arriving herbivores decreased with time after induction by early herbivores. Mycorrhizal infection reduced the relative growth rate (RGR) of later arriving herbivores, associated with a reduction in efficiency of conversion of ingested food rather than a reduction in relative consumption rates. In non-mycorrhizal plants, leaf concentrations of the defense compound catalpol showed a linear two-fold increase during the eight days following early herbivory. By contrast, mycorrhizal plants already had elevated levels of leaf catalpol prior to their exposure to early herbivory and did not show any further increase following herbivory. These results indicate that AMF resulted in a systemic induction, rather than priming of these defenses. AMF infection significantly reduced shoot biomass of Plantago lanceolata. We conclude that plant responses to future herbivores are not only influenced by exposure to prior aboveground and belowground organisms, but also by when these prior organisms arrive and interact.


Assuntos
Herbivoria , Micorrizas/fisiologia , Plantago/microbiologia , Plantago/fisiologia , Spodoptera/fisiologia , Animais , Biomassa , Glomeromycota/fisiologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Spodoptera/crescimento & desenvolvimento , Simbiose , Fatores de Tempo
8.
Front Microbiol ; 13: 854247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547111

RESUMO

Interactions between species above- and belowground are among the top factors that govern ecosystem functioning including soil organic carbon (SOC) storage. In agroecosystems, understanding how crop diversification affects soil biodiversity and SOC storage at the local scale remains a key challenge for addressing soil degradation and biodiversity loss that plague these systems. Yet, outcomes of crop diversification for soil microbial diversity and SOC storage, which are key indicators of soil health, are not always positive but rather they are highly idiosyncratic to agroecosystems. Using five case studies, we highlight the importance of selecting ideal crop functional types (as opposed to focusing on plant diversity) when considering diversification options for maximizing SOC accumulation. Some crop functional types and crop diversification approaches are better suited for enhancing SOC at particular sites, though SOC responses to crop diversification can vary annually and with duration of crop cover. We also highlight how SOC responses to crop diversification are more easily interpretable through changes in microbial community composition (as opposed to microbial diversity). We then develop suggestions for future crop diversification experiment standardization including (1) optimizing sampling effort and sequencing depth for soil microbial communities and (2) understanding the mechanisms guiding responses of SOC functional pools with varying stability to crop diversification. We expect that these suggestions will move knowledge forward about biodiversity and ecosystem functioning in agroecosystems, and ultimately be of use to producers for optimizing soil health in their croplands.

9.
Front Plant Sci ; 10: 1653, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998341

RESUMO

The optimal defense theory predicts that plants invest most energy in those tissues that have the highest value, but are most vulnerable to attacks. In Brassica species, root-herbivory leads to the accumulation of glucosinolates (GSLs) in the taproot, the most valuable belowground plant organ. Accumulation of GSLs can result from local biosynthesis in response to herbivory. In addition, transport from distal tissues by specialized GSL transporter proteins can play a role as well. GSL biosynthesis and transport are both inducible, but the role these processes play in GSL accumulation during root-herbivory is not yet clear. To address this issue, we performed two time-series experiments to study the dynamics of transport and biosynthesis in local and distal tissues of Brassica rapa. We exposed roots of B. rapa to herbivory by the specialist root herbivore Delia radicum for 7 days. During this period, we sampled above- and belowground plant organs 12 h, 24 h, 3 days and 7 days after the start of herbivory. Next, we measured the quantity and composition of GSL profiles together with the expression of genes involved in GSL biosynthesis and transport. We found that both benzyl and indole GSLs accumulate in the taproot during root-herbivory, whereas we did not observe any changes in aliphatic GSL levels. The rise in indole GSL levels coincided with increased local expression of biosynthesis and transporter genes, which suggest that both biosynthesis and GSL transport play a role in the accumulation of GSLs during root herbivory. However, we did not observe a decrease in GSL levels in distal tissues. We therefore hypothesize that GSL transporters help to retain GSLs in the taproot during root-herbivory.

10.
Front Plant Sci ; 4: 380, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24069027

RESUMO

Most studies on plant-mediated above-belowground interactions focus on soil biota with direct trophic links to plant roots such as root herbivores, pathogens, and symbionts. Detritivorous soil fauna, though ubiquitous and present in high abundances and biomasses in soil, are under-represented in those studies. Understanding of their impact on plants is mainly restricted to growth and nutrient uptake parameters. Detritivores have been shown to affect secondary metabolites and defense gene expression in aboveground parts of plants, with potential impacts on aboveground plant-herbivore interactions. The proposed mechanisms range from nutrient mobilization effects and impacts on soil microorganisms to defense induction by passive or active ingestion of roots. Since their negative effects (disruption or direct feeding of roots) may be counterbalanced by their overall beneficial effects (nutrient mobilization), detritivores may not harm, but rather enable plants to respond to aboveground herbivore attacks in a more efficient way. Both more mechanistic and holistic approaches are needed to better understand the involvement of detritivores in plant-mediated above-belowground interactions and their potential for sustainable agriculture.

11.
Front Plant Sci ; 4: 305, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23970888

RESUMO

Induced plant defence in response to phytophagous insects is a well described phenomenon. However, so far little is known about the effect of induced plant responses on subsequently colonizing herbivores in the field. Broccoli plants were induced in the belowground compartment using (i) infestation by the root-herbivore Delia radicum, (ii) root application of jasmonic acid (JA) or (iii) root application of salicylic acid (SA). The abundance of D. radicum and six aboveground herbivores displaying contrasting levels of host specialization were surveyed for 5 weeks. Our study showed that the response of herbivores was found to differ from one another, depending on the herbivore species, its degree of specialization and the root treatment. The abundance of the root herbivore D. radicum and particularly the number of emerging adults was decreased by both phytohormone treatments, while the number of D. radicum eggs was increased on conspecific infested plants. The root infestation exhibited moderate effects on the aboveground community. The abundance of the aphid Brevicoryne brassicae was strongly increased on D. radicum infested plants, but the other species were not impacted. Root hormone applications exhibited a strong effect on the abundance of specialist foliar herbivores. A higher number of B. brassicae and Pieris brassicae and a lower number of Plutella xylostella were found on JA treated plants. On SA treated plants we observed a decrease of the abundance of B. brassicae, Pi. rapae, and P. xylostella. Surprisingly, generalist species, Mamestra brassicae and Myzus persicae were not affected by root induction treatments. Finally, root treatments had no significant effect on either glucosinolate (GLS) profiles of the heads or on plant quality parameters. These results are discussed from the perspective of below- aboveground interactions and adaptations of phytophagous insects to induced plant responses according to their trophic specialization level.

12.
Plant Signal Behav ; 3(8): 519-20, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19513244

RESUMO

Plants can act as vertical communication channels or 'green phones' linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection of the plant shoot elicited by root damage can impair the survival, growth and development of aboveground insect herbivores, thereby creating plant-based functional links between soil-dwelling insects and insects that develop in the aboveground ecosystem. The interactions between spatially separated insects below- and aboveground are not restricted to root and foliar plant-feeding insects, but can be extended to higher trophic levels such as insect parasitoids. Here we discuss some implications of plants acting as communication channels or 'green phones' between root and foliar-feeding insects and their parasitoids, focusing on recent findings that plants attacked by root-feeding insects are significantly less attractive for the parasitoids of foliar-feeding insects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA