Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(10): 3356-3371, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-38981468

RESUMO

Recombinant adeno-associated virus (rAAV) vector gene delivery systems have demonstrated great promise in clinical trials but continue to face durability and dose-related challenges. Unlike rAAV gene therapy, integrating gene addition approaches can provide curative expression in mitotically active cells and pediatric populations. We explored a novel in vivo delivery approach based on an engineered transposase, Sleeping Beauty (SB100X), delivered as an mRNA within a lipid nanoparticle (LNP), in combination with an rAAV-delivered transposable transgene. This combinatorial approach achieved correction of ornithine transcarbamylase deficiency in the neonatal Spfash mouse model following a single delivery to dividing hepatocytes in the newborn liver. Correction remained stable into adulthood, while a conventional rAAV approach resulted in a return to the disease state. In non-human primates, integration by transposition, mediated by this technology, improved gene expression 10-fold over conventional rAAV-mediated gene transfer while requiring 5-fold less vector. Additionally, integration site analysis confirmed a random profile while specifically targeting TA dinucleotides across the genome. Together, these findings demonstrate that transposable elements can improve rAAV-delivered therapies by lowering the vector dose requirement and associated toxicity while expanding target cell types.


Assuntos
Dependovirus , Vetores Genéticos , Hepatócitos , Nanopartículas , RNA Mensageiro , Transgenes , Transposases , Animais , Dependovirus/genética , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Hepatócitos/metabolismo , Transposases/genética , Transposases/metabolismo , Nanopartículas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Terapia Genética/métodos , Humanos , Expressão Gênica , Lipídeos/química , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Lipossomos
2.
Brain ; 146(4): 1328-1341, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36350566

RESUMO

Leber hereditary optic neuropathy (LHON) is an important example of mitochondrial blindness with the m.11778G>A mutation in the MT-ND4 gene being the most common disease-causing mtDNA variant worldwide. The REFLECT phase 3 pivotal study is a randomized, double-masked, placebo-controlled trial investigating the efficacy and safety of bilateral intravitreal injection of lenadogene nolparvovec in patients with a confirmed m.11778G>A mutation, using a recombinant adeno-associated virus vector 2, serotype 2 (rAAV2/2-ND4). The first-affected eye received gene therapy; the fellow (affected/not-yet-affected) eye was randomly injected with gene therapy or placebo. The primary end point was the difference in change from baseline of best-corrected visual acuity (BCVA) in second-affected/not-yet-affected eyes treated with lenadogene nolparvovec versus placebo at 1.5 years post-treatment, expressed in logarithm of the minimal angle of resolution (LogMAR). Forty-eight patients were treated bilaterally and 50 unilaterally. At 1.5 years, the change from baseline in BCVA was not statistically different between second-affected/not-yet-affected eyes receiving lenadogene nolparvovec and placebo (primary end point). A statistically significant improvement in BCVA was reported from baseline to 1.5 years in lenadogene nolparvovec-treated eyes: -0.23 LogMAR for the first-affected eyes of bilaterally treated patients (P < 0.01); and -0.15 LogMAR for second-affected/not-yet-affected eyes of bilaterally treated patients and the first-affected eyes of unilaterally treated patients (P < 0.05). The mean improvement in BCVA from nadir to 1.5 years was -0.38 (0.052) LogMAR and -0.33 (0.052) LogMAR in first-affected and second-affected/not-yet-affected eyes treated with lenadogene nolparvovec, respectively (bilateral treatment group). A mean improvement of -0.33 (0.051) LogMAR and -0.26 (0.051) LogMAR was observed in first-affected lenadogene nolparvovec-treated eyes and second-affected/not-yet-affected placebo-treated eyes, respectively (unilateral treatment group). The proportion of patients with one or both eyes on-chart at 1.5 years was 85.4% and 72.0% for bilaterally and unilaterally treated patients, respectively. The gene therapy was well tolerated, with no systemic issues. Intraocular inflammation, which was mostly mild and well controlled with topical corticosteroids, occurred in 70.7% of lenadogene nolparvovec-treated eyes versus 10.2% of placebo-treated eyes. Among eyes treated with lenadogene nolparvovec, there was no difference in the incidence of intraocular inflammation between bilaterally and unilaterally treated patients. Overall, the REFLECT trial demonstrated an improvement of BCVA in LHON eyes carrying the m.11778G>A mtDNA mutation treated with lenadogene nolparvovec or placebo to a degree not reported in natural history studies and supports an improved benefit/risk profile for bilateral injections of lenadogene nolparvovec relative to unilateral injections.


Assuntos
Atrofia Óptica Hereditária de Leber , Humanos , DNA Mitocondrial/genética , Terapia Genética , Inflamação/etiologia , Mutação/genética , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia
3.
Mol Ther ; 31(7): 1979-1993, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012705

RESUMO

Success in the treatment of infants with spinal muscular atrophy (SMA) underscores the potential of vectors based on adeno-associated virus (AAV). However, a major obstacle to the full realization of this potential is pre-existing natural and therapy-induced anti-capsid humoral immunity. Structure-guided capsid engineering is one possible approach to surmounting this challenge but necessitates an understanding of capsid-antibody interactions at high molecular resolution. Currently, only mouse-derived monoclonal antibodies (mAbs) are available to structurally map these interactions, which presupposes that mouse and human-derived antibodies are functionally equivalent. In this study, we have characterized the polyclonal antibody responses of infants following AAV9-mediated gene therapy for SMA and recovered 35 anti-capsid mAbs from the abundance of switched-memory B (smB) cells present in these infants. For 21 of these mAbs, seven from each of three infants, we have undertaken functional and structural analysis measuring neutralization, affinities, and binding patterns by cryoelectron microscopy (cryo-EM). Four distinct patterns were observed akin to those reported for mouse-derived mAbs, but with early evidence of differing binding pattern preference and underlying molecular interactions. This is the first human and largest series of anti-capsid mAbs to have been comprehensively characterized and will prove to be powerful tools for basic discovery and applied purposes.


Assuntos
Anticorpos Monoclonais , Capsídeo , Lactente , Humanos , Animais , Camundongos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/genética , Microscopia Crioeletrônica , Capsídeo/química , Proteínas do Capsídeo/química , Dependovirus , Terapia Genética , Vetores Genéticos/genética
4.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256124

RESUMO

Genetic disorders of the central nervous system (CNS) comprise a significant portion of disability in both children and adults. Several preclinical animal models have shown effective adeno-associated virus (AAV) mediated gene transfer for either treatment or prevention of autosomal recessive genetic disorders. Owing to the intricacy of the human CNS and the blood-brain barrier, it is difficult to deliver genes, particularly since the expression of any given gene may be required in a particular CNS structure or cell type at a specific time during development. In this review, we analyzed delivery methods for AAV-mediated gene therapy in past and current clinical trials. The delivery routes analyzed were direct intraparenchymal (IP), intracerebroventricular (ICV), intra-cisterna magna (CM), lumbar intrathecal (IT), and intravenous (IV). The results demonstrated that the dose used in these routes varies dramatically. The average total doses used were calculated and were 1.03 × 1013 for IP, 5.00 × 1013 for ICV, 1.26 × 1014 for CM, and 3.14 × 1014 for IT delivery. The dose for IV delivery varies by patient weight and is 1.13 × 1015 IV for a 10 kg infant. Ultimately, the choice of intervention must weigh the risk of an invasive surgical procedure to the toxicity and immune response associated with a high dose vector.


Assuntos
Sistema Nervoso Central , Dependovirus , Adulto , Animais , Criança , Lactente , Humanos , Dependovirus/genética , Barreira Hematoencefálica , Administração Intravenosa , Terapia Genética
5.
J Gene Med ; 25(12): e3560, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37392007

RESUMO

BACKGROUND: Fabry disease (FD) is an inherited lysosomal storage disease caused by deficiency of α-galactosidase A (α-Gal A) encoded by the GLA gene. The symptoms of FD occur as a result of the accumulation of globotriaosylceramide (Gb3), comprising a substrate of α-Gal A, in the organs. Adeno-associated virus (AAV)-mediated gene therapy is a promising treatment for FD. METHODS: α-Gal A knockout (GLAko) mice were injected intravenously with AAV2 (1 × 1011 viral genomes [vg]) or AAV9 (1 × 1011 or 2 × 1012 vg) vectors carrying human GLA (AAV-hGLA), and plasma, brain, heart, liver and kidney were tested for α-Gal A activity. The vector genome copy numbers (VGCNs) and Gb3 content in each organ were also examined. RESULTS: The plasma α-Gal A enzymatic activity was three-fold higher in the AAV9 2 × 1012 vg group than wild-type (WT) controls, which was maintained for up to 8 weeks after injection. In the AAV9 2 × 1012 vg group, the level of α-Gal A expression was high in the heart and liver, intermediate in the kidney, and low in the brain. VGCNs in the all organs of the AAV9 2 × 1012 vg group significantly increased compared to the phosphate-buffered-saline (PBS) group. Although Gb3 in the heart, liver and kidney of the AAV9 2 × 1012 vg was reduced compared to PBS group and AAV2 group, and the amount of Gb3 in the brain was not reduced. CONCLUSIONS: Systemic injection of AAV9-hGLA resulted in α-Gal A expression and Gb3 reduction in the organs of GLAko mice. To expect a higher expression of α-Gal A in the brain, the injection dosage, administration route and the timing of injection should be reconsidered.


Assuntos
Doença de Fabry , alfa-Galactosidase , Humanos , Animais , Camundongos , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Doença de Fabry/genética , Doença de Fabry/terapia , Doença de Fabry/metabolismo , Camundongos Knockout , Administração Intravenosa
6.
J Med Virol ; 95(7): e28969, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37485644

RESUMO

Despite the extensive use of effective vaccines and antiviral drugs, chronic hepatitis B virus (HBV) infection continues to pose a serious threat to global public health. Therapies with novel mechanisms of action against HBV are being explored for achieving a functional cure. In this study, five murine models of HBV replication were used to investigate the inhibitory effect of RNA binding motif protein 24 (RBM24) on HBV replication. The findings revealed that RBM24 serves as a host restriction factor and suppresses HBV replication in vivo. The transient overexpression of RBM24 in hydrodynamics-based mouse models of HBV replication driven by the CMV or HBV promoters suppressed HBV replication. Additionally, the ectopic expression of RBM24 decreased viral accumulation and the levels of HBV covalently closed circular DNA (cccDNA) in an rcccDNA mouse model. The liver-directed transduction of adeno-associated viruses (AAV)-RBM24 mediated the stable hepatic expression of RBM24 in pAAV-HBV1.2 and HBV/tg mouse models, and markedly reduced the levels of HBV cccDNA and other viral indicators. Altogether, these findings revealed that RBM24 inhibits the replication of HBV in vivo, and RBM24 may be a potential therapeutic target for combating HBV infections.


Assuntos
Hepatite B Crônica , Hepatite B , Camundongos , Animais , Vírus da Hepatite B , Replicação Viral , DNA Circular , Motivos de Ligação ao RNA , DNA Viral/genética , DNA Viral/metabolismo
7.
Mol Pharm ; 20(1): 758-766, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36374990

RESUMO

In this study, the author compared the performance of two allometric scaling approaches and body-weight-based dose conversion approach for first-in-patient (FIP) dose prediction for adeno-associated virus (AAV)-mediated hemophilia gene therapy using preclinical and clinical efficacy data of nine AAV vectors. In general, body-weight-based direct conversion of effective doses in monkeys or dogs was more likely to underestimate FIP dose but worked for one bioengineered vector with a high transduction efficiency specifically in humans. In contrast, allometric scaling between gene efficiency factor (log GEF) and body weight (log W) was likely to overestimate FIP dose but worked for two vectors with capsid-specific T-cell responses in patients. The third approach, allometric scaling between log GEF and W-0.25 was appropriate for FIP dose prediction in the absence of T-cell responses to AAV vectors or a dramatic difference in vector transduction efficiency between animals and humans.


Assuntos
Hemofilia A , Humanos , Animais , Cães , Hemofilia A/genética , Hemofilia A/terapia , Dependovirus/genética , Terapia Genética , Capsídeo , Proteínas do Capsídeo/genética , Vetores Genéticos/genética
8.
Toxicol Pathol ; 51(5): 246-256, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37921115

RESUMO

Replication-incompetent adeno-associated virus (AAV)-based vectors are nonpathogenic viral particles used to deliver therapeutic genes to treat multiple monogenic disorders. AAVs can elicit immune responses; thus, one challenge in AAV-based gene therapy is the presence of neutralizing antibodies against vector capsids that may prevent transduction of target cells or elicit adverse findings. We present safety findings from two 12-week studies in nonhuman primates (NHPs) with pre-existing or treatment-emergent antibodies. In the first study, NHPs with varying levels of naturally acquired anti-AAV5 antibodies were dosed with an AAV5-based vector encoding human factor VIII (hFVIII). In the second study, NHPs with no pre-existing anti-AAV antibodies were dosed with an AAV5-based vector carrying the beta subunit of choriogonadotropic hormone (bCG); this led to the induction of high-titer antibodies against the AAV5 capsid. Four weeks later, the same NHPs received an equivalent dose of an AAV5-based vector carrying human factor IX (hFIX). In both of these studies, the administration of vectors carrying hFVIII, bCG, and hFIX was well-tolerated in NHPs with no adverse clinical pathology or microscopic findings. These two studies demonstrate the safety of AAV-based vector administration in NHPs with either low-titer pre-existing anti-AAV5 antibodies or re-administration, even in the presence of high-titer antibodies.


Assuntos
Capsídeo , Dependovirus , Animais , Humanos , Dependovirus/genética , Anticorpos Neutralizantes/genética , Terapia Genética
9.
Int J Toxicol ; 42(3): 207-218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762691

RESUMO

Gene therapy has become an important modality for a wide range of therapeutic indications with a rapid increase in the number of therapeutic candidates being developed in this field. Understanding the molecular biology underlying the gene therapy is often critical to develop appropriate safety assessment strategies. We aimed to discuss some of the commonly used gene therapy modalities and common preclinical toxicology testing considerations when developing gene therapies. Non-viral gene delivery methods such as electroporation, microinjection, peptide nanoparticles and lipid nanoparticles are deployed as innovative molecular molecular construct which are included in the design of novel gene therapies and the associated molecular biology mechanisms have become relevant knowledge to non-clinical toxicology. Viral gene delivery methodologies including Adenovirus vectors, Adeno-Associated virus vectors and Lentivirus gene therapy vectors have also advanced considerably across numerous therapeutic areas, raising unique non-clinical toxicology and immunological considerations. General toxicology, biodistribution and tumorigenicity are the pillars of non-clinical safety testing in gene therapies. Evaluating the tumorigenicity potential of a gene editing therapy often leverages molecular pathology while some translational challenges remain. Toxicology study design is entering a new era where science-driven customized approaches and program specific considerations have become the norm.


Assuntos
Edição de Genes , Terapia Genética , Distribuição Tecidual , Terapia Genética/métodos , Técnicas de Transferência de Genes , Vetores Genéticos
10.
Biochem Biophys Res Commun ; 589: 192-196, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34922202

RESUMO

A concurrent reduction in muscle mass and strength is frequently observed in numerous conditions, including neuromuscular disease, ageing, and muscle inactivity due to limb immobilization or prolonged bed rest. Thus, identifying the molecular mechanisms that control skeletal muscle mass and strength is fundamental for developing interventions aimed at counteracting muscle loss (muscle atrophy). It was recently reported that muscle atrophy induced by denervation of motor nerves was associated with increased expression of Ca2+/calmodulin-dependent protein serine/threonine kinase II ß (CaMKIIß) in muscle. In addition, treatment with KN-93 phosphate, which inhibits CaMKII-family kinases, partly suppressed denervation-induced muscle atrophy. Therefore, to test a possible role for CaMKIIß in muscle mass regulation, we generated and injected recombinant adeno-associated virus (AAV) vectors encoding wild-type (AAV-WT), inactive (AAV-K43 M), or constitutively active (AAV-T287D) CaMKIIß into the left hindlimb tibialis anterior muscle of mice at three months of age. Although AAV-WT infection induced expression of exogenous CaMKIIß in the hindlimb muscle, no significant changes in muscle mass and strength were observed. By contrast, AAV-K43 M or AAV-T287D infection induced exogenous expression of the corresponding mutants and significantly increased or decreased the muscle mass and strength of the infected hind limb, respectively. Together, these findings demonstrate the potential of CaMKIIß as a novel therapeutic target for enhancing muscle mass and strength.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dependovirus/metabolismo , Força Muscular/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Mutação/genética , Animais , Células HEK293 , Membro Posterior/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , Tamanho do Órgão
11.
BMC Neurol ; 22(1): 257, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35820885

RESUMO

BACKGROUND: Leber Hereditary Optic Neuropathy (LHON) is a rare, maternally-inherited mitochondrial disease that primarily affects retinal ganglion cells (RGCs) and their axons in the optic nerve, leading to irreversible, bilateral severe vision loss. Lenadogene nolparvovec gene therapy was developed as a treatment for patients with vision loss from LHON caused by the most prevalent m.11778G > A mitochondrial DNA point mutation in the MT-ND4 gene. Lenadogene nolparvovec is a replication-defective recombinant adeno-associated virus vector 2 serotype 2 (AAV2/2), encoding the human wild-type MT-ND4 protein. Lenadogene nolparvovec was administered by intravitreal injection (IVT) in LHON patients harboring the m.11778G > A ND4 mutation in a clinical development program including one phase 1/2 study (REVEAL), three phase 3 pivotal studies (REVERSE, RESCUE, REFLECT), and one long-term follow-up study (RESTORE, the follow-up of REVERSE and RESCUE patients). CASE PRESENTATION: A 67-year-old woman with MT-ND4 LHON, included in the REVERSE clinical study, received a unilateral IVT of lenadogene nolparvovec in the right eye and a sham injection in the left eye in May 2016, 11.4 months and 8.8 months after vision loss in her right and left eyes, respectively. The patient had a normal brain magnetic resonance imaging with contrast at the time of diagnosis of LHON. Two years after treatment administration, BCVA had improved in both eyes. The product was well tolerated with mild and resolutive anterior chamber inflammation in the treated eye. In May 2019, the patient was diagnosed with a right temporal lobe glioblastoma, IDH-wildtype, World Health Organization grade 4, based on histological analysis of a tumor excision. The brain tumor was assessed for the presence of vector DNA by using a sensitive validated qPCR assay targeting the ND4 sequence of the vector. CONCLUSION: ND4 DNA was not detected (below 15.625 copies/µg of genomic DNA) in DNA extracted from the brain tumor, while a housekeeping gene DNA was detected at high levels. Taken together, this data shows the absence of detection of lenadogene nolparvovec in a brain tumor (glioblastoma) of a treated patient in the REVERSE clinical trial 3 years after gene therapy administration, supporting the long-term favorable safety of lenadogene nolparvovec.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Atrofia Óptica Hereditária de Leber , Idoso , Biópsia , Ensaios Clínicos Fase III como Assunto , Dependovirus , Feminino , Seguimentos , Humanos , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia
12.
Mol Ther ; 29(2): 597-610, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309883

RESUMO

Evaluation of immune responses to adeno-associated virus (AAV)-mediated gene therapies prior to and following dose administration plays a key role in determining therapeutic safety and efficacy. This report describes up to 3 years of immunogenicity data following administration of valoctocogene roxaparvovec (BMN 270), an AAV5-mediated gene therapy encoding human B domain-deleted FVIII (hFVIII-SQ) in a phase 1/2 clinical study of adult males with severe hemophilia A. Patients with pre-existing humoral immunity to AAV5 or with a history of FVIII inhibitors were excluded from the trial. Blood plasma and peripheral blood mononuclear cell (PBMC) samples were collected at regular intervals following dose administration for assessment of humoral and cellular immune responses to both the AAV5 vector and transgene-expressed hFVIII-SQ. The predominant immune response elicited by BMN 270 administration was largely limited to the development of antibodies against the AAV5 capsid that were cross-reactive with other common AAV serotypes. No FVIII inhibitor responses were observed within 3 years following dose administration. In a context of prophylactic or on-demand corticosteroid immunosuppression given after vector infusion, AAV5 and hFVIII-SQ peptide-specific cellular immune responses were intermittently detected by an interferon (IFN)-γ and tumor necrosis factor (TNF)-α FluoroSpot assay, but they were not clearly associated with detrimental safety events or changes in efficacy measures.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Hemofilia A/genética , Hemofilia A/terapia , Adulto , Reações Cruzadas/imunologia , Dependovirus/imunologia , Fator VIII/genética , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Humoral , Masculino , Transgenes , Resultado do Tratamento
13.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163475

RESUMO

Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.


Assuntos
Vesículas Extracelulares/virologia , Distrofia Muscular de Duchenne/terapia , Células Satélites de Músculo Esquelético/metabolismo , Esfingomielina Fosfodiesterase/genética , Animais , Ácidos Nucleicos Livres/genética , Dependovirus/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/transplante , Terapia Genética , Vetores Genéticos , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Transdução Genética
14.
Toxicol Pathol ; 49(3): 537-543, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33167778

RESUMO

The goal of this study was to develop methods for the evaluation of green fluorescent protein (GFP) and GFP transcript biodistribution in paraformaldehyde-fixed paraffin-embedded (PFPE) eye sections to assess the effectiveness of Adeno-associated virus (AAV) gene delivery in an experimental ocular toxicity study. Female C57BL/6NTac mice were administered AAV2-enhancedGFP vector once via subretinal injection. One group also received anti-inflammatory therapy (meloxicam). Immunohistochemistry (IHC) and RNA in situ hybridization (ISH) for GFP were performed on PFPE serial eye sections and evaluated using semiquantitative methods. On day 43, GFP labeling in both IHC and ISH sections was greatest in the retinal pigment epithelium, compared with other retinal layers in which expression was negative to moderate. Despite the presence of IHC GFP labeling in the photoreceptor layer (PRL) in some animals, only low numbers of transduced cells were detected by ISH in the PRL. Simultaneous analysis of IHC and ISH may be needed for comprehensive assessment of gene transduction and protein biodistribution. This study demonstrates approaches for semiquantitative evaluation of IHC and ISH that allow interpretation and reporting of GFP expression in toxicity studies.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Dependovirus/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Retina/metabolismo , Distribuição Tecidual
15.
Biochem Biophys Res Commun ; 527(3): 824-830, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32430177

RESUMO

The current phase I/II clinical trial for human glycogen storage disease type-Ia (GSD-Ia) (NCT03517085) uses a recombinant adeno-associated virus (rAAV) vector expressing a codon-optimized human glucose-6-phosphatase-α (G6Pase-α or G6PC). DNA sequence changes introduced by codon-optimization can negatively impact gene expression. We therefore generated a novel variant in which a single amino acid change, S298C, is introduced into the native human G6PC sequence. Short term gene transfer study in G6pc-/- mice showed that the rAAV-G6PC-S298C vector is 3-fold more efficacious than the native rAAV-G6PC vector. We have shown previously that restoring 3% of normal hepatic G6Pase-α activity in G6pc-/- mice prevents hepatocellular adenoma/carcinoma (HCA/HCC) development and that mice harboring <3% of normal hepatic G6Pase-α activity are at risk of tumor development. We have also shown that G6Pase-α deficiency leads to hepatic autophagy impairment that can contribute to hepatocarcinogenesis. We now undertake a long-term (66-week) preclinical characterization of the rAAV-G6PC-S298C vector in GSD-Ia gene therapy. We show that the increased efficacy of rAAV-G6PC-S298C has enabled the G6pc-/- mice treated with a lower dose of this vector to survive long-term. We further show that mice expressing ≥3% of normal hepatic G6Pase-α activity do not develop hepatic tumors or autophagy impairment but mice expressing <3% of normal hepatic G6Pase-α activity display impaired hepatic autophagy with one developing HCA/HCC nodules. Our study shows that the rAAV-G6PC-S298C vector provides equal or greater efficacy to the codon optimization approach, offering a valuable alternative vector for clinical translation in human GSD-Ia.


Assuntos
Terapia Genética , Vetores Genéticos/uso terapêutico , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/terapia , Mutação Puntual , Animais , Autofagia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos
16.
Calcif Tissue Int ; 106(6): 665-677, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32076747

RESUMO

Hypophosphatasia (HPP) is a systemic skeletal disease caused by mutations in the gene encoding tissue-nonspecific alkaline phosphatase (TNALP). We recently reported that survival of HPP model mice can be prolonged using an adeno-associated virus (AAV) vector expressing bone-targeted TNALP with deca-aspartate at the C terminus (TNALP-D10); however, abnormal bone structure and hypomineralization remained in the treated mice. Here, to develop a more effective and clinically applicable approach, we assessed whether transfection with TNALP-D10 expressing virus vector at a higher dose than previously used would ameliorate bone structure defects. We constructed a self-complementary AAV8 vector expressing TNALP driven by the chicken beta-actin (CBA) promoter (scAAV8-CB-TNALP-D10). The vector was injected into both quadriceps femoris muscles of newborn HPP mice at a dose of 4.5 × 1012 vector genome (v.g.)/body, resulting in 20 U/mL of serum ALP activity. The 4.5 × 1012 v.g./body-treated HPP mice grew normally and displayed improved bone structure at the knee joints in X-ray images. Micro-CT analysis showed normal trabecular bone structure and mineralization. The mechanical properties of the femur were also recovered. Histological analysis of the femurs demonstrated that ALP replacement levels were sufficient to promote normal, growth plate cartilage arrangement. These results suggest that AAV vector-mediated high-dose TNALP-D10 therapy is a promising option for improving the quality of life (QOL) of patients with the infantile form of HPP.


Assuntos
Fosfatase Alcalina/genética , Osso Esponjoso/patologia , Hipofosfatasia/terapia , Animais , Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Camundongos , Qualidade de Vida
17.
Dysphagia ; 35(3): 471-478, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31468191

RESUMO

The vagal afferent nerves regulate swallowing and esophageal motor reflexes. However, there are still gaps in the understanding of vagal afferent innervation of the esophageal mucosa. Anatomical studies found that the vagal afferent mucosal innervation is dense in the upper esophageal sphincter area but rare in more distal segments of the esophagus. In contrast, electrophysiological studies concluded that the vagal afferent nerve fibers also densely innervate mucosa in more distal esophagus. We hypothesized that the transfection of vagal afferent neurons with adeno-associated virus vector encoding green fluorescent protein (AAV-GFP) allows to visualize vagal afferent nerve fibers in the esophageal mucosa in the mouse. AAV-GFP was injected into the vagal jugular/nodose ganglia in vivo to sparsely label vagal afferent nerve fibers. The esophageal tissue was harvested 4-6 weeks later, the GFP signal was amplified by immunostaining, and confocal optical sections of the entire esophagi were obtained. We found numerous GFP-labeled fibers in the mucosa throughout the whole body of the esophagus. The GFP-labeled mucosal fibers were located just beneath the epithelium, branched repeatedly, had mostly longitudinal orientation, and terminated abruptly without forming terminal structures. The GFP-labeled mucosal fibers were concentrated in random areas of various sizes in which many fibers could be traced to a single parental axon. We conclude that the vagus nerves provide a robust afferent innervation of the mucosa throughout the whole body of the esophagus in the mouse. Vagal mucosal fibers may contribute to the sensing of intraluminal content and regulation of swallowing and other reflexes.


Assuntos
Mucosa Esofágica/inervação , Esôfago/inervação , Neurônios Aferentes/fisiologia , Nervo Vago/fisiologia , Animais , Deglutição/fisiologia , Camundongos , Modelos Animais
18.
J Gene Med ; 20(7-8): e3026, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29800509

RESUMO

INTRODUCTION: Intrathecal interleukin (IL)-10 delivered by plasmid or viral gene vectors has been proposed for clinical testing because it is effective for chronic pain in rodents, is a potential therapeutic for various human diseases, and was found to be nontoxic in dogs, when the human IL-10 ortholog was tested. However, recent studies in swine testing porcine IL-10 demonstrated fatal neurotoxicity. The present study aimed to deliver vector-encoded human IL-10 in swine, measure expression of the transgene in cerebrospinal fluid and monitor animals for signs of neurotoxicity. RESULTS: Human IL-10 levels peaked 2 weeks after vector administration followed by a rapid decline that occurred concomitant with the emergence of anti-human IL-10 antibodies in the cerebrospinal fluid and serum. Animals remained neurologically healthy throughout the study period. CONCLUSIONS: The findings of the present study suggest that swine are not idiosyncratically sensitive to intrathecal IL-10 because, recapitulating previous reports in dogs, they suffered no clinical neurotoxicity from the human ortholog. These results strongly infer that toxicity of intrathecal IL-10 in large animal models was previously overlooked because of a species mismatch between transgene and host. The present study further suggests that swine were protected from interleukin-10 by a humoral immune response against the xenogeneic cytokine. Future safety studies of IL-10 or related therapeutics may require syngeneic large animal models.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Interleucina-10/genética , Transgenes , Animais , Anticorpos Antivirais/imunologia , Capsídeo/imunologia , Capsídeo/metabolismo , Dependovirus/imunologia , Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Humanos , Injeções Espinhais , Interleucina-10/imunologia , Masculino , Modelos Animais , Suínos , Distribuição Tecidual , Transdução Genética
19.
Mol Ther ; 25(2): 379-391, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082074

RESUMO

Adeno-associated virus (AAV) is a safe and effective vector for gene therapy for retinal disorders. Gene therapy for hearing disorders is not as advanced, in part because gene delivery to sensory hair cells of the inner ear is inefficient. Although AAV transduces the inner hair cells of the mouse cochlea, outer hair cells remain refractory to transduction. Here, we demonstrate that a vector, exosome-associated AAV (exo-AAV), is a potent carrier of transgenes to all inner ear hair cells. Exo-AAV1-GFP is more efficient than conventional AAV1-GFP, both in mouse cochlear explants in vitro and with direct cochlear injection in vivo. Exo-AAV shows no toxicity in vivo, as assayed by tests of auditory and vestibular function. Finally, exo-AAV1 gene therapy partially rescues hearing in a mouse model of hereditary deafness (lipoma HMGIC fusion partner-like 5/tetraspan membrane protein of hair cell stereocilia [Lhfpl5/Tmhs-/-]). Exo-AAV is a powerful gene delivery system for hair cell research and may be useful for gene therapy for deafness.


Assuntos
Dependovirus/genética , Exossomos/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Células Ciliadas Auditivas Internas/metabolismo , Audição/genética , Animais , Células Cultivadas , Dependovirus/classificação , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Feminino , Expressão Gênica , Genes Reporter , Terapia Genética , Vetores Genéticos/administração & dosagem , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Transdução Genética , Transgenes
20.
Eur Heart J ; 38(27): 2132-2136, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28011703

RESUMO

AIMS: Current treatments of ventricular arrhythmias rely on modulation of cardiac electrical function through drugs, ablation or electroshocks, which are all non-biological and rather unspecific, irreversible or traumatizing interventions. Optogenetics, however, is a novel, biological technique allowing electrical modulation in a specific, reversible and trauma-free manner using light-gated ion channels. The aim of our study was to investigate optogenetic termination of ventricular arrhythmias in the whole heart. METHODS AND RESULTS: Systemic delivery of cardiotropic adeno-associated virus vectors, encoding the light-gated depolarizing ion channel red-activatable channelrhodopsin (ReaChR), resulted in global cardiomyocyte-restricted transgene expression in adult Wistar rat hearts allowing ReaChR-mediated depolarization and pacing. Next, ventricular tachyarrhythmias (VTs) were induced in the optogenetically modified hearts by burst pacing in a Langendorff setup, followed by programmed, local epicardial illumination. A single 470-nm light pulse (1000 ms, 2.97 mW/mm2) terminated 97% of monomorphic and 57% of polymorphic VTs vs. 0% without illumination, as assessed by electrocardiogram recordings. Optical mapping showed significant prolongation of voltage signals just before arrhythmia termination. Pharmacological action potential duration (APD) shortening almost fully inhibited light-induced arrhythmia termination indicating an important role for APD in this process. CONCLUSION: Brief local epicardial illumination of the optogenetically modified adult rat heart allows contact- and shock-free termination of ventricular arrhythmias in an effective and repetitive manner after optogenetic modification. These findings could lay the basis for the development of fundamentally new and biological options for cardiac arrhythmia management.


Assuntos
Arritmias Cardíacas/terapia , Channelrhodopsins/farmacologia , Optogenética/métodos , Fototerapia/métodos , Adenoviridae , Animais , Channelrhodopsins/administração & dosagem , Terapia Genética/métodos , Vetores Genéticos , Ativação do Canal Iônico/efeitos da radiação , Luz , Miócitos Cardíacos/fisiologia , Ratos Wistar , Taquicardia Ventricular/terapia , Transgenes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA