Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(40): e202401033, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38775406

RESUMO

Pentavalent uranium compounds are key components of uranium's redox chemistry and play important roles in environmental transport. Despite this, well-characterized U(V) compounds are scarce primarily because of their instability with respect to disproportionation to U(IV) and U(VI). In this work, we provide an alternate route to incorporation of U(V) into a crystalline lattice where different oxidation states of uranium can be stabilized through the incorporation of secondary cations with different sizes and charges. We show that iriginite-based crystalline layers allow for systematically replacing U(VI) with U(V) through aliovalent substitution of 2+ alkaline-earth or 3+ rare-earth cations as dopant ions under high-temperature conditions, specifically Ca(UVIO2)W4O14 and Ln(UVO2)W4O14 (Ln=Nd, Sm, Eu, Gd, Yb). Evidence for the existence of U(V) and U(VI) is supported by single-crystal X-ray diffraction, high energy resolution X-ray absorption near edge structure, X-ray photoelectron spectroscopy, and optical absorption spectroscopy. In contrast with other reported U(V) materials, the U(V) single crystals obtained using this route are relatively large (several centimeters) and easily reproducible, and thus provide a substantial improvement in the facile synthesis and stabilization of U(V).

2.
Mikrochim Acta ; 191(4): 191, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467910

RESUMO

The objective of this work was to develop an actinide-specific monolithic support in capillary designed to immobilize precise Pu:Am ratios and its coupling to inductively coupled plasma mass spectrometry (ICP-MS) for immobilized metal affinity chromatography applications. This format offers many advantages, such as reducing the sample amount and waste production, which are of prime importance when dealing with highly active radioelements. Four organic phosphorylated-based monoliths were synthesized in situ through UV photo-polymerization in capillary and characterized. The capillary coupling to ICP-MS was set up in conventional laboratory using Th and Sm as chemical analogues of Pu and Am. A dedicated method was developed to quantify online Th and Sm amounts immobilized on the monolithic capillaries, allowing to select the best monolith candidate poly(BMEP-co-EDMA)adp. By precisely adjusting the elemental composition in the loading solutions and applying the developed quantification method, the controlled immobilization of several Th:Sm molar ratios onto the monolith was successful. Finally, the capillary ICP-MS coupling was transposed in a glove box and by applying the strategy developed to design the monolithic support using Th and Sm, the immobilization of a 10.5 ± 0.2 (RSD = 2.3%, n = 3) Pu:Am molar ratio reflecting Pu ageing over 48 years was achieved in a controlled manner on poly(BMEP-co-EDMA)adp. Hence, the new affinity capillary monolithic support was validated, with only hundred nanograms or less of engaged radioelements and can be further exploited to precisely determine differential interactions of Pu and Am with targeted biomolecules in order to better anticipate the effect of Am on Pu biodistribution.

3.
Angew Chem Int Ed Engl ; 63(6): e202317346, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38100190

RESUMO

The high stability of the + IVoxidation state limits thorium redox reactivity. Here we report the synthesis and the redox reactivity of two Th(IV) complexes supported by the arene-tethered tris(siloxide) tripodal ligands [(KOSiR2 Ar)3 -arene)]. The two-electron reduction of these Th(IV) complexes generates the doubly reduced [KTh((OSi(Ot Bu)2 Ar)3 -arene)(THF)2 ] (2OtBu ) and [K(2.2.2-cryptand)][Th((OSiPh2 Ar)3 -arene)(THF)2 ](2Ph -crypt) where the formal oxidation state of Th is +II. Structural and computational studies indicate that the reduction occurred at the arene anchor of the ligand. The robust tripodal frameworks store in the arene anchor two electrons that become available at the metal center for the two-electron reduction of a broad range of substrates (N2 O, COT, CHT, Ph2 N2 , Ph3 PS and O2 ) while retaining the ligand framework. This work shows that arene-tethered tris(siloxide) tripodal ligands allow implementation of two-electron redox chemistry at the thorium center while retaining the ligand framework unchanged.

4.
Rep Prog Phys ; 86(5)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36821855

RESUMO

Hydrides of actinides, their magnetic, electronic, transport, and thermodynamic properties are discussed within a general framework of H impact on bonding, characterized by volume expansion, affecting mainly the 5fstates, and a charge transfer towards H, which influences mostly the 6dand 7sstates. These general mechanisms have diverse impact on individual actinides, depending on the degree of localization of their 5fstates. Hydrogenation of uranium yields UH2and UH3, binary hydrides that are strongly magnetic due to the 5fband narrowing and reduction of the 5f-6dhybridization. Pu hydrides become magnetic as well, mainly as a result of the stabilization of the magnetic 5f5state and elimination of the admixture of the non-magnetic 5f6component.Ab-initiocomputational analyses, which for example suggest that the ferromagnetism ofß-UH3is rather intricate involving two non-collinear sublattices, are corroborated by spectroscopic studies of sputter-deposited thin films, yielding a clean surface and offering a variability of compositions. It is found that valence-band photoelectron spectra cannot be compared directly with the 5fnground-state density of states. Being affected by electron correlations in the excited final states, they rather reflect the atomic 5fn-1multiplets. Similar tendencies can be identified also in hydrides of binary and ternary intermetallic compounds. H absorption can be used as a tool for fine tuning of electronic structure around a quantum critical point. A new direction is represented by actinide polyhydrides with a potential for high-temperature superconductivity.

5.
Chemistry ; 29(47): e202301164, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37227412

RESUMO

Plutonium(IV) oxalate hexahydrate (Pu(C2 O4 )2 ⋅ 6 H2 O; PuOx) is an important intermediate in the recovery of plutonium from used nuclear fuel. Its formation by precipitation is well studied, yet its crystal structure remains unknown. Instead, the crystal structure of PuOx is assumed to be isostructural with neptunium(IV) oxalate hexahydrate (Np(C2 O4 )2 ⋅ 6 H2 O; NpOx) and uranium(IV) oxalate hexahydrate (U(C2 O4 )2 ⋅ 6 H2 O; UOx) despite the high degree of unresolved disorder that exists when determining water positions in the crystal structures of the latter two compounds. Such assumptions regarding the isostructural behavior of the actinide elements have been used to predict the structure of PuOx for use in a wide range of studies. Herein, we report the first crystal structures for PuOx and Th(C2 O4 )2 ⋅ 6 H2 O (ThOx). These data, along with new characterization of UOx and NpOx, have resulted in the full determination of the structures and resolution of the disorder around the water molecules. Specifically, we have identified the coordination of two water molecules with each metal center, which necessitates a change in oxalate coordination mode from axial to equatorial that has not been reported in the literature. The results of this work exemplify the need to revisit previous assumptions regarding fundamental actinide chemistry, which are heavily relied upon within the current nuclear field.

6.
Chemistry ; 29(33): e202300456, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37013708

RESUMO

The separation of actinides from lanthanides in spent nuclear fuel reprocessing is a vital step of nuclear fuel cycle process. As one class of mature industrial extractants, the organophosphorus extractants have been widely used for the extraction and separation of actinides and lanthanides in spent fuel reprocessing due to their strong extraction ability and low-cost acquisition. In this concept, the application scope of tributyl phosphate (TBP), bis(2-ethylhexyl) phosphate (HDEHP), octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), trialkyl phosphine oxide (TRPO), and purified Cyanex 301 (bis(2,4,4-trimethylpentyl) dithiophosphinic acid, HA301) are introduced, and their extraction mechanism, as well as structure-function relationships for separation of actinides over lanthanides are also discussed. Furthermore, the design criteria, extraction properties and mechanism of several typical newly developed organophosphorus extractants (CMPO-modified calixarene/pillarene, phenanthroline-derived organophosphorus extractants, and phosphate-modified carborane) based on pre-organized skeletons are briefly reviewed. Finally, the important role played by those organophosphorus extractants is emphasized and potential applications in separation of actinides over lanthanides in future advanced nuclear fuel cycle are identified.


Assuntos
Elementos da Série Actinoide , Elementos da Série dos Lantanídeos , Óxidos , Fosfatos
7.
Chemistry ; 29(19): e202203814, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598408

RESUMO

Uranyl peroxide nanoclusters are an evolving family of materials with potential applications throughout the nuclear fuel cycle. While several studies have investigated their interactions with alkali and alkaline earth metals, no studies have probed their interactions with the actinide elements. This work describes a system containing U60 Ox30 , [((UO2 )(O2 ))60 (C2 O4 )30 ]60- , and neptunium(V) as a function of neptunium concentration. Ultra-small and small angle X-ray scattering were used to observe these interactions in the aqueous phase, and X-ray diffraction was used to observe solid products. The results show that neptunium induces aggregation of U60 Ox30 when the neptunium concentration is≤10 mM, whereas (NpO2 )2 C2 O4 ⋅ 6H2 O(cr) and studtite ultimately form at 15-25 mM neptunium. The latter result suggests that neptunium coordinates with the bridging oxalate ligands in U60 Ox30 , leaving metastable uranyl peroxide species in solution. This is an important finding given the potential application of uranyl peroxide nanoclusters in the recycling of used nuclear fuel.

8.
Chemphyschem ; 24(2): e202200516, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36149643

RESUMO

The use of actinides for medical, scientific and technological purposes has gained momentum in the recent years. This creates a need to understand their interactions with biomolecules, both at the interface and as they become complexed. Calculation of the Gibbs binding energies of the ions to biomolecules, i. e., the Gibbs energy change associated with a transfer of an ion from the water phase to its binding site, could help to understand the actinides' toxicities and to design agents that bind them with high affinities. To this end, there is a need to obtain accurate reference values for actinide hydration, that for most actinides are not available from experiment. In this study, a set of ionic radii is developed that enables future calculations of binding energies for Pu3+ and five actinides with renewed scientific and technological interest: Ac3+ , Am3+ , Cm3+ , Bk3+ and Cf3+ . Reference hydration energies were calculated using quantum chemistry and ion solvation theory and agree well for all ions except Ac3+ , where ion solvation theory seems to underestimate the magnitude of the Gibbs hydration energy. The set of radii and reference energies that are presented here provide means to calculate binding energies for actinides and biomolecules.


Assuntos
Elementos da Série Actinoide , Plutônio , Actínio , Termodinâmica , Elementos da Série Actinoide/química , Água/química
9.
Environ Sci Technol ; 57(49): 20830-20843, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897703

RESUMO

Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM's aqueous complexes with Am(III) and Cm(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am(III) to these minerals is strongly impacted by LanM, while Np(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites.


Assuntos
Elementos da Série Actinoide , Metaloproteínas , Quelantes , Elementos da Série Actinoide/química , Minerais , Carbonato de Cálcio , Carbonatos
10.
Molecules ; 28(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687254

RESUMO

The separation of trivalent actinides and lanthanides is a key step in the sustainable development of nuclear energy, and it is currently mainly realized via liquid-liquid extraction techniques. The underlying mechanism is complicated and remains ambiguous, which hinders the further development of extraction. Herein, to better understand the mechanism of the extraction, the contributing factors for the extraction are discussed (specifically, the sulfur-donating ligand, Cyanex301) by combing molecular dynamics simulations and experiments. This work is expected to contribute to improve our systematic understanding on a molecular scale of the extraction of lanthanides and actinides, and to assist in the extensive studies on the design and optimization of novel ligands with improved performance.

11.
Angew Chem Int Ed Engl ; 62(50): e202313010, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37883663

RESUMO

Uranium diazomethanediide complexes can be prepared and their synthesis, structure and reactivity were explored. Reaction of the uranium imido compound [η5 -1,2,4-(Me3 Si)3 C5 H2 ]2 U=N(p-tolyl)(dmap) (1) or [η5 -1,3-(Me3 C)2 C5 H3 ]2 U=N(p-tolyl)(dmap) (4) with Me3 SiCHN2 cleanly yields the first isocyanoimido metal complexes [η5 -1,2,4-(Me3 Si)3 C5 H2 ]2 U(=NNC)(µ-CNN=)U(dmap)[η5 -1,2,4-(Me3 Si)3 C5 H2 ]2 (2) and {[η5 -1,3-(Me3 C)2 C5 H3 ]2 U[µ-(=NNC)]}6 (5), respectively. Both compounds exhibit remarkable thermal stability and were fully characterized. According to density functional theory (DFT) studies the bonding between the Cp2 U2+ and [NNC]2- moieties is strongly polarized with a significant 5 f orbital contribution, which is also reflected in the reactivity of these complexes. For example, complex 5 acts as a nucleophile toward alkylsilyl halides and engages in a [2+2] cycloaddition with CS2 , but no reaction occurs in the presence of internal alkynes.

12.
Angew Chem Int Ed Engl ; 62(5): e202216349, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36450099

RESUMO

A novel series of heterometallic f-block-frameworks including the first examples of transuranic heterometallic 238 U/239 Pu-metal-organic frameworks (MOFs) and a novel monometallic 239 Pu-analog are reported. In combination with theoretical calculations, we probed the kinetics and thermodynamics of heterometallic actinide(An)-MOF formation and reported the first value of a U-to-Th transmetallation rate. We concluded that formation of uranyl species could be a driving force for solid-state metathesis. Density of states near the Fermi edge, enthalpy of formation, band gap, proton affinity, and thermal/chemical stability were probed as a function of metal ratios. Furthermore, we achieved 97 % of the theoretical maximum capacity for An-integration. These studies shed light on fundamental aspects of actinide chemistry and also foreshadow avenues for the development of emerging classes of An-containing materials, including radioisotope thermoelectric generators or metalloradiopharmaceuticals.

13.
Angew Chem Int Ed Engl ; 62(29): e202306360, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37211534

RESUMO

Periodically arranging coordination-distinct actinides into one crystalline architecture is intriguing but of great synthetic challenge. We report a rare example of a heterobimetallic actinide metal-organic framework (An-MOF) by a unique reaction-induced preorganization strategy. A thorium MOF (SCU-16) with the largest unit cell among all Th-MOFs was prepared as the precursor, then the uranyl was precisely embedded into the MOF precursor under oxidation condition. Single crystal of the resulting thorium-uranium MOF (SCU-16-U) shows that a uranyl-specific site was in situ induced by the formate-to-carbonate oxidation reaction. The heterobimetallic SCU-16-U exhibits multifunction catalysis properties derived from two distinct actinides. The strategy proposed here offers a new avenue to create mixed-actinide functional material with unique architecture and versatile functionality.

14.
Angew Chem Int Ed Engl ; 62(31): e202303669, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074219

RESUMO

Certain f-block elements-the lanthanides-have biological relevance in the context of methylotrophic bacteria. The respective strains incorporate these 4 f elements into the active site of one of their key metabolic enzymes, a lanthanide-dependent methanol dehydrogenase. In this study, we investigated whether actinides, the radioactive 5 f elements, can replace the essential 4 f elements in lanthanide-dependent bacterial metabolism. Growth studies with Methylacidiphilum fumariolicum SolV and the Methylobacterium extorquens AM1 ΔmxaF mutant demonstrate that americium and curium support growth in the absence of lanthanides. Moreover, strain SolV favors these actinides over late lanthanides when presented with a mixture of equal amounts of lanthanides together with americium and curium. Our combined in vivo and in vitro results establish that methylotrophic bacteria can utilize actinides instead of lanthanides to sustain their one-carbon metabolism if they possess the correct size and a +III oxidation state.


Assuntos
Elementos da Série dos Lantanídeos , Methylobacterium extorquens , Elementos da Série dos Lantanídeos/metabolismo , Amerício , Cúrio , Metanol/metabolismo , Methylobacterium extorquens/metabolismo , Proteínas de Bactérias/metabolismo
15.
Angew Chem Int Ed Engl ; 62(9): e202215846, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36576035

RESUMO

Thorium redox chemistry is extremely scarce due to the high stability of ThIV . Here we report two unique examples of thorium arenide complexes prepared by reduction of a ThIV -siloxide complex in presence of naphthalene, the mononuclear arenide complex [K(OSi(Ot Bu)3 )3 Th(η6 -C10 H8 )] (1) and the inverse-sandwich complex [K(OSi(Ot Bu)3 )3 Th]2 (µ-η6 ,η6 -C10 H8 )] (2). The electrons stored in these complexes allow the reduction of a broad range of substrates (N2 O, AdN3 , CO2 , HBBN). Higher reactivity was found for the complex 1 which reacts with the diazoolefin IDipp=CN2 to yield the unexpected ThIV amidoalkynyl complex 5 via a terminal N-heterocyclic vinylidene intermediate. This work showed that arenides can act as convenient redox-active ligands for implementing thorium-ligand cooperative multielectron transfer and that the reactivity can be tuned by the arenide binding mode.

16.
Rep Prog Phys ; 85(12)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36179676

RESUMO

Actinide-based compounds exhibit unique physics due to the presence of 5f electrons, and serve in many cases as important technological materials. Targeted thin film synthesis of actinide materials has been successful in generating high-purity specimens in which to study individual physical phenomena. These films have enabled the study of the unique electron configuration, strong mass renormalization, and nuclear decay in actinide metals and compounds. The growth of these films, as well as their thermophysical, magnetic, and topological properties, have been studied in a range of chemistries, albeit far fewer than most classes of thin film systems. This relative scarcity is the result of limited source material availability and safety constraints associated with the handling of radioactive materials. Here, we review recent work on the synthesis and characterization of actinide-based thin films in detail, describing both synthesis methods and modeling techniques for these materials. We review reports on pyrometallurgical, solution-based, and vapor deposition methods. We highlight the current state-of-the-art in order to construct a path forward to higher quality actinide thin films and heterostructure devices.

17.
J Synchrotron Radiat ; 29(Pt 1): 89-102, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985426

RESUMO

Portland cement based grouts used for radioactive waste immobilization contain high replacement levels of supplementary cementitious materials, including blast-furnace slag and fly ash. The minerals formed upon hydration of these cements may have capacity for binding actinide elements present in radioactive waste. In this work, the minerals ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and hydrotalcite (Mg6Al2(OH)16CO3·4H2O) were selected to investigate the importance of minor cement hydrate phases in sequestering and immobilizing UVI from radioactive waste streams. U LIII-edge X-ray absorption spectroscopy (XAS) was used to probe the UVI coordination environment in contact with these minerals. For the first time, solid-state 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy was applied to probe the Al coordination environment in these UVI-contacted minerals and make inferences on the UVI coordination, in conjunction with the X-ray spectroscopy analyses. The U LIII-edge XAS analysis of the UVI-contacted ettringite phases found them to be similar (>∼70%) to the uranyl oxyhydroxides present in a mixed becquerelite/metaschoepite mineral. Fitting of the EXAFS region, in combination with 27Al NMR analysis, indicated that a disordered Ca- or Al-bearing UVI secondary phase also formed. For the UVI-contacted hydrotalcite phases, the XAS and 27Al NMR data were interpreted as being similar to uranyl carbonate, that was likely Mg-containing.

18.
J Synchrotron Radiat ; 29(Pt 1): 53-66, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985423

RESUMO

N-donor ligands such as n-Pr-BTP [2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine] preferentially bind trivalent actinides (An3+) over trivalent lanthanides (Ln3+) in liquid-liquid separation. However, the chemical and physical processes responsible for this selectivity are not yet well understood. Here, an explorative comparative X-ray spectroscopy and computational (L3-edge) study for the An/Ln L3-edge and the N K-edge of [An/Ln(n-Pr-BTP)3](NO3)3, [Ln(n-Pr-BTP)3](CF3SO3)3 and [Ln(n-Pr-BTP)3](ClO4)3 complexes is presented. High-resolution X-ray absorption near-edge structure (HR-XANES) L3-edge data reveal additional features in the pre- and post-edge range of the spectra that are investigated using the quantum chemical codes FEFF and FDMNES. X-ray Raman spectroscopy studies demonstrate the applicability of this novel technique for investigations of liquid samples of partitioning systems at the N K-edge.

19.
Chemistry ; 28(11): e202104301, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-34957610

RESUMO

A new series of lanthanide (1-5) and uranyl (6) complexes with a tetra-substituted bifunctional calixarene ligand H2 L is described. The coordination environment for the Ln3+ and UO2 2+ ions is provided by phosphoryl and salicylamide functional groups appended to the lower rim of the p-tert-butylcalix[4]arene scaffold. Ligand interactions with lanthanide cations (light: La3+ , Pr3+ ; intermediate: Eu3+ and Gd3+ ; and heavy: Yb3+ ), as well as the uranyl cation (UO2 2+ ) is examined in the solution and solid state, respectively with spectrophotometric titration and single crystal X-ray diffractometry. The ligand is fully deprotonated in the complexation of trivalent lanthanide ions forming di-cationic complexes 2 : 2 M : L, [Ln2 (L)2 (H2 O)]2+ (1-5), in solution, whereas uranyl formed a 1 : 1 M : L complex [UO2 (L)(MeOH)]∞ (6) that demonstrated very limited solubility in 12 organic solvents. Solvent extraction behaviour is examined for cation selectivity and extraction efficiency. H2 L was found to be an effective extracting agent for UO2 2+ over La3+ and Yb3+ cations. The separation factors at pH 6.0 are: ßUO 2 2 + /La 3 + =121.0 and ßUO 2 2 + /Yb 3 + =70.0.

20.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563121

RESUMO

In case of an incident in the nuclear industry or an act of war or terrorism, the dissemination of plutonium could contaminate the environment and, hence, humans. Human contamination mainly occurs via inhalation and/or wounding (and, less likely, ingestion). In such cases, plutonium, if soluble, reaches circulation, whereas the poorly soluble fraction (such as small colloids) is trapped in alveolar macrophages or remains at the site of wounding. Once in the blood, the plutonium is delivered to the liver and/or to the bone, particularly into its mineral part, mostly composed of hydroxyapatite. Countermeasures against plutonium exist and consist of intravenous injections or inhalation of diethylenetetraminepentaacetate salts. Their effectiveness is, however, mainly confined to the circulating soluble forms of plutonium. Furthermore, the short bioavailability of diethylenetetraminepentaacetate results in its rapid elimination. To overcome these limitations and to provide a complementary approach to this common therapy, we developed polymeric analogs to indirectly target the problematic retention sites. We present herein a first study regarding the decontamination abilities of polyethyleneimine methylcarboxylate (structural diethylenetetraminepentaacetate polymer analog) and polyethyleneimine methylphosphonate (phosphonate polymeric analog) directed against Th(IV), used here as a Pu(IV) surrogate, which was incorporated into hydroxyapatite used as a bone model. Our results suggest that polyethylenimine methylphosphonate could be a good candidate for powerful bone decontamination action.


Assuntos
Elementos da Série Actinoide , Plutônio , Quelantes/química , Descontaminação/métodos , Durapatita , Humanos , Plutônio/química , Polietilenoimina , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA