Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(2): e0168323, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38226809

RESUMO

Emerging and endemic zoonotic diseases continue to threaten human and animal health, our social fabric, and the global economy. Zoonoses frequently emerge from congregate interfaces where multiple animal species and humans coexist, including farms and markets. Traditional food markets are widespread across the globe and create an interface where domestic and wild animals interact among themselves and with humans, increasing the risk of pathogen spillover. Despite decades of evidence linking markets to disease outbreaks across the world, there remains a striking lack of pathogen surveillance programs that can relay timely, cost-effective, and actionable information to decision-makers to protect human and animal health. However, the strategic incorporation of environmental surveillance systems in markets coupled with novel pathogen detection strategies can create an early warning system capable of alerting us to the risk of outbreaks before they happen. Here, we explore the concept of "smart" markets that utilize continuous surveillance systems to monitor the emergence of zoonotic pathogens with spillover potential.IMPORTANCEFast detection and rapid intervention are crucial to mitigate risks of pathogen emergence, spillover and spread-every second counts. However, comprehensive, active, longitudinal surveillance systems at high-risk interfaces that provide real-time data for action remain lacking. This paper proposes "smart market" systems harnessing cutting-edge tools and a range of sampling techniques, including wastewater and air collection, multiplex assays, and metagenomic sequencing. Coupled with robust response pathways, these systems could better enable Early Warning and bolster prevention efforts.


Assuntos
Doenças Transmissíveis Emergentes , Monitoramento Epidemiológico , Animais , Humanos , Animais Selvagens , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/veterinária , Surtos de Doenças/prevenção & controle , Zoonoses/epidemiologia , Zoonoses/prevenção & controle
2.
Appl Environ Microbiol ; 90(7): e0027124, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38842339

RESUMO

Airborne triazole-resistant spores of the human fungal pathogen Aspergillus fumigatus are a significant human health problem as the agricultural use of triazoles has been selecting for cross-resistance to life-saving clinical triazoles. However, how to quantify exposure to airborne triazole-resistant spores remains unclear. Here, we describe a method for cost-effective wide-scale outdoor air sampling to measure both spore abundance as well as antifungal resistance fractions. We show that prolonged outdoor exposure of sticky seals placed in delta traps, when combined with a two-layered cultivation approach, can regionally yield sufficient colony-forming units (CFUs) for the quantitative assessment of aerial resistance levels at a spatial scale that was up to now unfeasible. When testing our method in a European pilot sampling 12 regions, we demonstrate that there are significant regional differences in airborne CFU numbers, and the triazole-resistant fraction of airborne spores is widespread and varies between 0 and 0.1 for itraconazole (∼4 mg/L) and voriconazole (∼2 mg/L). Our efficient and accessible air sampling protocol opens up extensive options for fine-scale spatial sampling and surveillance studies of airborne A. fumigatus.IMPORTANCEAspergillus fumigatus is an opportunistic fungal pathogen that humans and other animals are primarily exposed to through inhalation. Due to the limited availability of antifungals, resistance to the first choice class of antifungals, the triazoles, in A. fumigatus can make infections by this fungus untreatable and uncurable. Here, we describe and validate a method that allows for the quantification of airborne resistance fractions and quick genotyping of A. fumigatus TR-types. Our pilot study provides proof of concept of the suitability of the method for use by citizen-scientists for large-scale spatial air sampling. Spatial air sampling can open up extensive options for surveillance, health-risk assessment, and the study of landscape-level ecology of A. fumigatus, as well as investigating the environmental drivers of triazole resistance.


Assuntos
Microbiologia do Ar , Antifúngicos , Aspergillus fumigatus , Farmacorresistência Fúngica , Triazóis , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Triazóis/farmacologia , Antifúngicos/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Monitoramento Ambiental/métodos
3.
Electrophoresis ; 45(9-10): 933-947, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38416600

RESUMO

Biological material is routinely collected at crime scenes and from exhibits and is a key type of evidence during criminal investigations. Touch or trace DNA samples from surfaces and objects deemed to have been contacted are frequently collected. However, a person of interest may not leave any traces on contacted surfaces, for example, if wearing gloves. A novel means of sampling human DNA from air offers additional avenues for DNA collection. In the present study, we report on the results of a pilot study into the prevalence and persistence of human DNA in the air. The first aspect of the pilot study investigates air conditioner units that circulate air around a room, by sampling units located in four offices and four houses at different time frames post-cleaning. The second aspect investigates the ability to collect human DNA from the air in rooms, with and without people, for different periods of time and with different types of collection filters. Results of this pilot study show that human DNA can be collected on air conditioner unit surfaces and from the air, with air samples representing the more recent occupation while air conditioner units showing historic use of the room.


Assuntos
DNA , Manejo de Espécimes , Humanos , DNA/análise , Projetos Piloto , Manejo de Espécimes/métodos , Ar/análise , Ar Condicionado
4.
Electrophoresis ; 45(9-10): 916-932, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38419135

RESUMO

Biological material is routinely collected at crime scenes and from exhibits and is a key type of evidence during criminal investigations. Improvements in DNA technologies allow collection and profiling of trace samples, comprised of few cells, significantly expanding the types of exhibits targeted for DNA analysis to include touched surfaces. However, success rates from trace and touch DNA samples tend to be poorer compared to other biological materials such as blood. Simultaneously, there have been recent advances in the utility of environmental DNA collection (eDNA) in identification and tracking of different biological organisms and species from bacteria to naked mole rats in different environments, including, soil, ice, snow, air and aquatic. This paper examines the emerging methods and research into eDNA collection, with a special emphasis on the potential forensic applications of human DNA collection from air including challenges and further studies required to progress implementation.


Assuntos
DNA Ambiental , Animais , Humanos , Ar/análise , DNA Ambiental/análise , Ciências Forenses/métodos , Manejo de Espécimes/métodos
5.
Anal Bioanal Chem ; 416(12): 3059-3071, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558308

RESUMO

Pesticides can enter the atmosphere during spraying or after application, resulting in environmental or human exposure. The study describes the optimisation and validation of analytical methods for the determination of more than 300 pesticides in the particulate and gaseous phases of the air. Pesticides were sampled with high-volume air samplers on glass-fibre filters (GFFs) and glass columns filled with polyurethane foam (PUF) and XAD-2 resin. Comparing different extraction methods, a QuEChERS extraction with acetonitrile was selected for the GFFs. For the PUF/XAD-2 columns, a cold-column extraction with dichloromethane was used. Instrumental determination was performed using liquid chromatography/electrospray ionisation-time-of-flight mass spectrometry (LC/ESI-QTOF) and gas chromatography/electron impact ionisation-tandem mass spectrometry (GC/EI-MS/MS). Recovery experiments showed recovery rates between 70 and 120% for 263 compounds on the GFFs and 75 compounds on the PUF/XAD-2 columns. Semi-quantitative determination was performed for 39 compounds on the GFFs and 110 compounds on the PUF/XAD-2 columns. Finally, 27 compounds on the GFFs and 138 compounds on the PUF/XAD-2 columns could be determined only qualitatively. For the determination of the PUF/XAD-2 samples, signal suppression (LC) or signal enhancement (GC) due to matrix effects were determined. Method quantification limits of the optimised methods ranged from 30 to 240 pg/m3 for the target compounds on the GFFs, and from 8 to 60 pg/m3 on the PUF/XAD-2 columns. The applicability of the method was demonstrated by means of environmental air samples from an agricultural area in the Netherlands.

6.
J Aerosol Sci ; 1752024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38680161

RESUMO

The size of virus-laden particles determines whether aerosol or droplet transmission is dominant in the airborne transmission of pathogens. Determining dominant transmission pathways is critical to implementing effective exposure risk mitigation strategies. The aerobiology discipline greatly needs an air sampling system that can collect virus-laden airborne particles, separate them by particle diameter, and deliver them directly onto host cells without inactivating virus or killing cells. We report the use of a testing system that combines a BioAerosol Nebulizing Generator (BANG) to aerosolize Human coronavirus (HCoV)-OC43 (OC43) and an integrated air sampling system comprised of a BioCascade impactor (BC) and Viable Virus Aerosol Sampler (VIVAS), together referred to as BC-VIVAS, to deliver the aerosolized virus directly onto Vero E6 cells. Particles were collected into four stages according to their aerodynamic diameter (Stage 1: >9.43 µm, Stage 2: 3.81-9.43 µm, Stage 3: 1.41-3.81 µm and Stage 4: <1.41 µm). OC43 was detected by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analyses of samples from all BC-VIVAS stages. The calculated OC43 genome equivalent counts per cm3 of air ranged from 0.34±0.09 to 70.28±12.56, with the highest concentrations in stage 3 (1.41-3.81 µm) and stage 4 (<1.41 µm). Virus-induced cytopathic effects appeared only in cells exposed to particles collected in stages 3 and 4, demonstrating the presence of viable OC43 in particles <3.81 µm. This study demonstrates the dual utility of the BC-VIVAS as particle size-fractionating air sampler and a direct exposure system for aerosolized viruses. Such utility may help minimize conventional post-collection sample processing time required to assess the viability of airborne viruses and increase the understanding about transmission pathways for airborne pathogens.

7.
Plant Dis ; 108(7): 1910-1922, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38411610

RESUMO

Although improved knowledge on the movement of airborne plant pathogens is likely to benefit plant health management, generating this knowledge is often far more complicated than anticipated. This complexity is driven by the dynamic nature of environmental variables, diversity among pathosystems that are targeted, and the unique needs of each research group. When using a rotating-arm impaction sampler, particle collection is dependent on the pathogen, environment, research objectives, and limitations (monetary, environmental, or labor). Consequently, no design will result in 100% collection efficiency. Fortunately, it is likely that multiple approaches can succeed despite these constraints. Choices made during design and implementation of samplers can influence the results, and recognizing this influence is crucial for researchers. This article is for beginners in the art and science of using rotating-arm impaction samplers; it provides a foundation for designing a project, from planning the experiment to processing samples. We present a relatively nontechnical discussion of the factors influencing pathogen dispersal and how placement of the rotating-arm air samplers alters propagule capture. We include a discussion of applications of rotating-arm air samplers to demonstrate their versatility and potential in plant pathology research as well as their limitations.


Assuntos
Doenças das Plantas , Doenças das Plantas/microbiologia , Microbiologia do Ar , Patologia Vegetal , Plantas/microbiologia , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos
8.
J Occup Environ Hyg ; 21(7): 504-514, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924715

RESUMO

Ideally, measuring exposures to volatile organic compounds should allow for modifying sampling duration without loss in sensitivity. Traditional sorbent-based sampling can vary sampling duration, but sensitivity may be affected when capturing shorter tasks. Diaphragm and capillary flow controllers allow for a range of flow rates and sampling durations for air sampling with evacuated canisters. The goal of this study was to evaluate the extent to which commercialized capillary flow controllers satisfy the bias (±10%) and accuracy (±25%) criteria for air sampling methods as established by the National Institute for Occupational Safety and Health (NIOSH) using the framework of ASTM D6246 Standard Practice for Evaluating the Performance of Diffusive Samplers to compare their performance with diaphragm flow controllers in a long-term field study. Phase 1 consisted of a series of laboratory tests to evaluate capillary flow controller flow rates with respect to variations in temperature (-15-24 °C). The results demonstrated a slight increase in flow rate with lower temperatures. In Phase 2, the capillary flow controller was evaluated utilizing a matrix of parameters, including time-weighted average concentration, peak concentration (50-100× base concentration), air velocity across the sampler inlet (0.41-0.5 m/s), relative humidity (20-80%), and temperature (10-32 °C). Comparison of challenge concentrations with reference concentrations revealed the aggregate bias and overall accuracy for four tested compounds to be within the range of criteria for both NIOSH and ASTM standards. Additionally, capillary flow controllers displayed lower variability in flow rate and measured concentration (RSD: 2.4% and 4.3%, respectively) when compared with diaphragm flow controllers (RSD: 6.9% and 7.2%, respectively) for 24-hr laboratory tests. Phase 3 involved further testing of flow rate variability for both diaphragm and capillary flow controllers in a field study. The capillary flow controller displayed a lower level of variability (RSD: 5.2%) than the diaphragm flow controller (RSD: 8.0%) with respect to flow rate, while allowing for longer durations of sampling.


Assuntos
Poluentes Ocupacionais do Ar , Monitoramento Ambiental , Exposição Ocupacional , Compostos Orgânicos Voláteis , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Exposição Ocupacional/análise , Compostos Orgânicos Voláteis/análise , Poluentes Ocupacionais do Ar/análise , National Institute for Occupational Safety and Health, U.S. , Temperatura , Humanos , Estados Unidos
9.
Artigo em Zh | MEDLINE | ID: mdl-38403415

RESUMO

Objective: To conduct quantitative evaluation on the revise requirements of Specifications of Air Sampling for Hazardous Substances Monitoring in the Workplace (GBZ 159-2004) , clarify the problems and suggestions during its implementation for improvement, and provide a basis for the revision of the standard. Methods: From April to September 2021, stratified convenient sampling method was adopted and semi-open questionnaire was used to investigate the occupational health personnel in CDC, occupational prevention and control institutes, employers, third-party technical service institutions and universitie. The entropy weight of each index and the score based on entropy weight of GBZ 159 were calculated. Spearman rank correlation analysis was used to describe the correlation between the two indexes and radar chart was drawn for comprehensive evaluation. Results: A total of 151 questionnaires were received from the respondents, of which 147 were valid, with an effective recovery rate of 97.35%, involving 29 provinces, autonomous regions and municipalities. The median G scores of the necessity and urgency of GBZ 159 revision based on entropy weight were 2.84 and 3.17, respectively, and the difference was statistically significant (M=-25.50, P<0.001) . The trend of the score G of necessity and urgency based on entropy weight was basically the same for all secondary items (r(s)=0.9998, P<0.001) , and the score G of urgency based on entropy weight was higher than that of necessity. The highest score G of necessity and urgency based on entropy weight was "3.13 long time sampling", which were 7.56 and 8.23 respectively. This was followed by "3.12 short time sampling", which were 7.19 and 7.13 respectively. Conclusion: GBZ 159 has encountered some new problems and challenges in the implementation process, and some of its technical indicators have been out of line with the actual practice of occupational health at present. These are the two items that urgently needs to be revised and improved, such as "3.13 long time sampling" and "3.12 short time sampling" and other items need to be revised and improved.


Assuntos
Exposição Ocupacional , Saúde Ocupacional , Humanos , Substâncias Perigosas , Exposição Ocupacional/prevenção & controle , Local de Trabalho , Inquéritos e Questionários
10.
J Med Virol ; 95(4): e28748, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185846

RESUMO

Airborne transmission is an important transmission route for the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological data indicate that certain SARS-CoV-2 variants, like the omicron variant, are associated with higher transmissibility. We compared virus detection in air samples between hospitalized patients infected with different SARS-CoV-2 variants or influenza virus. The study was performed during three separate time periods in which subsequently the alpha, delta, and omicron SARS-CoV-2 variants were predominant. In total, 79 patients with coronavirus disease 2019 (COVID-19) and 22 patients with influenza A virus infection were included. Collected air samples were positive in 55% of patients infected with the omicron variant in comparison to 15% of those infected with the delta variant (p < 0.01). In multivariable analysis, the SARS-CoV-2 omicron BA.1/BA.2 variant (as compared to the delta variant) and the viral load in nasopharynx were both independently associated with air sample positivity, but the alpha variant and COVID-19 vaccination were not. The proportion of positive air samples patients infected with the influenza A virus was 18%. In conclusion, the higher air sample positivity rate of the omicron variant compared to previous SARS-CoV-2 variants may partially explain the higher transmission rates seen in epidemiological trends.


Assuntos
COVID-19 , Vírus da Influenza A , Humanos , SARS-CoV-2/genética , Vacinas contra COVID-19 , Eliminação de Partículas Virais , COVID-19/epidemiologia , Vírus da Influenza A/genética
11.
Med Mycol ; 61(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37793805

RESUMO

The incidence of invasive fungal disease (IFD) is on the rise due to increasing numbers of highly immunocompromized patients. Nosocomial IFD remains common despite our better understanding of its risk factors and pathophysiology. High-efficiency particulate air filtration with or without laminar air flow, frequent air exchanges, a positive pressure care environment, and environmental hygiene, amongst other measures, have been shown to reduce the mould burden in the patient environment. Environmental monitoring for moulds in areas where high-risk patients are cared for, such as hematopoietic cell transplant units, has been considered an adjunct to other routine environmental precautions. As a collaborative effort between authors affiliated to the Infection Prevention and Control Working Group and the Fungal Infection Working Group of the International Society of Antimicrobial Chemotherapy (ISAC), we reviewed the English language literature and international guidance to describe the evidence behind the need for environmental monitoring for filamentous fungi as a quality assurance approach with an emphasis on required additional precautions during periods of construction. Many different clinical sampling approaches have been described for air, water, and surface sampling with significant variation in laboratory methodologies between reports. Importantly, there are no agreed-upon thresholds that correlate with an increase in the clinical risk of mould infections. We highlight important areas for future research to assure a safe environment for highly immunocompromized patients.


Mould infections have a high mortality in high-risk patients. Ventilation engineering significantly reduces the risk of acquiring such infections. Environmental sampling for moulds is carried out in many centers in addition to standard precautions. We review the literature on this subject.


Assuntos
Aspergilose , Transplante de Células-Tronco Hematopoéticas , Micoses , Humanos , Aspergilose/tratamento farmacológico , Aspergilose/veterinária , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/veterinária , Fungos/genética , Micoses/epidemiologia , Micoses/prevenção & controle , Micoses/tratamento farmacológico , Micoses/veterinária , Monitoramento Ambiental
12.
Curr Allergy Asthma Rep ; 23(5): 223-236, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933176

RESUMO

PURPOSE OF REVIEW: To review current air sampling instruments and analysis methods and to describe new approaches being developed. RECENT FINDINGS: Spore trap sampling with analysis by microscopy remains the most widely used methods for aeroallergen determination even though there are often long delays from sample acquisition to data availability, as well as a need for specially-trained staff for sample analysis. The use of immunoassays and molecular biology to analyze outdoor or indoor samples has expanded in recent years and has provided valuable data on allergen exposure. New automated sampling devices capture pollen, analyze, and identify pollen grains by light scattering, laser-induced fluorescence, microscopy, or holography using signal or image processing to classify the pollen in real time or near real time. Air sampling data from current methods provide valuable information on aeroallergen exposure. The automated devices in use and under development show great potential but are not ready to replace existing aeroallergen networks.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/efeitos adversos , Alérgenos/análise , Pólen
13.
Environ Sci Technol ; 57(6): 2274-2285, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36657182

RESUMO

Biomass burning (BB) is an important source of atmospheric persistent organic pollutants (POPs) across the world. However, there are few field-based regional studies regarding the POPs released from BB. Due to the current limitations of emission factors and satellites, the contribution of BB to airborne POPs is still not well understood. In this study, with the simultaneous monitoring of BB biomarkers and POPs based on polyurethane foam-based passive air sampling technique, we mapped the contribution of BB to polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in the Indo-China Peninsula. Spearman correlations between levoglucosan and 16 PCBs (rs = 0.264-0.767, p < 0.05) and 2 OCPs (rs = 0.250-0.328, p < 0.05) confirmed that BB may facilitate POP emissions. Source apportionment indicated that BB contributed 9.3% to the total PCB and OCP mass. The high contribution of positive matrix factorization-resolved BB to PCBs and OCPs was almost consistent with their concentration distributions in the open BB season but not completely consistent with those in the pre-monsoon and/or monsoon seasons. Their contribution distributions may reflect the use history and geographic distribution in secondary sources of POPs. The field-based contribution dataset of BB to POPs is significant in improving regional BB emission inventories and model prediction.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Bifenilos Policlorados/análise , Poluentes Orgânicos Persistentes , Biomassa , Poluentes Atmosféricos/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , China , Monitoramento Ambiental/métodos
14.
Am J Respir Crit Care Med ; 205(3): 350-356, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34752730

RESUMO

Rationale: South African adolescents carry a high tuberculosis disease burden. It is not known if schools are high-risk settings for Mycobacterium tuberculosis (MTB) transmission. Objectives: To detect airborne MTB genomic DNA in classrooms. Methods: We studied 72 classrooms occupied by 2,262 students in two South African schools. High-volume air filtration was performed for median 40 (interquartile range [IQR], 35-54) minutes and assayed by droplet digital PCR (ddPCR)-targeting MTB region of difference 9 (RD9), with concurrent CO2 concentration measurement. Classroom data were benchmarked against public health clinics. Students who consented to individual tuberculosis screening completed a questionnaire and sputum collection (Xpert MTB/RIF Ultra) if symptom positive. Poisson statistics were used for MTB RD9 copy quantification. Measurements and Main Results: ddPCR assays were positive in 13/72 (18.1%) classrooms and 4/39 (10.3%) clinic measurements (P = 0.276). Median ambient CO2 concentration was 886 (IQR, 747-1223) ppm in classrooms versus 490 (IQR, 405-587) ppm in clinics (P < 0.001). Average airborne concentration of MTB RD9 was 3.61 copies per 180,000 liters in classrooms versus 1.74 copies per 180,000 liters in clinics (P = 0.280). Across all classrooms, the average risk of an occupant inhaling one MTB RD9 copy was estimated as 0.71% during one standard lesson of 35 minutes. Among 1,836/2,262 (81.2%) students who consented to screening, 21/90 (23.3%) symptomatic students produced a sputum sample, of which one was Xpert MTB/RIF Ultra positive. Conclusions: Airborne MTB genomic DNA was detected frequently in high school classrooms. Instantaneous risk of classroom exposure was similar to the risk in public health clinics.


Assuntos
Microbiologia do Ar , DNA Bacteriano/análise , Exposição por Inalação/análise , Mycobacterium tuberculosis/isolamento & purificação , Instituições Acadêmicas , Tuberculose/transmissão , Adolescente , Estudos Transversais , Feminino , Humanos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/estatística & dados numéricos , Masculino , Mycobacterium tuberculosis/genética , Risco , África do Sul , Tuberculose/diagnóstico
15.
Chin Chem Lett ; 34(1): 107701, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35911611

RESUMO

The SARS­CoV­2 virus is released from an infectious source (such as a sick person) and adsorbed on aerosols, which can form pathogenic microorganism aerosols, which can affect human health through airborne transmission. Efficient sampling and accurate detection of microorganisms in aerosols are the premise and basis for studying their properties and evaluating their hazard. In this study, we built a set of sub-micron aerosol detection platform, and carried out a simulation experiment on the SARS­CoV­2 aerosol in the air by wet-wall cyclone combined with immunomagnetic nanoparticle adsorption sampling and ddPCR. The feasibility of the system in aerosol detection was verified, and the influencing factors in the detection process were experimentally tested. As a result, the sampling efficiency was 29.77%, and extraction efficiency was 98.57%. The minimum detection limit per unit volume of aerosols was 250 copies (102 copies/mL, concentration factor 2.5).

16.
Indoor Air ; 32(8): e13083, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36040285

RESUMO

This systematic review aims to present an overview of the current aerosol sampling methods (and equipment) being used to investigate the presence of SARS-CoV-2 in the air, along with the main parameters reported in the studies that are essential to analyze the advantages and disadvantages of each method and perspectives for future research regarding this mode of transmission. A systematic literature review was performed on PubMed/MEDLINE, Web of Science, and Scopus to assess the current air sampling methodologies being applied to SARS-CoV-2. Most of the studies took place in indoor environments and healthcare settings and included air and environmental sampling. The collection mechanisms used were impinger, cyclone, impactor, filters, water-based condensation, and passive sampling. Most of the reviewed studies used RT-PCR to test the presence of SARS-CoV-2 RNA in the collected samples. SARS-CoV-2 RNA was detected with all collection mechanisms. From the studies detecting the presence of SARS-CoV-2 RNA, fourteen assessed infectivity. Five studies detected viable viruses using impactor, water-based condensation, and cyclone collection mechanisms. There is a need for a standardized protocol for sampling SARS-CoV-2 in air, which should also account for other influencing parameters, including air exchange ratio in the room sampled, relative humidity, temperature, and lighting conditions.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos , RNA Viral , Aerossóis e Gotículas Respiratórios , SARS-CoV-2 , Água
17.
Indoor Air ; 32(1): e12930, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34519380

RESUMO

Reliable methods to detect the presence of SARS-CoV-2 at venues where people gather are essential for epidemiological surveillance to guide public policy. Communal screening of air in a highly crowded space has the potential to provide early warning on the presence and potential transmission of SARS-CoV-2 as suggested by studies early in the epidemic. As hospitals and public facilities apply varying degrees of restrictions and regulations, it is important to provide multiple methodological options to enable environmental SARS-CoV-2 surveillance under different conditions. This study assessed the feasibility of using high-flowrate air samplers combined with RNA extraction kit designed for environmental sample to perform airborne SARS-CoV-2 surveillance in hospital setting, tested by RT-qPCR. The success rate of the air samples in detecting SARS-CoV-2 was then compared with surface swab samples collected in the same proximity. Additionally, positive RT-qPCR samples underwent viral culture to assess the viability of the sampled SARS-CoV-2. The study was performed in inpatient ward environments of a quaternary care university teaching hospital in Singapore housing active COVID-19 patients within the period of February to May 2020. Two types of wards were tested, naturally ventilated open-cohort ward and mechanically ventilated isolation ward. Distances between the site of air sampling and the patient cluster in the investigated wards were also recorded. No successful detection of airborne SARS-CoV-2 was recorded when 50 L/min air samplers were used. Upon increasing the sampling flowrate to 150 L/min, our results showed a high success rate in detecting the presence of SARS-CoV-2 from the air samples (72%) compared to the surface swab samples (9.6%). The positive detection rate of the air samples along with the corresponding viral load could be associated with the distance between sampling site and patient. The furthest distance from patient with PCR-positive air samples was 5.5 m. The airborne SARS-CoV-2 detection was comparable between the two types of wards with 60%-87.5% success rate. High prevalence of the virus was found in toilet areas, both on surfaces and in air. Finally, no successful culture attempt was recorded from the environmental air or surface samples.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Hospitais , SARS-CoV-2/isolamento & purificação , COVID-19 , Humanos , RNA Viral , Manejo de Espécimes
18.
J Sep Sci ; 45(2): 614-622, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34796657

RESUMO

Quantification of unsymmetrical dimethylhydrazine transformation products in ambient air is important for assessing the environmental impact of heavy rocket launches. There are very little data of such analyses, which is mainly caused by the low number of analytes covered by the available analytical methods and their complexity. A simple and cost-efficient method for accurate simultaneous determination of seven unsymmetrical dimethylhydrazine transformation products in air using solid-phase microextraction followed by gas chromatography-mass spectrometry was developed. The method was optimized for air sampling and solid-phase microextraction from 20-mL vials, which allows full automation of analysis. The extraction for 5 min by Carboxen/polydimethylsiloxane fiber from amber vials and desorption for 3 min provided the greatest analytes' responses, lowest relative standard deviations, linear calibration (R2 ≥ 0.99), and limits of detection from 0.12 to 0.5 µg/m3 . Samples with concentrations 500 µg/m3 can be stored at 21 ± 1°C without substantial losses (1-11%) for up to 24 h, while air samples with concentrations 10 and 50 µg/m3 stored for up to 24 h can be used for accurate quantification of only two and four out of seven analytes, respectively. The developed method was successfully tested for the analysis of air above real soil samples contaminated with unsymmetrical dimethylhydrazine rocket fuel.

19.
J Aerosol Sci ; 165: 106038, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35774447

RESUMO

The B.1.617.2 (Delta) variant of SARS-CoV-2 emerged in India in October of 2020 and spread widely to over 145 countries, comprising over 99% of genome sequence-confirmed virus in COVID-19 cases of the United States (US) by September 2021. The rise in COVID-19 cases due to the Delta variant coincided with a return to in-person school attendance, straining COVID-19 mitigation plans implemented by educational institutions. Some plans required sick students to self-isolate off-campus, resulting in an unintended consequence: exposure of co-inhabitants of dwellings used by the sick person during isolation. We assessed air and surface samples collected from the bedroom of a self-isolating university student with mild COVID-19 for the presence of SARS-CoV-2. That virus' RNA was detected by real-time reverse-transcription quantitative polymerase chain reaction (rRT-qPCR) in air samples from both an isolation bedroom and a distal, non-isolation room of the same dwelling. SARS-CoV-2 was detected and viable virus was isolated in cell cultures from aerosol samples as well as from the surface of a mobile phone. Genomic sequencing revealed that the virus was a Delta variant SARS-CoV-2 strain. Taken together, the results of this work confirm the presence of viable SARS-CoV-2 within a residential living space of a person with COVID-19 and show potential for transportation of virus-laden aerosols beyond a designated isolation suite to other areas of a single-family home.

20.
Am J Ind Med ; 65(9): 701-707, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35899403

RESUMO

BACKGROUND: Workers fabricating engineered stone face high risk for exposure to respirable crystalline silica (RCS) and subsequent development of silicosis. In response, the California Division of Occupational Safety and Health (Cal/OSHA) performed targeted enforcement inspections at engineered stone fabrication worksites. We investigated RCS exposures and employer adherence to Cal/OSHA's RCS and respiratory protection standards from these inspections to assess ongoing risk to stone fabrication workers. METHODS: We extracted employee personal air sampling results from Cal/OSHA inspection files and calculated RCS exposures. Standards require that employers continue monitoring employee RCS exposures and perform medical surveillance when exposures are at or above the action level (AL; 25 µg/m3 ); exposures above the permissible exposure limit (PEL; 50 µg/m3 ) are prohibited. We obtained RCS and respiratory protection standard violation citations from a federal database. RESULTS: We analyzed RCS exposures for 152 employees at 47 workplaces. Thirty-eight (25%) employees had exposures above the PEL (median = 89.7 µg/m3 ; range = 50.7-670.7 µg/m3 ); 17 (11%) had exposures between the AL and PEL. Twenty-four (51%) workplaces had ≥1 exposure above the PEL; 7 (15%) had ≥1 exposure between the AL and PEL. Thirty-four (72%) workplaces were cited for ≥1 RCS standard violation. Twenty-seven (57%) workplaces were cited for ≥1 respiratory protection standard violation. CONCLUSIONS: Our investigation demonstrates widespread RCS overexposure among workers and numerous employer Cal/OSHA standard violation citations. More enforcement and educational efforts could improve employer compliance with Cal/OSHA standards and inform employers and employees of the risks for RCS exposure and strategies for reducing exposure.


Assuntos
Exposição Ocupacional , Silicose , California/epidemiologia , Poeira/análise , Humanos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Exposição por Inalação/prevenção & controle , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Dióxido de Silício/análise , Silicose/epidemiologia , Silicose/prevenção & controle , Local de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA