Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 46(2): e2300182, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38044581

RESUMO

Transport of macromolecules from the nucleus to the cytoplasm is essential for nearly all cellular and developmental events, and when mis-regulated, is associated with diseases, tumor formation/growth, and cancer progression. Nuclear Envelope (NE)-budding is a newly appreciated nuclear export pathway for large macromolecular machineries, including those assembled to allow co-regulation of functionally related components, that bypasses canonical nuclear export through nuclear pores. In this pathway, large macromolecular complexes are enveloped by the inner nuclear membrane, transverse the perinuclear space, and then exit through the outer nuclear membrane to release its contents into the cytoplasm. NE-budding is a conserved process and shares many features with nuclear egress mechanisms used by herpesviruses. Despite its biological importance and clinical relevance, little is yet known about the regulatory and structural machineries that allow NE-budding to occur in any system. Here we summarize what is currently known or proposed for this intriguing nuclear export process.


Assuntos
Herpesviridae , Membrana Nuclear , Membrana Nuclear/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Herpesviridae/metabolismo , Citoplasma/metabolismo , Núcleo Celular/metabolismo
2.
FASEB J ; 36(3): e22194, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35170814

RESUMO

The leiomodin1 (LMOD1) gene, encoding a potent actin nucleator, was recently reported as a potential pathogenic gene of megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS, OMIM 619362). However, only a single patient has been reported to have LMOD1 mutations, and the underlying pathogenic mechanism remains unknown. Here, we described a male infant with LMOD1 mutations presenting typical symptoms of pediatric intestinal pseudo-obstruction (PIPO) but without megacystis and microcolon. Two compound heterozygous missense variants (c.1106C>T, p.T369M; c.1262G>A, p.R421H) were identified, both affecting highly conserved amino acid residues within the second actin-binding site (ABS2) domain of LMOD1. Expression analysis showed that both variants resulted in significantly reduced protein amounts, especially for p.T369M, which was almost undetectable. The reduction was only partially rescued by the proteasome inhibitor MG-132, indicating that there might be proteasome-independent pathways involved in the degradation of the mutant proteins. Molecular modeling showed that variant p.T369M impaired the local protein conformation of the ABS2 domain, while variant p.R421H directly impaired the intermolecular interaction between ABS2 and actin. Accordingly, both variants significantly damaged LMOD1-mediated actin nucleation. These findings provide further human genetic evidence supporting LMOD1 as a pathogenic gene underlying visceral myopathy including PIPO and MMIHS, strengthen the critical role of ABS2 domain in LMOD1-mediated actin nucleation, and moreover, reveal an unrecognized role of ABS2 in protein stability.


Assuntos
Actinas/metabolismo , Autoantígenos/genética , Proteínas do Citoesqueleto/genética , Pseudo-Obstrução Intestinal/genética , Mutação com Perda de Função , Autoantígenos/química , Autoantígenos/metabolismo , Sítios de Ligação , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Células HeLa , Humanos , Lactente , Pseudo-Obstrução Intestinal/metabolismo , Pseudo-Obstrução Intestinal/patologia , Masculino , Simulação de Acoplamento Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica
3.
Cell Mol Life Sci ; 79(2): 96, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35084586

RESUMO

Weibel-Palade bodies (WPB) are endothelial cell-specific storage granules that regulate vascular hemostasis by releasing the platelet adhesion receptor von Willebrand factor (VWF) following stimulation. Fusion of WPB with the plasma membrane is accompanied by the formation of actin rings or coats that support the expulsion of large multimeric VWF fibers. However, factor(s) organizing these actin ring structures have remained elusive. We now identify the actin-binding proteins Spire1 and Myosin Vc (MyoVc) as cytosolic factors that associate with WPB and are involved in actin ring formation at WPB-plasma membrane fusion sites. We show that both, Spire1 and MyoVc localize only to mature WPB and that upon Ca2+ evoked exocytosis of WPB, Spire1 and MyoVc together with F-actin concentrate in ring-like structures at the fusion sites. Depletion of Spire1 or MyoVc reduces the number of these actin rings and decreases the amount of VWF externalized to the cell surface after histamine stimulation.


Assuntos
Cálcio/metabolismo , Exocitose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Miosina Tipo V/metabolismo , Proteínas Nucleares/metabolismo , Fator de von Willebrand/metabolismo , Western Blotting , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas dos Microfilamentos/genética , Microscopia Confocal , Modelos Biológicos , Miosina Tipo V/genética , Proteínas Nucleares/genética , Interferência de RNA , Corpos de Weibel-Palade/metabolismo
4.
J Cell Sci ; 133(3)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31964708

RESUMO

Owing to the local enrichment of factors that influence its dynamics and organization, the actin cytoskeleton displays different shapes and functions within the same cell. In yeast cells, post-Golgi vesicles ride on long actin cables to the bud tip. The proteins Boi1 and Boi2 (Boi1/2) participate in tethering and docking these vesicles to the plasma membrane. Here, we show in Saccharomyces cerevisiae that Boi1/2 also recruit nucleation and elongation factors to form actin filaments at sites of exocytosis. Disrupting the connection between Boi1/2 and the nucleation factor Bud6 impairs filament formation, reduces the directed movement of the vesicles to the tip and shortens the vesicles' tethering time at the cortex. Transplanting Boi1 from the bud tip to the peroxisomal membrane partially redirects the actin cytoskeleton and the vesicular flow towards the peroxisome, and creates an alternative, rudimentary vesicle-docking zone. We conclude that Boi1/2, through interactions with Bud6 and Bni1, induce the formation of a cortical actin structure that receives and aligns incoming vesicles before fusion with the membrane.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Polaridade Celular , Exocitose , Proteínas dos Microfilamentos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Cell Sci ; 133(13)2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32503943

RESUMO

Nuclear envelope (NE) budding is a recently described phenomenon wherein large macromolecular complexes are packaged inside the nucleus and extruded through the nuclear membranes. Although a general outline of the cellular events occurring during NE budding is now in place, little is yet known about the molecular machinery and mechanisms underlying the physical aspects of NE bud formation. Using a multidisciplinary approach, we identify Wash, its regulatory complex (SHRC), capping protein and Arp2/3 as new molecular components involved in the physical aspects of NE bud formation in a Drosophila model system. Interestingly, Wash affects NE budding in two ways: indirectly through general nuclear lamina disruption via an SHRC-independent interaction with Lamin B leading to inefficient NE bud formation, and directly by blocking NE bud formation along with its SHRC, capping protein and Arp2/3. In addition to NE budding emerging as an important cellular process, it shares many similarities with herpesvirus nuclear egress mechanisms, suggesting new avenues for exploration in both normal and disease biology.


Assuntos
Proteínas de Drosophila , Membrana Nuclear , Animais , Divisão Celular , Núcleo Celular , Citoplasma , Drosophila , Proteínas de Drosophila/genética , Proteínas de Transporte Vesicular
6.
J Biol Chem ; 295(10): 3134-3147, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32005666

RESUMO

The actin cytoskeleton is a dynamic array of filaments that undergoes rapid remodeling to drive many cellular processes. An essential feature of filament remodeling is the spatio-temporal regulation of actin filament nucleation. One family of actin filament nucleators, the Diaphanous-related formins, is activated by the binding of small G-proteins such as RhoA. However, RhoA only partially activates formins, suggesting that additional factors are required to fully activate the formin. Here we identify one such factor, IQ motif containing GTPase activating protein-1 (IQGAP1), which enhances RhoA-mediated activation of the Diaphanous-related formin (DIAPH1) and targets DIAPH1 to the plasma membrane. We find that the inhibitory intramolecular interaction within DIAPH1 is disrupted by the sequential binding of RhoA and IQGAP1. Binding of RhoA and IQGAP1 robustly stimulates DIAPH1-mediated actin filament nucleation in vitro In contrast, the actin capping protein Flightless-I, in conjunction with RhoA, only weakly stimulates DIAPH1 activity. IQGAP1, but not Flightless-I, is required to recruit DIAPH1 to the plasma membrane where actin filaments are generated. These results indicate that IQGAP1 enhances RhoA-mediated activation of DIAPH1 in vivo Collectively these data support a model where the combined action of RhoA and an enhancer ensures the spatio-temporal regulation of actin nucleation to stimulate robust and localized actin filament production in vivo.


Assuntos
Actinas/metabolismo , Forminas/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Citoesqueleto de Actina/metabolismo , Linhagem Celular Tumoral , Forminas/antagonistas & inibidores , Forminas/genética , Humanos , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/metabolismo , Proteínas Ativadoras de ras GTPase/antagonistas & inibidores , Proteínas Ativadoras de ras GTPase/genética , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Semin Cell Dev Biol ; 81: 21-32, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28965865

RESUMO

Cell polarity in the adult mammalian testis refers to the polarized alignment of developing spermatids during spermiogenesis and the polarized organization of organelles (e.g., phagosomes, endocytic vesicles, Sertoli cell nuclei, Golgi apparatus) in Sertoli cells and germ cells to support spermatogenesis. Without these distinctive features of cell polarity in the seminiferous epithelium, it is not possible to support the daily production of millions of sperm in the limited space provided by the seminiferous tubules in either rodent or human males through the adulthood. In short, cell polarity provides a novel mean to align spermatids and the supporting organelles (e.g., phagosomes, Golgi apparatus, endocytic vesicles) in a highly organized fashion spatially in the seminiferous epithelium during the epithelial cycle of spermatogenesis. This is analogous to different assembling units in a manufacturing plant such that as developing spermatids move along the "assembly line" conferred by Sertoli cells, different structural/functional components can be added to (or removed from) the developing spermatids during spermiogenesis, so that functional spermatozoa are produced at the end of the assembly line. Herein, we briefly review findings regarding the regulation of cell polarity in the testis with specific emphasis on developing spermatids, supported by an intriguing network of regulatory proteins along a local functional axis. Emerging evidence has suggested that cell cytoskeletons provide the tracks which in turn confer the unique assembly lines in the seminiferous epithelium. We also provide some thought-provoking concepts based on which functional experiments can be designed in future studies.


Assuntos
Polaridade Celular , Citoesqueleto/metabolismo , Células de Sertoli/metabolismo , Testículo/metabolismo , Animais , Humanos , Masculino , Microtúbulos/metabolismo , Células de Sertoli/citologia , Espermátides/citologia , Espermatogênese , Testículo/citologia
8.
J Biol Chem ; 294(49): 18650-18661, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31653702

RESUMO

Profilins are abundant cytosolic proteins that are universally expressed in eukaryotes and that regulate actin filament elongation by binding to both monomeric actin (G-actin) and formin proteins. The atypical profilin Arabidopsis AtPRF3 has been reported to cooperate with canonical profilin isoforms in suppressing formin-mediated actin polymerization during plant innate immunity responses. AtPRF3 has a 37-amino acid-long N-terminal extension (NTE), and its suppressive effect on actin assembly is derived from enhanced interaction with the polyproline (Poly-P) of the formin AtFH1. However, the molecular mechanism remains unclear. Here, we solved the crystal structures of AtPRF3Δ22 and AtPRF3Δ37, as well as AtPRF2 apo form and in complex with AtFH1 Poly-P at 1.5-3.6 Å resolutions. By combining these structures with molecular modeling, we found that AtPRF3Δ22 NTE has high plasticity, with a primary "closed" conformation that can adopt an open conformation that enables Poly-P binding. Furthermore, using molecular dynamics simulation and free-energy calculations of protein-protein binding, along with experimental validation, we show that the AtPRF3Δ22 binds to Poly-P in an adaptive manner, thereby enabling different binding modes that maintain the interaction through disordered sequences. Together, our structural and simulation results suggest that the dynamic conformational changes of the AtPRF3 NTE upon Poly-P binding modulate their interactions to fine-tune formin-mediated actin assembly.


Assuntos
Citoesqueleto de Actina/metabolismo , Arabidopsis/metabolismo , Profilinas/metabolismo , Citoesqueleto de Actina/genética , Actinas/genética , Actinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Immunoblotting , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Profilinas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Cell Sci ; 130(20): 3427-3435, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29032357

RESUMO

The actin cytoskeleton and associated motor proteins provide the driving forces for establishing the astonishing morphological diversity and dynamics of mammalian cells. Aside from functions in protruding and contracting cell membranes for motility, differentiation or cell division, the actin cytoskeleton provides forces to shape and move intracellular membranes of organelles and vesicles. To establish the many different actin assembly functions required in time and space, actin nucleators are targeted to specific subcellular compartments, thereby restricting the generation of specific actin filament structures to those sites. Recent research has revealed that targeting and activation of actin filament nucleators, elongators and myosin motors are tightly coordinated by conserved protein complexes to orchestrate force generation. In this Cell Science at a Glance article and the accompanying poster, we summarize and discuss the current knowledge on the corresponding protein complexes and their modes of action in actin nucleation, elongation and force generation.


Assuntos
Citoesqueleto de Actina/fisiologia , Pseudópodes/fisiologia , Citoesqueleto de Actina/ultraestrutura , Actinas/fisiologia , Actinas/ultraestrutura , Animais , Fenômenos Fisiológicos Celulares , Células Cultivadas , Humanos , Multimerização Proteica , Pseudópodes/ultraestrutura
10.
Biochem Biophys Res Commun ; 510(1): 72-77, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30660364

RESUMO

Fibroblasts in the extra-cellular matrix (ECM) often adopt a predominantly one-dimensional fibrillar geometry by virtue of their adhesion to the fibrils in the ECM. How much forces such fibrillar fibroblasts exert and how they respond to the extended stiffness of their micro-environment comprising of other ECM components and cells are not clear. We use fibroblasts adherent on fibronectin lines micropatterned onto soft polyacrylamide gels as an in vitro experimental model that maintains fibrillar cell morphology while still letting the cell mechanically interact with a continuous micro-environment of specified stiffness. We find that the exerted traction, quantified as the strain energy or the maximum exerted traction stress, is not a function of cell length. Both the strain energy and the maximum traction stress exerted by fibrillar cells are similar for low (13 kPa) or high (45 kPa) micro-environmental stiffness. Furthermore, we find that fibrillar fibroblasts exhibit prominent linear actin structures. Accordingly, inhibition of the formin family of nucleators strongly decreases the exerted traction forces. Interestingly, fibrillar cell migration is, however, not affected under formin inhibition. Our results suggest that fibrillar cell migration in such soft microenvironments is not dependent on high cellular force exertion in the absence of other topological constraints.


Assuntos
Fenômenos Biomecânicos/fisiologia , Proteínas Fetais/fisiologia , Fibroblastos/citologia , Proteínas dos Microfilamentos/fisiologia , Proteínas Nucleares/fisiologia , Reticulina/fisiologia , Resinas Acrílicas , Actinas/ultraestrutura , Adesão Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Fibronectinas/metabolismo , Forminas , Humanos , Modelos Biológicos
11.
Proc Natl Acad Sci U S A ; 112(41): 12687-92, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417072

RESUMO

Leiomodin (Lmod) is a class of potent tandem-G-actin-binding nucleators in muscle cells. Lmod mutations, deletion, or instability are linked to lethal nemaline myopathy. However, the lack of high-resolution structures of Lmod nucleators in action severely hampered our understanding of their essential cellular functions. Here we report the crystal structure of the actin-Lmod2162-495 nucleus. The structure contains two actin subunits connected by one Lmod2162-495 molecule in a non-filament-like conformation. Complementary functional studies suggest that the binding of Lmod2 stimulates ATP hydrolysis and accelerates actin nucleation and polymerization. The high level of conservation among Lmod proteins in sequence and functions suggests that the mechanistic insights of human Lmod2 uncovered here may aid in a molecular understanding of other Lmod proteins. Furthermore, our structural and mechanistic studies unraveled a previously unrecognized level of regulation in mammalian signal transduction mediated by certain tandem-G-actin-binding nucleators.


Assuntos
Citoesqueleto de Actina/química , Proteínas dos Microfilamentos/química , Células Musculares , Proteínas Musculares/química , Citoesqueleto de Actina/genética , Animais , Cristalografia por Raios X , Drosophila melanogaster , Humanos , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Estrutura Quaternária de Proteína , Coelhos , Relação Estrutura-Atividade
12.
Biochem Soc Trans ; 45(3): 703-708, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620031

RESUMO

Dendritic cells (DCs) have essential roles in early detection of pathogens and activation of both innate and adaptive immune responses. Whereas human DCs are resistant to productive HIV-1 replication, they have a unique ability to take up virus and transmit it efficiently to T lymphocytes. By doing that, HIV-1 may evade, at least in part, the first line of defense of the immune system, exploiting DCs instead to facilitate rapid infection of a large pool of immune cells. While performing an shRNA screen in human primary monocyte-derived DCs, to gain insights into this cell biological process, we discovered the role played by tetraspanin-7 (TSPAN7). This member of the tetraspanin family appears to be a positive regulator of actin nucleation and stabilization, through the ARP2/3 complex. By doing so, TSPAN7 limits HIV-1 endocytosis and maintains viral particles on actin-rich dendrites for an efficient transfer toward T lymphocytes. While studying the function of TSPAN7 in the control of actin nucleation, we also discovered the existence in DCs of two opposing forces at the plasma membrane: actin nucleation, a protrusive force which seems to counterbalance actomyosin contraction.


Assuntos
Actinas/metabolismo , Células Dendríticas/metabolismo , HIV-1/imunologia , Proteínas do Tecido Nervoso/imunologia , Linfócitos T/imunologia , Tetraspaninas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Infecções por HIV/imunologia , Humanos , Linfócitos T/virologia
13.
Proc Natl Acad Sci U S A ; 110(47): E4446-55, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24133141

RESUMO

Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation.


Assuntos
Citoesqueleto de Actina/metabolismo , Ciclo Celular/fisiologia , Proteínas dos Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/ultraestrutura , Western Blotting , Proteína Quinase CDC2/metabolismo , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Microesferas , Polimerização , Saccharomyces cerevisiae
14.
Cytometry A ; 87(6): 580-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25755111

RESUMO

Experiments using live cell 3-color Förster (or fluorescence) resonance energy transfer (FRET) microscopy and corresponding in vitro biochemical reconstitution of the same proteins were conducted to evaluate actin filament nucleation. A novel application of 3-color FRET data is demonstrated, extending the analysis beyond the customary energy-transfer efficiency (E%) calculations. MDCK cells were transfected for coexpression of Teal-N-WASP/Venus-IQGAP1/mRFP1-Rac1, Teal-N-WASP/Venus-IQGAP1/mRFP1-Cdc42, CFP-Rac1/Venus-IQGAP1/mCherry-actin, or CFP-Cdc42/Venus-IQGAP1/mCherry-actin, and with single-label equivalents for spectral bleedthrough correction. Using confirmed E% as an entry point, fluorescence levels and related ratios were correlated at discrete accumulating levels at cell peripheries. Rising ratios of CFP-Rac1:Venus-IQGAP1 were correlated with lower overall actin fluorescence, whereas the CFP-Cdc42:Venus-IQGAP1 ratio correlated with increased actin fluorescence at low ratios, but was neutral at higher ratios. The new FRET analyses also indicated that rising levels of mRFP1-Cdc42 or mRFP1-Rac1, respectively, promoted or suppressed the association of Teal-N-WASP with Venus-IQGAP1. These 3-color FRET assays further support our in vitro results about the role of IQGAP1, Rac1, and Cdc42 in actin nucleation, and the differential impact of Rac1 and Cdc42 on the association of N-WASP with IQGAP1. In addition, this study emphasizes the power of 3-color FRET as a systems biology strategy for simultaneous evaluation of multiple interacting proteins in individual live cells.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Citoesqueleto de Actina/fisiologia , Animais , Linhagem Celular , Cães , Células Madin Darby de Rim Canino , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Transdução de Sinais
15.
Sci Rep ; 14(1): 11250, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755233

RESUMO

The patterns of Formin B and of the Arp2/3 complex formed during mitosis were studied in a mutant of Dictyostelium discoideum that produces multinucleate cells, which divide by the ingression of unilateral cleavage furrows. During cytokinesis the cells of this mutant remain spread on a glass surface where they generate a planar pattern based on the sorting-out of actin-binding proteins. During anaphase, Formin B and Arp2/3 became localized to the regions of microtubule asters around the centrosomes; Formin B in particular in the form of round, quite uniformly covered areas. These areas have been shown to be depleted of myosin II and the actin-filament crosslinker cortexillin, and to be avoided by cleavage furrows on their path into the cell.


Assuntos
Dictyostelium , Proteínas dos Microfilamentos , Microtúbulos , Mitose , Microtúbulos/metabolismo , Dictyostelium/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Transporte Proteico , Citocinese , Actinas/metabolismo
16.
DNA Repair (Amst) ; 131: 103571, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37738698

RESUMO

The actin cytoskeleton is of fundamental importance for numerous cellular processes, including intracellular transport, cell plasticity, and cell migration. However, functions of filamentous actin (F-actin) in the nucleus remain understudied due to the comparatively low abundance of nuclear actin and the resulting experimental limitations to its visualization. Owing to recent technological advances such as super-resolution microscopy and the development of nuclear-specific actin probes, essential roles of the actin cytoskeleton in the context of genome maintenance are now emerging. In addition to the contributions of monomeric actin as a component of multiple important nuclear protein complexes, nuclear actin has been found to undergo polymerization in response to DNA damage and DNA replication stress. Consequently, nuclear F-actin plays important roles in the regulation of intra-nuclear mobility of repair and replication foci as well as the maintenance of nuclear shape, two important aspects of efficient stress tolerance. Beyond actin itself, there is accumulating evidence for the participation of multiple actin-binding proteins (ABPs) in the surveillance of genome integrity, including nucleation factors and motor proteins of the myosin family. Here we summarize recent findings highlighting the importance of actin cytoskeletal factors within the nucleus in key genome maintenance pathways.


Assuntos
Actinas , Cromatina , Humanos , Actinas/metabolismo , Cromatina/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Instabilidade Genômica
17.
Cell Rep ; 34(13): 108884, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33789103

RESUMO

Plants respond to bacterial infection acutely with actin remodeling during plant immune responses. The mechanisms by which bacterial virulence factors (VFs) modulate plant actin polymerization remain enigmatic. Here, we show that plant-type-I formin serves as the molecular sensor for actin remodeling in response to two bacterial VFs: Xanthomonas campestris pv. campestris (Xcc) diffusible signal factor (DSF), and pathogen-associated molecular pattern (PAMP) flagellin in pattern-triggered immunity (PTI). Both VFs regulate actin assembly by tuning the clustering and nucleation activity of formin on the plasma membrane (PM) at the nano-sized scale. By being integrated within the cell-wall-PM-actin cytoskeleton (CW-PM-AC) continuum, the dynamic behavior and function of formins are highly dependent on each scaffold layer's composition within the CW-PM-AC continuum during both DSF and PTI signaling. Our results reveal a central mechanism for rapid actin remodeling during plant-bacteria interactions, in which bacterial signaling molecules fine tune plant formin nanoclustering in a host mechanical-structure-dependent manner.


Assuntos
Actinas/metabolismo , Proteínas de Bactérias/metabolismo , Flagelina/metabolismo , Forminas/metabolismo , Nanopartículas/química , Transdução de Sinais , Arabidopsis/microbiologia , Parede Celular/metabolismo , Celulose/metabolismo , Interações Hospedeiro-Patógeno , Modelos Biológicos , Moléculas com Motivos Associados a Patógenos/metabolismo , Ligação Proteica , Xanthomonas campestris/metabolismo
18.
Cells ; 10(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062765

RESUMO

The brain encompasses a complex network of neurons with exceptionally elaborated morphologies of their axonal (signal-sending) and dendritic (signal-receiving) parts. De novo actin filament formation is one of the major driving and steering forces for the development and plasticity of the neuronal arbor. Actin filament assembly and dynamics thus require tight temporal and spatial control. Such control is particularly effective at the level of regulating actin nucleation-promoting factors, as these are key components for filament formation. Arginine methylation represents an important post-translational regulatory mechanism that had previously been mainly associated with controlling nuclear processes. We will review and discuss emerging evidence from inhibitor studies and loss-of-function models for protein arginine methyltransferases (PRMTs), both in cells and whole organisms, that unveil that protein arginine methylation mediated by PRMTs represents an important regulatory mechanism in neuritic arbor formation, as well as in dendritic spine induction, maturation and plasticity. Recent results furthermore demonstrated that arginine methylation regulates actin cytosolic cytoskeletal components not only as indirect targets through additional signaling cascades, but can also directly control an actin nucleation-promoting factor shaping neuronal cells-a key process for the formation of neuronal networks in vertebrate brains.


Assuntos
Citoesqueleto de Actina/metabolismo , Neurônios/patologia , Processamento de Proteína Pós-Traducional , Actinas/metabolismo , Animais , Arginina/metabolismo , Axônios , Células Cultivadas , Citoesqueleto/metabolismo , Citosol/metabolismo , Dendritos/metabolismo , Espinhas Dendríticas/metabolismo , Humanos , Inflamação , Metilação , Proteínas dos Microfilamentos/metabolismo , Neuritos , Neurogênese , Plasticidade Neuronal , Neurônios/metabolismo , Fosforilação , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Transdução de Sinais
19.
Artigo em Inglês | MEDLINE | ID: mdl-32181159

RESUMO

Dendritic cells (DCs) serve a key function in host defense, linking innate detection of microbes to activation of pathogen-specific adaptive immune responses. DCs express cell surface receptors for HIV-1 entry, but are relatively resistant to productive viral replication. They do, however, facilitate infection of co-cultured T-helper cells through a process referred to as trans-infection. We previously showed that tetraspanin 7 (TSPAN7), a transmembrane protein, is involved, through positive regulation of actin nucleation, in the transfer of HIV-1 from the dendrites of immature monocyte-derived DCs (iMDDCs) to activated CD4+ T lymphocytes. Various molecular mechanisms have been described regarding HIV-1 trans-infection and seem to depend on DC maturation status. We sought to investigate the crosstalk between DC maturation status, TSPAN7 expression and trans-infection. We followed trans-infection through co-culture of iMDDCs with CD4+ T lymphocytes, in the presence of CXCR4-tropic replicative-competent HIV-1 expressing GFP. T cell infection, DC maturation status and dendrite morphogenesis were assessed through time both by flow cytometry and confocal microscopy. Our previously described TSPAN7/actin nucleation-dependent mechanism of HIV-1 transfer appeared to be mostly observed during the first 20 h of co-culture experiments and to be independent of HIV replication. In the course of co-culture experiments, we observed a progressive maturation of MDDCs, correlated with a decrease in TSPAN7 expression, a drastic loss of dendrites and a change in the shape of DCs. A TSPAN7 and actin nucleation-independent mechanism of trans-infection, relying on HIV-1 replication, was then at play. We discovered that TSPAN7 expression is downregulated in response to different innate immune stimuli driving DC maturation, explaining the requirement for a TSPAN7/actin nucleation-independent mechanism of HIV transfer from mature MDDCs (mMDDCs) to T lymphocytes. As previously described, this mechanism relies on the capture of HIV-1 by the I-type lectin CD169/Siglec-1 on mMDDCs and the formation of a "big invaginated pocket" at the surface of DCs, both events being tightly regulated by DC maturation. Interestingly, in iMDDCs, although CD169/Siglec-1 can capture HIV-1, this capture does not lead to HIV-1 transfer to T lymphocytes.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/fisiologia , Infecções por HIV/imunologia , Proteínas do Tecido Nervoso/imunologia , Tetraspaninas/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Dendritos/fisiologia , Células HEK293 , HIV-1 , Humanos , Monócitos/imunologia , Monócitos/virologia , Proteínas do Tecido Nervoso/genética , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Tetraspaninas/genética , Fatores de Tempo , Transdução Genética
20.
Front Plant Sci ; 11: 148, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194585

RESUMO

The ARP2/3 complex and formins are the only known plant actin nucleators. Besides their actin-related functions, both systems also modulate microtubule organization and dynamics. Loss of the main housekeeping Arabidopsis thaliana Class I membrane-targeted formin FH1 (At3g25500) is known to increase cotyledon pavement cell lobing, while mutations affecting ARP2/3 subunits exhibit an opposite effect. Here we examine the role of FH1 and the ARP2/3 complex subunit ARPC5 (At4g01710) in epidermal cell morphogenesis with focus on pavement cells and trichomes using a model system of single fh1 and arpc5, as well as double fh1 arpc5 mutants. While cotyledon pavement cell shape in double mutants mostly resembled single arpc5 mutants, analysis of true leaf epidermal morphology, as well as actin and microtubule organization and dynamics, revealed a more complex relationship between the two systems and similar, rather than antagonistic, effects on some parameters. Both fh1 and arpc5 mutations increased actin network density and increased cell shape complexity in pavement cells and trichomes of first true leaves, in contrast to cotyledons. Thus, while the two actin nucleation systems have complementary roles in some aspects of cell morphogenesis in cotyledon pavement cells, they may act in parallel in other cell types and developmental stages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA