Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 42(8): 2362-2373, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33595168

RESUMO

The g-ratio, defined as the inner-to-outer diameter of a myelinated axon, is associated with the speed of nerve impulse conduction, and represents an index of axonal myelination and integrity. It has been shown to be a sensitive and specific biomarker of neurodevelopment and neurodegeneration. However, there have been very few magnetic resonance imaging studies of the g-ratio in the context of normative aging; characterizing regional and time-dependent cerebral changes in g-ratio in cognitively normal subjects will be a crucial step in differentiating normal from abnormal microstructural alterations. In the current study, we investigated age-related differences in aggregate g-ratio, that is, g-ratio averaged over all fibers within regions of interest, in several white matter regions in a cohort of 52 cognitively unimpaired participants ranging in age from 21 to 84 years. We found a quadratic, U-shaped, relationship between aggregate g-ratio and age in most cerebral regions investigated, suggesting myelin maturation until middle age followed by a decrease at older ages. As expected, we observed that these age-related differences vary across different brain regions, with the frontal lobes and parietal lobes exhibiting slightly earlier ages of minimum aggregate g-ratio as compared to more posterior structures such as the occipital lobes and temporal lobes; this agrees with the retrogenesis paradigm. Our results provide evidence for a nonlinear association between age and aggregate g-ratio in a sample of adults from a highly controlled population. Finally, sex differences in aggregate g-ratio were observed in several cerebral regions, with women exhibiting overall lower values as compared to men; this likely reflects the greater myelin content in women's brain, in agreement with recent investigations.


Assuntos
Envelhecimento , Axônios , Desenvolvimento Humano/fisiologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Substância Branca/diagnóstico por imagem , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
Front Neurol ; 14: 1170457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181577

RESUMO

Stiffness of the large arteries has been shown to impact cerebral white matter (WM) microstructure in both younger and older adults. However, no study has yet demonstrated an association between arterial stiffness and aggregate g-ratio, a specific magnetic resonance imaging (MRI) measure of axonal myelination that is highly correlated with neuronal signal conduction speed. In a cohort of 38 well-documented cognitively unimpaired adults spanning a wide age range, we investigated the association between central arterial stiffness, measured using pulse wave velocity (PWV), and aggregate g-ratio, measured using our recent advanced quantitative MRI methodology, in several cerebral WM structures. After adjusting for age, sex, smoking status, and systolic blood pressure, our results indicate that higher PWV values, that is, elevated arterial stiffness, were associated with lower aggregate g-ratio values, that is, lower microstructural integrity of WM. Compared to other brain regions, these associations were stronger and highly significant in the splenium of the corpus callosum and the internal capsules, which have been consistently documented as very sensitive to elevated arterial stiffness. Moreover, our detailed analysis indicates that these associations were mainly driven by differences in myelination, measured using myelin volume fraction, rather than axonal density, measured using axonal volume fraction. Our findings suggest that arterial stiffness is associated with myelin degeneration, and encourages further longitudinal studies in larger study cohorts. Controlling arterial stiffness may represent a therapeutic target in maintaining the health of WM tissue in cerebral normative aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA