Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(3): 1589-1600, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38154035

RESUMO

Hydroxymethanesulfonate (HMS) has been found to be an abundant organosulfur aerosol compound in the Beijing-Tianjin-Hebei (BTH) region with a measured maximum daily mean concentration of up to 10 µg per cubic meter in winter. However, the production medium of HMS in aerosols is controversial, and it is unknown whether chemical transport models are able to capture the variations of HMS during individual haze events. In this work, we modify the parametrization of HMS chemistry in the nested-grid GEOS-Chem chemical transport model, whose simulations provide a good account of the field measurements during winter haze episodes. We find the contribution of the aqueous aerosol pathway to total HMS is about 36% in winter in Beijing, due primarily to the enhancement effect of the ionic strength on the rate constants of the reaction between dissolved formaldehyde and sulfite. Our simulations suggest that the HMS-to-inorganic sulfate ratio will increase from the baseline of 7% to 13% in the near future, given the ambitious clean air and climate mitigation policies for the BTH region. The more rapid reductions in emissions of SO2 and NOx compared to NH3 alter the atmospheric acidity, which is a critical factor leading to the rising importance of HMS in particulate sulfur species.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Pequim , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Material Particulado/análise , Monitoramento Ambiental , China , Aerossóis/análise , Água
2.
Geophys Res Lett ; 44(10): 5167-5177, 2017 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-28781391

RESUMO

A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH-dependent SOA water-uptake with solubility and phase separation; (2) show that laboratory data on IP- and MT-SOA hygroscopicity are representative of ambient data with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single-parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources.

3.
Chemosphere ; 349: 140796, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029936

RESUMO

Atmospheric humic-like substances (HULIS) could affect regional climate due to their strong light-absorbing capacity. Daily fine particulate matter (PM2.5) samples were collected from December 18, 2016 to January 8, 2017 at an urban site in Chongqing, Southwest China. The mean concentration of HULIS in terms of carbon (HULIS-C) was 6.4 ± 3.4 µg m-3, accounting for 72% of water-soluble organic carbon. The mass absorption efficiency at 365 nm (MAE365) and absorption Ångström index (AAE) of atmospheric HULIS were 2.8 ± 0.30 m2 g-1 C and 4.6 ± 0.37, respectively. Good correlations between the light absorption coefficients of HULIS at 365 nm (Abs365) and the concentrations of K+, elemental carbon, NO3-, and NH4+ were observed, with correlation coefficients higher than 0.83, indicating that biomass burning and secondary formation were potential sources of light-absorbing HULIS, as evidenced by abundant fluorescent components related to less-oxygenated HULIS. Comparing the changes in Abs365 values, concentrations of major water-soluble inorganic ions and carbonaceous compounds in PM2.5, and environmental factors during the clean and pollution periods, we found that extensive biomass burning during the pollution period contributed significantly to the increase of Abs365 values. Moreover, the aerosol pH during the pollution period was close to 4, and NO2 concentration and aerosol water content were about 1.6 and 2.7 times higher than those during the clean period, respectively, which were favorable to form secondary HULIS through aqueous phase reactions in the presence of high NOx, resulting in an evident increase in its light absorption. Knowledge generated from this study is critical for evaluating the regional radiative forcing of brown carbon in southwest China.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Substâncias Húmicas/análise , Água/química , Monitoramento Ambiental/métodos , Material Particulado/análise , Carbono/análise , Aerossóis/análise
4.
Huan Jing Ke Xue ; 45(8): 4493-4501, 2024 Aug 08.
Artigo em Zh | MEDLINE | ID: mdl-39168669

RESUMO

Ammonia (NH3) is an important alkaline reactive nitrogen, which, as a precursor of fine particulate matter, raises public health issues. In this study, online NH3, SO2, NO2, PM2.5, and its water-soluble inorganic ions were detected to deduce the influence of NH3 on aerosol liquid water content (AWC) and aerosol pH, including the formation of water-soluble secondary ions in PM2.5 in winter in Changzhou, an ammonia-rich city in the Yangtze River Delta area in winter. The results showed that NH4+ mainly existed in the form of NH4NO3 and (NH4)2SO4, and the remaining NH4+ existed as NH4Cl. Owing to the NH3-NH4+ buffer system, the aerosol pH values were found at 4.2 ± 0.4, which was positively correlated with the NH3 content. The aerosol pH value variation narrowed with the increase in PM2.5 concentration and tended to be between 4 to 5. AWC increased exponentially with the increase in humidity and SNA content, among which NH4NO3, (NH4)2SO4, and NH4Cl contributed 58.5%, 18.4%, and 8.3%, respectively, due to their hygroscopicity. Aerosol pH, AWC, and NH3-NH4+ conversion promoted the gas-to-particle conversion of SO2 and NO2. In Changzhou, rich NH3-NH4+ were found to maintain relatively high pH values, push up AWC, and promote the heterogeneous reaction of SO2, whereas NO3- generation was dominated by a homogeneous reaction, which was accelerated by NH3. According to the simulation results, relatively noticeable changes in aerosol pH and AWC could be found by the reduction of up to 30% of NH3.

5.
Huan Jing Ke Xue ; 44(10): 5356-5369, 2023 Oct 08.
Artigo em Zh | MEDLINE | ID: mdl-37827754

RESUMO

Recently, the contribution of inorganic salts (nitrates in particular) to the mass concentration of particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) has been increasing across China. However, it is urgent to understand how the increased inorganic salts affect the crucial properties of PM2.5. Here, we conducted continuous field observations at Zhenjiang Ecology and Environment Protection Bureau from January 1 to December 31, 2021. The mass concentrations of ammonium sulfate[(NH4)2SO4] and ammonium nitrate (NH4NO3) were calculated using different methods. The contributions of (NH4)2SO4 and NH4NO3 to the extinction coefficient, hygroscopic growth, and acidity of PM2.5 were discussed in detail. Our results demonstrated that the mean mass concentrations of (NH4)2SO4 and NH4NO3 during the study period were (6.5±4.5) and (15.0±13.3) µg·m-3, which contributed (20.5±18.2)% and (34.5±18.4)% to the mass concentration of PM2.5, respectively. The total extinction coefficient of PM2.5 was (224.5±194.2) Mm-1, in which NH4NO3 was the largest contributor[(40.1±20.9)%] followed by (NH4)2SO4[(19.1±10.8)%]. (NH4)2SO4 and NH4NO3 were also the dominant contributors to the hygroscopic growth of PM2.5. In particular, NH4NO3contributed from (53.8±13.4)% to (61.6±14.6)% to the aerosol water content of PM2.5 under pollution conditions. Thus, NH4NO3 was a key air pollutant to be targeted for further improving the visibility and air quality in Zhenjiang in the future. However, the reduction in the precursors of NH4NO3 would lead to an increase in aerosol acidity, particularly in the spring and winter seasons. Our results help us understand the evolution of air quality and the related impacts and also provide important information on air quality improvement in Zhenjiang in the future.

6.
Sci Total Environ ; 830: 154767, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35346709

RESUMO

Hydroxyalkylsulfonates may contribute significantly to atmospheric particles; however, their hygroscopic properties and cloud condensation nuclei (CCN) activities remain unknown. In this study, three complementary techniques were utilized to examine the hygroscopicity of sodium hydroxymethanesulfonate (NaHMS), sodium 2-hydroxyethylsulfonate (NaHES), and ammonium 2-hydroxyethylsulfonate (NH4HES) under subsaturated and supersaturated environments. The mass changes in the three hydroxyalkylsulfonates at different relative humidities at 25 °C were examined by a vapor sorption analyzer, and the mass growth factors were measured to be 3.25 ± 0.01 for NaHMS, 3.32 ± 0.02 for NaHES, and 3.34 ± 0.04 for NH4HES at 90% RH. Their hygroscopic growth was investigated by a humidity tandem differential mobility analyzer, and hygroscopic growth factors were 1.78 ± 0.02 for NaHMS, 1.71 ± 0.02 for NaHES, and 1.68 ± 0.03 for NH4HES at 90% RH. Furthermore, the CCN activities of NaHMS, NaHES, and NH4HES were explored, and their single hygroscopicity parameters (κccn) were measured to be 0.649 ± 0.097 for NaHMS, 0.559 ± 0.069 for NaHES, and 0.434 ± 0.073 for NH4HES. In addition, the hygroscopic growth and CCN activities of binary mixtures of ammonium sulfate with one of the three hydroxyalkylsulfonates were also examined.


Assuntos
Alcanossulfonatos/química , Gases , Aerossóis , Sulfato de Amônio , Umidade , Molhabilidade
7.
Sci Total Environ ; 839: 156279, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636545

RESUMO

China's "Blue Sky Action Plan" aimed at tremendous improvements in atmospheric visibility. While stringent emission control policies have substantially brought down PM2.5 mass concentrations, visibility improved much less than expected due to non-linear responses of visibility changes to PM2.5 reductions. In this study, we used long-term continuous humidified nephelometer system measurements of multi-wavelength aerosol scattering coefficients in both dry state and controlled relative humidity conditions in the North China Plain during spring and summer to attempt disentanlge the non-linear relationsips between visibility and PM2.5 mass.Aerosol scattering efficiency, optical hygroscopicity and air relative humidity are key factors for relating PM2.5 mass to visibility. It was found that aerosol volume scattering efficiencies (VSEs) were highly correlated (r > 0.8) with aerosol scattering coefficients. The continuous decrease of aerosol scattering Ångström exponent during pollution episodes revealed dominant contributions of secondary aerosol formation to aerosol size growth and mass accumulation, explaining aerosol VSE increases. Moreover, the optical hygroscopicity parameter κsca that describes the aerosol light scattering enhancement abilities through water uptake increased jointly with VSE and aggravated the visibility degradation during middle to final stages of pollution episodes. Thus, low visibility events (<3 km) only occurred when VSE and κsca were at their highest levels. The contribution of aerosol water to visibility degradation increased as visibility decreased, and contributed dominantly to visibility degradation under extremely low visibility conditions (<1 km). However, under hazy visibility conditions (3-10 km), which occurred most frequently, both aerosol water and scattering efficiency enhancement played significant roles. For setting up more efficient emission control strategies targeting on visibility improvement, our results highly encourage more future research on the linkages between secondary aerosol formation mechanisms and co-variations of aerosol scattering efficiency and aerosol hygroscopicity on the NCP.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Material Particulado/análise , Água , Molhabilidade
8.
Environ Pollut ; 287: 117625, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34186500

RESUMO

In recent years, severe air pollution still frequently occurs in winter despite the effective implementation of clean air actions in China. Therefore, field measurements of particle composition and gas precursors were collected from December 1, 2018 to January 15, 2019 at an urban site in a central Chinese city to investigate the existing mechanisms of pollution. The hourly averaged PM2.5 concentration during the campaign was 92.7 µg m-3, with nitrate and organic aerosol (OA) demonstrated as the principal components. Generally, NO2 oxidation in the daytime was observed as the major mechanism for nitrate generation, and aerosol water content (AWC) showed its influential role with the associated increases in the nitrogen oxidation and nitrate partitioning ratios. When AWC increased from dozens to hundreds of µg m-3 after the afternoon, nocturnal N2O5 hydrolysis was demonstrated as the overriding mechanism and provoked extreme contamination of nitrates. Five sources of organic aerosols (OAs) were identified: hydrocarbon-like OAs (HOAs, 16.5%), coal combustion OAs (CCOAs, 19.2%), biomass burning OAs (BBOAs, 9.9%), semi-volatile oxygenated OAs (SV-OOAs, 29.4%), and low-volatile oxygenated OAs (LV-OOAs, 25.0%). SV-OOAs and LV-OOAs were identified as gasSOAs and aqSOAs according to their sensitivities to the atmospheric oxidation capacity and AWC. In addition, aqueous-phase processing was found to be the dominant pathway for SOA formation when the AWC concentration was higher than 80 µg m-3. As an influential factor for nitrate and SOA formation, AWC could be greatly affected by RH and the concentrations of inorganic species. Sulfate, which was mainly contributed by anthropogenic emissions, was demonstrated to be a significant factor for active aqueous phase reactions, although SO2 has been dramatically reduced in recent years. Above all, this study revealed the significant role of AWC in current pollution episode in winter, and will assist in establishing future measures for pollution mitigation.


Assuntos
Poluentes Atmosféricos , Nitratos , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Nitratos/análise , Material Particulado/análise , Estações do Ano , Água
9.
Sci Total Environ ; 746: 141209, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763608

RESUMO

Organic aerosols (OA) undergo sophisticated physiochemical processes in the atmosphere, playing a crucial role in extreme haze formations over the Northern China Plain. However, current understandings of the detailed composition and formation pathways are limited. In this study, high-molecular weight (HMW) species were observed in samples collected year-round in urban Beijing, especially in autumn and winter, during 2016-2017. The positive-ion-mode mass spectra of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) showed that higher signal intensities were obtained in the mass-to-charge (m/z) ranges of 200-500 and 800-900, with repetitive mass difference patterns of m/z 12, 14, 16, and 18. This provided sound evidence that high-molecular-weight oligomers were generated as haze episodes became exacerbated. These oligomer signal intensities were enhanced in the presence of high relative humidity, aerosol water content, and PM2.5 (particles with an aerodynamic diameter ≤ 2.5 µm) mass, proving that the multiphase reaction processes play a fundamental role in haze formation in Beijing. Our study can form a basis for improved air pollution mitigation measures aimed at OA to improve health outcomes.

10.
Environ Pollut ; 252(Pt A): 236-244, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31153028

RESUMO

Current air quality models usually underestimate the concentration of ambient air sulfate, but the cause of this underestimation remains unclear. One reason for the underestimation is that the sulfate formation mechanism in the models is incomplete, and does not adequately consider the impact of the synergistic effects of high concentrations of multiple pollutants on sulfate formation. In this work, the roles of gaseous NO2, NH3 and solution ionic strength in the formation of sulfate in the aqueous phase were quantitatively investigated using a glass reactor and a 30 m3 smog chamber, separately. The results showed that sulfate formation was enhanced to different degrees in the presence of gas-phase NO2, NH3 and their coexistence as solutes in both liquid solution and aerosol water. NH3 enhances the aqueous oxidation of SO2 by NO2 mainly by accelerating the uptake of SO2 through increased solubility. More importantly, we found that high ionic strength in aerosol water could significantly accelerate the aqueous oxidation of SO2, resulting in unexpectedly high S(VI) formation rates. We estimate that under severe haze conditions, heterogeneous oxidation of SO2 by NO2 on aerosols may be much shorter than that through gas phase oxidation by OH, aided by high ionic strengths in aerosols. Considering the existence of complex air pollution conditions with high concentrations of NO2, NH3 and aerosol water, as expected in typical urban and suburban settings, the sulfate formation mechanisms revealed in the present work should be incorporated into air quality models to improve the prediction of sulfate concentrations.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Amônia/química , Monitoramento Ambiental/métodos , Nitritos/química , Sulfatos/análise , Dióxido de Enxofre/química , Aerossóis/análise , Concentração Osmolar , Oxirredução , Material Particulado/análise , Solubilidade , Sulfatos/química , Água
11.
Huan Jing Ke Xue ; 39(8): 3954-3964, 2018 Aug 08.
Artigo em Zh | MEDLINE | ID: mdl-29998706

RESUMO

Liquid water (cloud/fog droplets and aerosols) is ubiquitous in the atmosphere and can provide an important reaction media for aqueous-phase chemical reactions. Gaseous precursors (mainly VOCs) or their gas-phase initial or first-generation oxidation products (including intermediate-volatility and semi-volatile organic compounds; I/SVOCs) can undergo chemical reactions in the atmospheric condensed phase (aqueous phase) to form low-volatility, highly oxidized organic matter[e.g., some key tracer species such as organosulfates (OSs) and organonitrogens (ONs)]. These products largely remain in the particle phase upon water evaporation and are referred to as aqueous secondary organic aerosols (aqSOAs). aqSOAs have been emerging as a research hot topic in atmospheric chemistry, as they can contribute significantly to OAs and thus have important impacts on the environment, climate, and human health. Despite considerable progress, so far, aqSOAs remain poorly understood owing to their complex formation mechanisms. In this review, we focus mainly on the relevant research results on the SOAs formed in aerosol water-aqueous aerosol SOAs (aaSOAs)-including gas-phase precursors, formation mechanisms, laboratory simulations, and field observations, as well as SOA yield and contribution to OAs. Meanwhile, we propose future directions regarding studies of sources and formation mechanisms of aaSOAs, including identification of unknown aaSOA precursors and tracer products, photosensitizer-triggered radical chemistry, formation pathways of OS and ON compounds, field observations and model simulations of aaSOAs.

12.
J Environ Sci (China) ; 148: 210-220, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095158

RESUMO

Heterogeneous oxidation by gas-phase oxidants is an important chemical transformation pathway of secondary organic aerosol (SOA) and plays an important role in controlling the abundance, properties, as well as climate and health impacts of aerosols. However, our knowledge on this heterogeneous chemistry remains inadequate. In this study, the heterogeneous oxidation of α-pinene ozonolysis SOA by hydroxyl (OH) radicals was investigated under both low and high relative humidity (RH) conditions, with an emphasis on the evolution of molecular composition of SOA and its RH dependence. It is found that the heterogeneous oxidation of SOA at an OH exposure level equivalent to 12 hr of atmospheric aging leads to particle mass loss of 60% at 25% RH and 95% at 90% RH. The heterogeneous oxidation strongly changes the molecular composition of SOA. The dimer-to-monomer signal ratios increase dramatically with rising OH exposure, in particular under high RH conditions, suggesting that aerosol water stimulates the reaction of monomers with OH radicals more than that of dimers. In addition, the typical SOA tracer compounds such as pinic acid, pinonic acid, hydroxy pinonic acid and dimer esters (e.g., C17H26O8 and C19H28O7) have lifetimes of several hours against heterogeneous OH oxidation under typical atmospheric conditions, which highlights the need for the consideration of their heterogeneous loss in the estimation of monoterpene SOA concentrations using tracer-based methods. Our study sheds lights on the heterogeneous oxidation chemistry of monoterpene SOA and would help to understand their evolution and impacts in the atmosphere.


Assuntos
Aerossóis , Poluentes Atmosféricos , Monoterpenos Bicíclicos , Umidade , Radical Hidroxila , Oxirredução , Aerossóis/química , Radical Hidroxila/química , Monoterpenos Bicíclicos/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise , Ozônio/química , Modelos Químicos , Atmosfera/química , Monoterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA