Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 851
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; : 107799, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39305957

RESUMO

Human cytochrome P450 enzymes are membrane-embedded monooxygenases responsible for xenobiotic metabolism, steroidogenesis, fatty acid metabolism, and vitamin metabolism. Their active sites can accommodate diverse small molecules and understanding these interactions is key to decoding enzymatic functionality and designing drugs. The most common method for characterizing small molecule binding is quantifying absorbance changes that typically occur when substrates enter the active site near the heme iron. Traditionally such titrations are monitored by a spectrophotometer, requiring significant manual time, protein, and increasing solvents. This assay was adapted for semi-automated high throughput screening, increasing throughput 50-fold while requiring less protein and keeping solvent concentrations constant. This 384-well assay was validated for both type I and II shifts typically observed for substrates and heme-coordinating inhibitors, respectively. This assay was used to screen a library of ∼100 diverse imidazole-containing compounds which can coordinate with the heme iron if compatible with the overall active site. Three human cytochrome P450 enzymes were screened: drug-metabolizing CYP2A6 and CYP2D6 and sterol-metabolizing CYP8B1. Each bound different sets of imidazole compounds with varying Kd values, providing a unique binding fingerprint. As a final validation, the Kd values were used to generate pharmacophores to compare to experimental structures. Applications for the high-throughput assay include 1) facilitating generation of pharmacophores for enzymes where structures are not available, 2) screening to identify ligands for P450 orphans, 3) screening for inhibitors of P450s drug targets, 4) screening potential new drugs to avoid and/or control P450 metabolism, and 5) efficient validation of computational predictions.

2.
Chembiochem ; 25(10): e202400009, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38545627

RESUMO

Calcium (Ca2+) ions play a crucial role in the functioning of neurons, governing various aspects of neuronal activity such as rapid modulation and alterations in gene expression. Ca2+ signaling has a significant impact on the development of diseases and the impairment of neuronal functions. Herein, the study reports a Ca2+ ion sensor in neuronal cells using a gold nanorod. The gold nanorod (GA-GNR) conjugated glutamic acid developed in the study was used as a nano-bio probe for the experimental and in vitro detection of calcium. The nanosensor is colloidally stable, preserves plasmonic properties, and shows good viability in neuronal cells, as well as promoting neuron cell line growth. The cytotoxicity and cell penetration of the nanosensor are studied using Raman spectroscopy, brightfield and darkfield microscopy imaging, and MTT assays. The quantification of Ca2+ ions in neuronal cells is determined by monitoring the surface plasmon resonance (SPR) of the GA-GNR. The change in the intensity profile in the presence of Ca2+ incubated neurons was effectively used to develop a portable prototype of an optical Ca2+ sensor, proposing it as a tool for neurodegenerative disease diagnosis and neuromodulation evaluation.


Assuntos
Cálcio , Ácido Glutâmico , Ouro , Nanotubos , Neurônios , Ouro/química , Cálcio/metabolismo , Cálcio/análise , Neurônios/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Nanotubos/química , Ácido Glutâmico/análise , Ressonância de Plasmônio de Superfície , Animais , Técnicas Biossensoriais , Humanos , Íons/análise , Íons/química , Sobrevivência Celular/efeitos dos fármacos
3.
New Phytol ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294895

RESUMO

Certain species in the Brassicaceae family exhibit high photosynthesis rates, potentially providing a valuable route toward improving agricultural productivity. However, factors contributing to their high photosynthesis rates are still unknown. We compared Hirschfeldia incana, Brassica nigra, Brassica rapa and Arabidopsis thaliana, grown under two contrasting light intensities. Hirschfeldia incana matched B. nigra and B. rapa in achieving very high photosynthesis rates under high growth-light condition, outperforming A. thaliana. Photosynthesis was relatively more limited by maximum photosynthesis capacity in H. incana and B. rapa and by mesophyll conductance in A. thaliana and B. nigra. Leaf traits such as greater exposed mesophyll specific surface enabled by thicker leaf or high-density small palisade cells contributed to the variation in mesophyll conductance among the species. The species exhibited contrasting leaf construction strategies and acclimation responses to low light intensity. High-light plants distributed Chl deeper in leaf tissue, ensuring even distribution of photosynthesis capacity, unlike low-light plants. Leaf anatomy of H. incana, B. nigra and B. rapa facilitated effective CO2 diffusion, efficient light use and provided ample volume for their high maximum photosynthetic capacity, indicating that a combination of adaptations is required to increase CO2-assimilation rates in plants.

4.
J Exp Bot ; 75(13): 3973-3992, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38572950

RESUMO

The photosynthetic acclimation of boreal evergreen conifers is controlled by regulatory and photoprotective mechanisms that allow conifers to cope with extreme environmental changes. However, the underlying dynamics of photosystem II (PSII) and photosystem I (PSI) remain unresolved. Here, we investigated the dynamics of PSII and PSI during the spring recovery of photosynthesis in Pinus sylvestris and Picea abies using a combination of chlorophyll a fluorescence, P700 difference absorbance measurements, and quantification of key thylakoid protein abundances. In particular, we derived a new set of PSI quantum yield equations, correcting for the effects of PSI photoinhibition. Using the corrected equations, we found that the seasonal dynamics of PSII and PSI photochemical yields remained largely in balance, despite substantial seasonal changes in the stoichiometry of PSII and PSI core complexes driven by PSI photoinhibition. Similarly, the previously reported seasonal up-regulation of cyclic electron flow was no longer evident, after accounting for PSI photoinhibition. Overall, our results emphasize the importance of considering the dynamics of PSII and PSI to elucidate the seasonal acclimation of photosynthesis in overwintering evergreens. Beyond the scope of conifers, our corrected PSI quantum yields expand the toolkit for future studies aimed at elucidating the dynamic regulation of PSI.


Assuntos
Aclimatação , Fotossíntese , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Picea , Pinus sylvestris , Estações do Ano , Complexo de Proteína do Fotossistema I/metabolismo , Picea/fisiologia , Picea/metabolismo , Pinus sylvestris/fisiologia , Pinus sylvestris/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/fisiologia
5.
Chemistry ; 30(4): e202302861, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38015005

RESUMO

Organic small molecules with high photothermal conversion efficiencies that absorb near-infrared light are desirable for photothermal therapy due to their improved biocompatibility compared to inorganic materials and their ability to absorb light in the biological transparency window (650-1350 nm). Here we report three donor-acceptor organic materials DM-ANDI, O-ANDI, and S-ANDI that show high photothermal conversion efficiencies of 46-68 % with near-infrared absorption. The design of these molecules is based on the rational modification of a thermally activated delayed fluorescence material to favour a low photoluminescence quantum yield by reducing HOMO-LUMO overlap. Encapsulating these materials into either neat nanoparticles or aggregated organic dots modulates their photothermal conversion efficiencies, and also facilitates dispersion in water.

6.
Nanotechnology ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321821

RESUMO

Faormamadinium (FA) based perovskites have been proposed to replace the methylammonium lead tri-iodide (MAPbI3) perovskite as the light absorbing layer of photovoltaic cells owing to their photo-active and chemically stable properties. However, the crystal phase transition from the photo-active -FAPbI3 to the non-perovksite -FAPbI3 still occurs in un-doped FAPbI3 films owing to the existence of crack defects, which degrads the photovoltaic responses. To investigate the crack ratio (CR)-dependent structure and excitonic characteristics of the polycrystalline FAPbI3 thin films deposited on the carboxylic acid functionalized ITO/glass substrates, various spectra and images were measured and analyzed, which can be utilized to make sense of the different devices responses of the resultant perovskite based photovoltaic cells. Our experimental results show that the there is a trade-off between the formations of surface defects and trapped iodide-mediated defects, thereby resulting in an optimal crack density or CR of the un-doped -FAPbI3 active layer in the range from 4.86% to 9.27%. The decrease in the CR (tensile stress) results in the compressive lattice and thereby trapping the iodides near the PbI6 octahedra in the bottom region of the FAPbI3 perovskite films. When the CR of the FAPbI3 film is 8.47%, the open-circuit voltage (short-circuit current density) of the resultant photovoltaic cells significantly increased from 0.773 V (16.62 mA/cm2) to 0.945 V (18.20 mA/cm2) after 3 days. Our findings help understanding the photovoltaic responses of the FAPbI3 perovskite based photovoltaic cells on the different days.

7.
Environ Sci Technol ; 58(17): 7380-7392, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640357

RESUMO

Optical surrogates, derived from absorbance and fluorescence spectra, are widely used to infer dissolved organic matter (DOM) composition (molecular weight, aromaticity) and genesis (autochthonous vs allochthonous). Despite the broad adoption of optical surrogates, several limitations exist, such as context- and sample-specific factors. These limitations create uncertainty about how compositional interpretations based on optical surrogates are generalized across contexts, specifically if there is duplicative or contradictory information in those interpretations. To explore these limitations, we performed a meta-analysis of optical surrogates for DOM from diverse sources, both from natural systems and after water treatment processes (n = 762). Prior to analysis, data were screened using a newly developed, standardized methodology that applies systematic quality control criteria before reporting surrogates. There was substantial overlap in surrogate values from natural and treated samples, suggesting that the gradients governing the surrogate variability can be generated in both contexts. This overlap provides justification for using optical surrogates originally developed in the context of natural systems to describe DOM changes in engineered systems, although the interpretations may change. Absorbance-based surrogates that describe the amount of spectral tailing (e.g., E2:E3 and S275-295) had a high frequency of strong correlations with one another but not to specific absorbance (SUVA254) or absorbance slope ratio (SR). The fluorescence index (FI) and biological index (ß/α) were strongly correlated with one another and to the peak emission wavelength but not to the humification index (HIX). Although SUVA254 and FI have both been correlated to DOM aromaticity in prior research, there was a lack of reciprocity between these optical surrogates across this data set. Additionally, there were patterns of deviations in the wastewater subset, suggesting that effluent organic matter may not follow conventional interpretations, urging caution in the use of optical surrogates to track DOM in water reuse applications. Finally, the meta-analysis highlights that three aspects should be captured when optical spectra are used for DOM interpretation: specific absorbance, absorbance tailing, and the extent of red-shifted fluorescence. We recommend that SUVA254, E2:E3, and FI or ß/α be prioritized in future DOM studies to capture these aspects, respectively.


Assuntos
Compostos Orgânicos , Compostos Orgânicos/química , Purificação da Água
8.
Environ Sci Technol ; 58(21): 9040-9050, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743693

RESUMO

Despite the widespread use of photochemical and optical properties to characterize dissolved organic matter (DOM), a significant gap persists in our understanding of the relationship among these properties. This study infers the molecular basis for the optical and photochemical properties of DOM using a comprehensive framework and known structural moieties within DOM. Utilizing Suwannee River Fulvic Acid (SRFA) as a model DOM, carboxylated aromatics, phenols, and quinones were identified as dominant contributors to the absorbance spectra, and phenols, quinones, aldehydes, and ketones were identified as major contributors to radiative energy pathways. It was estimated that chromophores constitute ∼63% w/w of dissolved organic carbon in SRFA and ∼47% w/w of overall SRFA. Notably, estimations indicate the pool of fluorescent compounds and photosensitizing compounds in SRFA are likely distinct from each other at wavelengths below 400 nm. This perspective offers a practical tool to aid in the identification of probable chemical groups when interpreting optical and photochemical data and challenges the current "black box" thinking. Instead, DOM photochemical and optical properties can be closely estimated by assuming the DOM is composed of a mixture of individual compounds.


Assuntos
Benzopiranos , Benzopiranos/química , Compostos Orgânicos/química , Rios/química
9.
J Fluoresc ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722499

RESUMO

A novel colorimetric and fluorogenic probe L based on hydrazine carbothioamide and 1,8-naphthalimide moieties has been designed and synthesized for the hypersensitive detection of Hg2+ or Ag+ ions. The observed probe L showed colorimetric and fluorometric responses for these studies when Hg2+ or Ag+ was added to the DMSO - HEPES buffer solution (pH = 7). An interference test with other metal ions was determined, and the high selectivity of Hg2+ and Ag+ did not interfere with other metal ions in colorimetric and fluorogenic methods. The possible mechanism of binding of these metal ions and the probe L 1:1 complex was determined by H1 NMR. Additionally, the reversibility of the affinity of probe L with mercury (Hg2+) and silver (Ag+) ions was investigated by adding Na2EDTA. The naked eye detected the "Off-On" type fluorescence sensor in the presence of Hg2+ and EDTA. The tested test strip kits provided a strong probability of probe L with high response and rapid, sensitive detection with Hg2+ ion, which may be suitable for practical use.

10.
J Phycol ; 60(2): 528-540, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38456338

RESUMO

Cryptophytes are known to vary widely in coloration among species. These differences in color arise primarily from the presence of phycobiliprotein accessory pigments. There are nine defined cryptophyte phycobiliprotein (Cr-PBP) types, named for their wavelength of maximal absorbance. Because Cr-PBP type has traditionally been regarded as a categorical trait, there is a paucity of information about how spectral absorption characteristics of Cr-PBPs vary among species. We investigated variability in primary and secondary peak absorbance wavelengths and full width at half max (FWHM) values of spectra of Cr-PBPs extracted from 75 cryptophyte strains (55 species) grown under full spectrum irradiance. We show that there may be substantial differences in spectral shapes within Cr-PBP types, with Cr-Phycoerythrin (Cr-PE) 545 showing the greatest variability with two, possibly three, subtypes, while Cr-PE 566 spectra were the least variable, with only ±1 nm of variance around the mean absorbance maximum of 565 nm. We provide additional criteria for classification in cases where the wavelength of maximum absorbance alone is not definitive. Variations in spectral characteristics among strains containing the same presumed Cr-PBP type may indicate differing chromophore composition and/or the presence of more than one Cr-PBP in a single cryptophyte species.


Assuntos
Criptófitas , Ficobiliproteínas
11.
Luminescence ; 39(4): e4748, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644515

RESUMO

In an acidic buffered solution, erythrosine B can react with amiodarone to form an association complex, which not only generates great enhancement in resonance Rayleigh scattering (RRS) spectrum of erythrosine B at 346.5 nm but also results in quenching of fluorescence spectra of erythrosine B at λemission = 550.4 nm/λexcitation = 528.5 nm. In addition, the formed erythrosine B-amiodarone complex produces a new absorbance peak at 555 nm. The spectral characteristics of the RRS, absorbance, and fluorescence spectra, as well as the optimum analytical conditions, were studied and investigated. As a result, new spectroscopic methods were developed to determine amiodarone by utilizing erythrosine B as a probe. Moreover, the ICH guidelines were used to validate the developed RRS, photometric, and fluorimetric methods. The enhancements in the absorbance and the RRS intensity and the decrease in the fluorescence intensity of the used probe were proportional to the concentration of amiodarone in ranges of 2.5-20.0, 0.2-2.5, and 0.25-1.75 µg/mL, respectively. Furthermore, limit of detection values were 0.52 ng/mL for the spectrophotometric method, 0.051 µg/mL for the RRS method, and 0.075 µg/mL for the fluorimetric method. Moreover, with good recoveries, the developed spectroscopic procedures were applied to analyze amiodarone in its commercial tablets.


Assuntos
Amiodarona , Eritrosina , Espectrometria de Fluorescência , Amiodarona/análise , Amiodarona/química , Eritrosina/química , Eritrosina/análise , Antiarrítmicos/análise , Antiarrítmicos/química , Estrutura Molecular
12.
Lasers Med Sci ; 39(1): 99, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602564

RESUMO

In recent years, there has been a growing interest in traditional medicinal practices such as Ayurveda, which emphasizes the use of natural ingredients for various therapeutic purposes. Vegetable oils are an integral part of our diet and have several applications in the cosmetics and healthcare industries. These oils have also been prescribed in ancient Ayurveda texts to treat various health problems. Ayurveda prescribes a processing technique called 'Murchana' to improve the therapeutic nature of the oils. Spectroscopic techniques have been used for quality assessment in many fields. High sensitivity and a low detection rate make spectroscopy a formidable analytical technique. This study focusses on the spectroscopic analysis of sesame and mustard oils prepared using the ayurvedic processing method 'Murchana'. Spectroscopic analysis techniques including UV-Vis absorbance spectroscopy, fluorescence spectroscopy, and FTIR spectroscopy were employed to study the oils. Origin software was used to plot graphs of the spectra. The results indicated that the murchana process may reduce the components of the oil responsible for its oxidation, thereby increasing the shelf life of the oils. However, further investigations, including other spectroscopy and chromatography techniques, will prove beneficial in ascertaining the effects of the murchana process on vegetable oils. The study's findings also suggest that spectroscopic techniques can be used to supplement chemical techniques to investigate the characteristics of vegetable oils.


Assuntos
Mostardeira , Sesamum , Óleos de Plantas , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Mikrochim Acta ; 191(10): 635, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347992

RESUMO

The 3-phenoxybenzoic acid (3-PBA) residues in environment are posing a significant challenge to our daily lives. To establish a more sensitive and rapid detection method, anti-3-PBA nanobodies (Nbs) were immobilized onto magnetosomes (bacterial magnetic nanoparticles, termed as BMPs), forming a robust BMP-Nb complex. The 3-PBA derivative was labeled with horseradish peroxidase (HRP) and further associated with gold nanoparticles (AuNPs) to create a highly sensitive probe (3-PBA-HRP-AuNP). An innovative immunoassay that combined BMP-Nb complex with 3-PBA-HRP-AuNP was developed for determinaton of 3-PBA. This method enabled the determination of 3-PBA with a half-maximum signal inhibition concentration (IC50) of 1.03 ng/mL, which was more sensitive than that of using 3-PBA-HRP as tracer with an IC50 of 2.18 ng/mL. The reliability of the assay was evidenced by the quantitative recovery of 3-PBA from water and soil samples ranging from 76.85 to 95.64%. The 3-PBA residues determined by this assay in actual water samples were between < LOD and 2.54 ng/mL and were between < LOD and 11.25 ng/g (dw) in real soils, respectively, which agreed well with those of liquid chromatography mass spectrometry (LC-MS). Collectively, the BMP-Nb and 3-PBA-HRP-AuNP-based immunoassay provides a powerful tool for the precise detection of 3-PBA residues in environment matrices, reinforcing our capacity to monitor and mitigate potential ecological and health impacts associated with this prevalent pollutant.


Assuntos
Benzoatos , Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Benzoatos/química , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Limite de Detecção , Imunoensaio/métodos , Peroxidase do Rábano Silvestre/química , Separação Imunomagnética/métodos , Anticorpos Imobilizados/imunologia , Poluentes Químicos da Água/análise
14.
Mikrochim Acta ; 191(4): 178, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443607

RESUMO

A colorimetric sensing method for salicylic acid (SA) was developed by designing and fabricating bimetallic oxide nanozymes. Firstly, by calcinating MIL-100(Fe)@PMo12 (MOFs@POMs) at different temperature, Fe2(MoO4)3-Ts (T = 400℃, 500℃, 600℃, 700℃) nanoparticles (NPs) were successfully prepared. Secondly, by evaluating the peroxidase-like activities, Fe2(MoO4)3-600 NPs shows the best peroxidase-like activity attributed to the Fenton-like effect and the synergistic coupling interaction between Mo and Fe. Finally, based on the specific complexation between SA and Fe3+, a sensitive colorimetric sensor for SA was established, which exhibits superior selectivity and interference with a detection limit of 0.11 µM and a linear range of 10 to 100 µM, the lowest LOD for SA to date, to the best of our knowledge.

15.
Sensors (Basel) ; 24(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065927

RESUMO

Zn2+ has a crucial role both in biology and the environment, while Pb2+ presents serious hazards in the same areas due to its toxicity, and the need for their analysis often exceeds available instrumental capacity. We report, herein, a new high-throughput optochemical screening method for Zn2+ and Pb2+ in various solutions. Moreover, we also introduced a new and generalizable three-step-microplate-modification technique, including plasma treating, linker-docking and photocatalytic copolymerization. The surface of a commercially available 96-well-cycloolefin-microplate was treated with atmospheric plasma, and then, the bottoms of the wells were covered by covalently attaching a methacrylate-containing linker-monolayer. Finally, the preactivated microplate wells were covalently functionalized by immobilizing bis(acridino)-crown ether-type sensor molecules, via photocatalytic copolymerization, to a polymethacrylate backbone. This sensing tool can be used in all microplate readers, is compatible with liquid handling platforms and provides an unprecedently fast monitoring (>1000 samples/hour, extrapolated from the time required for 96 measurements) of dissolved Zn2+ and Pb2+ among recent alternatives above the detection limits of 8.0 × 10-9 and 3.0 × 10-8 mol/L, respectively, while requiring a sample volume of only 20 µL.

16.
Sensors (Basel) ; 24(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39205060

RESUMO

Nitrates can cause severe ecological imbalances in aquatic ecosystems, with considerable consequences for human health. Therefore, monitoring this inorganic form of nitrogen is essential for any water quality management structure. This research was conducted to develop a novel Nitrate Portable Measurement System (NPMS) to monitor nitrate concentrations in water samples. NPMS is a reagent-free ultraviolet system developed using low-cost electronic components. Its operation principle is based on the Beer-Lambert law for measuring nitrate concentrations in water samples through light absorption in the spectral range of 295-315 nm. The system is equipped with a ready-to-use ultraviolet sensor, light emission diode (LED), op-amp, microcontroller, liquid crystal display, quartz cuvette, temperature sensor, and battery. All the components are assembled in a 3D-printed enclosure box, which allows a very compact self-contained equipment with high portability, enabling field and near-real-time measurements. The proposed methodology and the developed instrument were used to analyze multiple nitrate standard solutions. The performance was evaluated in comparison to the Nicolet Evolution 300, a classical UV-Vis spectrophotometer. The results demonstrate a strong correlation between the retrieved measurements by both instruments within the investigated spectral band and for concentrations above 5 mg NO3-/L.

17.
Int J Environ Health Res ; : 1-16, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563461

RESUMO

Epidemiologic studies have suggested a possible association between air pollution and chronic obstructive pulmonary disease (COPD), but it is controversial and difficult to draw causal inferences. Five methods were adopted to evaluate the causal relationship between air pollution and COPD in European and East Asian populations by using MR Analysis. A statistically significant causal relationship between PM2.5 and COPD was observed in the European population (OR: 2.34; 95% CI: 1.06-5.05; p = 0.033). Statistical significance remained after adjustment for confounding factors (adjusted OR: 2.28; 95% CI: 1.01-5.20; p = 0.048). In East Asian populations, PM2.5 absorbance, a proxy for black carbon, was statistically associated with COPD (OR: 1.41; 95% CI: 1.09-1.81; p = 0.007). We did not adjust for confounders in East Asian populations, as the association was independent of known confounders (e.g. smoking, respiratory tract infections, etc.). In conclusion, increased concentrations of PM2.5 and PM2.5 absorbance were associated with an increased risk of COPD.

18.
Indian J Clin Biochem ; 39(4): 519-528, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39346708

RESUMO

The metachromatic dye dimethylmethylene blue is used to quantify total glycosaminoglycans in urine. Understanding the interaction of dimethylmethylene blue with glycosaminoglycans is pertinent to optimize the assay procedure depending on the type of sample and interpret the findings meaningfully. The present spectrophotometric study determined the optimum sample-to-dye ratio, primary wavelength for measuring absorbance, after studying the interaction of two different chondroitin sulfate species (unfractionated chondroitin sulfate from bovine trachea vs. chondroitin sulfate oligosaccharide with degree of polymerization of 12, from shark cartilage) with dimethylmethylene blue. Respective dye-glycosaminoglycan complexes of the two chondroitin sulfate species showed significantly different absorbance maxima, while that of the chondroitin sulfate oligosaccharide was closer to absorbance maxima of urine glycosaminoglycans. The chondroitin sulfate oligosaccharide showed relatively less stable absorbance readings at higher concentrations in the reaction volume. Furthermore, the chondroitin sulfate reference materials exhibited differences in the linearity of standard curves and hence parallelism. Based on the findings, the method was semiautomated on Beckman Coulter D✕C 700 biochemistry analyzer using the chondroitin sulfate oligosaccharide as the standard. The urine glycosaminoglycan concentration obtained was slightly lower but reasonably close to that obtained through the External Quality Assurance (EQA) scheme administrated by ERNDIM (European Research Network, Inherited Disorders of Metabolism). The findings of the present study can be used to guide the dimethylmethylene blue assay optimization, redevelopment efforts, and harmonization across laboratories. The chondroitin sulfate oligosaccharide is better than the unfractionated chondroitin sulfate from bovine trachea due to its absorbance maxima closer to urine glycosaminoglycans. On the other hand, unfractionated chondroitin sulfate exhibit poor parallelism leading to falsely lower urine glycosaminoglycan levels.

19.
Angew Chem Int Ed Engl ; : e202409610, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087463

RESUMO

Recent decades have seen a dramatic increase in the commercial use of biocatalysts, transitioning from energy-intensive traditional chemistries to more sustainable methods. Current enzyme engineering techniques, such as directed evolution, require the generation and testing of large mutant libraries to identify optimized variants. Unfortunately, conventional screening methods are unable to screen such large libraries in a robust and timely manner. Droplet-based microfluidic systems have emerged as a powerful high-throughput tool for library screening at kilohertz rates. Unfortunately, almost all reported systems are based on fluorescence detection, restricting their use to a limited number of enzyme types that naturally convert fluorogenic substrates or require the use of surrogate substrates. To expand the range of enzymes amenable to evolution using droplet-based microfluidic systems, we present an absorbance-activated droplet sorter that allows of droplet sorting at kilohertz rates without the need for optical monitoring of the microfluidic system. To demonstrate the utility of the sorter, we rapidly screen a 105-member aldehyde dehydrogenase library towards D-glyceraldehyde using a NADH mediated coupled assay that generates WST-1 formazan as the colorimetric product. We successfully identify a variant with a 51% improvement in catalytic efficiency and a significant increase in overall activity across a broad substrate spectrum.

20.
Nanotechnology ; 34(40)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37385231

RESUMO

It is important to clarify the role and possible applicability of partially disordered structures in photonics, but there is still a lack of an effective method for it. Here, we investigate partially disordered MoSe2nanospheres experimentally regarding their morphology and absorption spectrum in broadband wavelengths and propose an optical simulation with three-dimensional finite-difference time-domain method to explain the crucial impacts of morphological parameters on optical responses. The experimental spectral absorbance of MoSe2nanospheres reveals a strong light-absorbing character in broadband wavelengths. The simulated spectral curves coincide with the experimental results by adjusting morphological parameters, i.e. the statistics of size and the number of layer, and the linear correlation coefficient between the simulated and experimental spectral curves is up to 0.94. The disorder plays a key role in the high light-absorption feature, and the feature originates from anti-reflection, defective state absorption, multiple light scattering and coherent diffusion effects. The results not only deepen the understanding of disordered photonics in semiconductor nanostructures, but also provide a simulation approach to optimize experimental designs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA