Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pulm Pharmacol Ther ; 86: 102314, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964603

RESUMO

Ivacaftor is the first clinically approved monotherapy potentiator to treat CFTR channel dysfunction in people with cystic fibrosis. Ivacaftor (Iva) is a critical component for all current modulator therapies, including highly effective modulator therapies. Clinical studies show that CF patients on ivacaftor-containing therapies present various clinical responses, off-target effects, and adverse reactions, which could be related to metabolites of the compound. In this study, we reported the concentrations of Iva and two of its major metabolites (M1-Iva and M6-Iva) in capillary plasma and estimated M1-Iva and M6-Iva metabolic activity via the metabolite parent ratio in capillary plasma over 12 h. We also used the ratio of capillary plasma versus human nasal epithelial cell concentrations to evaluate entry into epithelial cells in vivo. M6-Iva was rarely detected by LC-MS/MS in epithelial cells from participants taking ivacaftor, although it was detected in plasma. To further explore this discrepancy, we performed in vitro studies, which showed that M1-Iva, but not M6-Iva, readily crossed 16HBE cell membranes. Our studies also suggest that metabolism of these compounds is unlikely to occur in airway epithelia despite evidence of expression of metabolism enzymes. Overall, our data provide evidence that there are differences between capillary and cellular concentrations of these compounds that may inform future studies of clinical response and off-target effects.

2.
J Infect Dis ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698016

RESUMO

BACKGROUND: Chronic pulmonary conditions such as asthma and COPD increase the risk of morbidity and mortality during infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). We hypothesized that individuals with such comorbidities are more susceptible to MERS-CoV infection due to increased expression of its receptor, dipeptidyl peptidase 4 (DPP4). METHODS: We modeled chronic airway disease by treating primary human airway epithelia with the Th2 cytokine IL-13, examining how this impacted DPP4 protein levels along with MERS-CoV entry and replication. RESULTS: IL-13 exposure for 3 days led to increased DPP4 protein abundance, while a 21-day treatment increased DPP4 levels and caused goblet cell metaplasia. Surprisingly, despite this increase in receptor availability, MERS-CoV entry and replication were not significantly impacted by IL-13 treatment. CONCLUSIONS: Our results suggest that increased DPP4 abundance is likely not the primary mechanism leading to increased MERS severity in the setting of Th2 inflammation. Transcriptional profiling analysis highlighted the complexity of IL-13 induced changes in airway epithelia, including altered expression of genes involved in innate immunity, antiviral responses, and maintenance of the extracellular mucus barrier. These data suggest that additional factors likely interact with DPP4 abundance to determine MERS-CoV infection outcomes.

3.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L647-L661, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37786945

RESUMO

Alcohol use disorder (AUD) is a significant public health concern and people with AUD are more likely to develop severe acute respiratory distress syndrome (ARDS) in response to respiratory infections. To examine whether AUD was a risk factor for more severe outcome in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we examined early responses to infection using cultured differentiated bronchial epithelial cells derived from brushings obtained from people with AUD or without AUD. RNA-seq analysis of uninfected cells determined that AUD cells were enriched for expression of epidermal genes as compared with non-AUD cells. Bronchial epithelial cells from patients with AUD showed a significant decrease in barrier function 72 h postinfection, as determined by transepithelial electrical resistance. In contrast, barrier function of non-AUD cells was enhanced 72 h after SARS-CoV-2 infection. AUD cells showed claudin-7 that did not colocalize with zonula occludens-1 (ZO-1), indicative of disorganized tight junctions. However, both AUD and non-AUD cells showed decreased ß-catenin expression following SARS-CoV-2 infection. To determine the impact of AUD on the inflammatory response to SARS-CoV-2 infection, cytokine secretion was measured by multiplex analysis. SARS-CoV-2-infected AUD bronchial cells had enhanced secretion of multiple proinflammatory cytokines including TNFα, IL-1ß, and IFNγ as opposed to non-AUD cells. In contrast, secretion of the barrier-protective cytokines epidermal growth factor (EGF) and granulocyte macrophage-colony stimulating factor (GM-CSF) was enhanced for non-AUD bronchial cells. Taken together, these data support the hypothesis that AUD is a risk factor for COVID-19, where alcohol primes airway epithelial cells for increased inflammation and increased barrier dysfunction and increased inflammation in response to infection by SARS-CoV-2.NEW & NOTEWORTHY Alcohol use disorder (AUD) is a significant risk factor for severe acute respiratory distress syndrome. We found that AUD causes a phenotypic shift in gene expression in human bronchial epithelial cells, enhancing expression of epidermal genes. AUD cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had higher levels of proinflammatory cytokine secretion and barrier dysfunction not present in infected non-AUD cells, consistent with increased early COVID-19 severity due to AUD.


Assuntos
Alcoolismo , COVID-19 , Síndrome do Desconforto Respiratório , Humanos , SARS-CoV-2/metabolismo , Citocinas/metabolismo , Inflamação
4.
J Virol ; 96(4): e0184021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878919

RESUMO

Human bocavirus 1 (HBoV1), an autonomous human parvovirus, causes acute respiratory tract infections in young children. HBoV1 infects well-differentiated (polarized) human airway epithelium cultured at an air-liquid interface (HAE-ALI). HBoV1 expresses a large nonstructural protein, NS1, that is essential for viral DNA replication. HBoV1 infection of polarized human airway epithelial cells induces a DNA damage response (DDR) that is critical to viral DNA replication involving DNA repair with error-free Y-family DNA polymerases. HBoV1 NS1 or the isoform NS1-70 per se induces a DDR. In this study, using the second-generation proximity-dependent biotin identification (BioID2) approach, we identified that Ku70 is associated with the NS1-BioID2 pulldown complex through a direct interaction with NS1. Biolayer interferometry (BLI) assay determined a high binding affinity of NS1 with Ku70, which has an equilibrium dissociation constant (KD) value of 0.16 µM and processes the strongest interaction at the C-terminal domain. The association of Ku70 with NS1 was also revealed during HBoV1 infection of HAE-ALI. Knockdown of Ku70 and overexpression of the C-terminal domain of Ku70 significantly decreased HBoV1 replication in HAE-ALI. Thus, our study provides, for the first time, a direct interaction of parvovirus large nonstructural protein NS1 with Ku70. IMPORTANCE Parvovirus infection induces a DNA damage response (DDR) that plays a pivotal role in viral DNA replication. The DDR includes activation of ATM (ataxia telangiectasia mutated), ATR (ATM- and RAD3-related), and DNA-PKcs (DNA-dependent protein kinase catalytic subunit). The large nonstructural protein (NS1) often plays a role in the induction of DDR; however, how the DDR is induced during parvovirus infection or simply by the NS1 is not well studied. Activation of DNA-PKcs has been shown as one of the key DDR pathways in DNA replication of HBoV1. We identified that HBoV1 NS1 directly interacts with Ku70, but not Ku80, of the Ku70/Ku80 heterodimer at high affinity. This interaction is also important for HBoV1 replication in HAE-ALI. We propose that the interaction of NS1 with Ku70 recruits the Ku70/Ku80 complex to the viral DNA replication center, which activates DNA-PKcs and facilitates viral DNA replication.


Assuntos
Bocavirus Humano/fisiologia , Autoantígeno Ku/metabolismo , Mucosa Respiratória/virologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Dano ao DNA , Replicação do DNA , DNA Viral/biossíntese , Genoma Viral , Células HEK293 , Bocavirus Humano/metabolismo , Humanos , Autoantígeno Ku/genética , Ligação Proteica , Domínios Proteicos , Mucosa Respiratória/metabolismo , Proteínas não Estruturais Virais/genética , Compartimentos de Replicação Viral/metabolismo
5.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902441

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) modulators, a new series of therapeutics that correct and potentiate some classes of mutations of the CFTR, have provided a great therapeutic advantage to people with cystic fibrosis (pwCF). The main hindrances of the present CFTR modulators are related to their limitations in reducing chronic lung bacterial infection and inflammation, the main causes of pulmonary tissue damage and progressive respiratory insufficiency, particularly in adults with CF. Here, the most debated issues of the pulmonary bacterial infection and inflammatory processes in pwCF are revisited. Special attention is given to the mechanisms favoring the bacterial infection of pwCF, the progressive adaptation of Pseudomonas aeruginosa and its interplay with Staphylococcus aureus, the cross-talk among bacteria, the bronchial epithelial cells and the phagocytes of the host immune defenses. The most recent findings of the effect of CFTR modulators on bacterial infection and the inflammatory process are also presented to provide critical hints towards the identification of relevant therapeutic targets to overcome the respiratory pathology of pwCF.


Assuntos
Fibrose Cística , Infecções Estafilocócicas , Adulto , Humanos , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Pulmão/patologia , Interações Hospedeiro-Patógeno , Pseudomonas aeruginosa/genética
6.
Am J Respir Cell Mol Biol ; 66(6): 612-622, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35235762

RESUMO

Lack of CFTR (cystic fibrosis transmembrane conductance regulator) affects the transcriptome, composition, and function of large and small airway epithelia in people with advanced cystic fibrosis (CF); however, whether lack of CFTR causes cell-intrinsic abnormalities present at birth versus inflammation-dependent abnormalities is unclear. We performed a single-cell RNA-sequencing census of microdissected small airways from newborn CF pigs, which recapitulate CF host defense defects and pathology over time. Lack of CFTR minimally affected the transcriptome of large and small airways at birth, suggesting that infection and inflammation drive transcriptomic abnormalities in advanced CF. Importantly, common small airway epithelial cell types expressed a markedly different transcriptome than corresponding large airway cell types. Quantitative immunohistochemistry and electrophysiology of small airway epithelia demonstrated basal cells that reach the apical surface and a water and ion transport advantage. This single cell atlas highlights the archetypal nature of airway epithelial cells with location-dependent gene expression and function.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Animais , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Transporte de Íons , Sistema Respiratório/metabolismo , Suínos
7.
J Virol ; 95(20): e0110821, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346761

RESUMO

Parvoviruses package a linear single-stranded DNA genome with hairpin structures at both ends. It has been thought that terminal hairpin sequences are indispensable for viral DNA replication. Here, we provide evidence that the hairpin-deleted duplex genomes of human bocavirus 1 (HBoV1) replicate in human embryonic kidney 293 (HEK293) cells. We propose an alternative model for HBoV1 DNA replication in which the leading strand can initiate strand displacement without hairpin transfer. The transfection of the HBoV1 duplex genomes that retain a minimal replication origin at the right end (OriR) but with extensive deletions in the right-end hairpin (REH) generated viruses in HEK293 cells at a level 10 to 20 times lower than that of the wild-type (WT) duplex genome. Importantly, these viruses that have a genome with various deletions after the OriR but not the one retaining only the OriR replicated in polarized human airway epithelia. We discovered that the 18-nucleotide (nt) sequence (nt 5403 to 5420) beyond the OriR was sufficient to confer virus replication in polarized human airway epithelia, although its progeny virus production was ∼5 times lower than that of the WT virus. Thus, our study demonstrates that hairpin transfer-independent productive parvovirus DNA replication can occur. IMPORTANCE Hairpin transfer-independent parvovirus replication was modeled with human bocavirus 1 (HBoV1) duplex genomes whose 5' hairpin structure was ablated by various deletions. In HEK293 cells, these duplex viral genomes with ablated 5' hairpin sequence replicated efficiently and generated viruses that productively infected polarized human airway epithelium. Thus, for the first time, we reveal a previously unknown phenomenon that productive parvovirus DNA replication does not depend on the hairpin sequence at REH to initiate rolling-hairpin DNA replication. Notably, the intermediates of viral DNA replication, as revealed by two-dimensional electrophoresis, from transfections of hairpin sequence-deleted duplex genome and full-length genome in HEK293 cells as well as from virus infection of polarized human airway epithelia are similar. Thus, the establishment of the hairpin transfer-independent parvoviral DNA replication deepens our understanding of viral DNA replication and may have implications in the development of parvovirus-based viral vectors with alternative properties.


Assuntos
Replicação do DNA/genética , Bocavirus Humano/genética , Sequências Repetidas Invertidas/genética , DNA Viral/genética , Células Epiteliais/virologia , Genoma Viral/genética , Células HEK293 , Humanos , Parvovirus/genética , Origem de Replicação , Mucosa Respiratória/virologia , Proteínas não Estruturais Virais/genética , Viroses/genética , Replicação Viral/genética
8.
Rev Endocr Metab Disord ; 23(2): 279-285, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35091881

RESUMO

Covid-19 has to date infected a confirmed 275 million people with 5.4 million, now dead, with the count rising every day. Although the virus, SARS-CoV2, causing Covid-19 infects many cells in the body, its infection of the upper and lower respiratory tract (upper airway epithelia and pulmonary alveolar pneumocytes and macrophages) causing what is now called a cytokine storm in the lungs is the major cause of morbidity and mortality. This results from a dysregulation of the innate immune system with an outpouring of proinflammatory cytokines and chemokines leading to abnormal activation of the adaptive immune pathway. Airway epithelia constitutively expresses CYP27B1, the enzyme producing the active vitamin D metabolite, 1,25(OH)2D, and the vitamin D receptor (VDR) for which 1,25(OH)2D is the ligand. Pulmonary alveolar macrophages, on the other hand, are induced to express both CYP27B1 and VDR by various pathogens including viruses and cytokines released from infected epithelia and other immune cells. Although not demonstrated for corona viruses like SARS-CoV2, for other viruses and other respiratory pathogens activation of innate immunity leading to increased local 1,25(OH)2D production has been shown to enhance viral neutralization and clearance while modulating the subsequent proinflammatory response. Whether such will be the case for SARS-CoV2 remains to be seen, but is currently being proposed and investigated. This mini review will discuss some of the mechanisms by which vitamin D may help reduce morbidity and mortality in this devastating pandemic.


Assuntos
COVID-19 , Vitamina D , Humanos , Imunidade Inata , RNA Viral , SARS-CoV-2
9.
Curr Osteoporos Rep ; 20(3): 186-193, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35507293

RESUMO

PURPOSE OF REVIEW: To review the mechanisms by which vitamin D and its metabolites regulate the immune system to facilitate the ability of the body to prevent and/or treat SARS-CoV2 and other respiratory infections and encourage further research into the role that vitamin D supplementation plays in preventing/treating such infections. RECENT FINDINGS: Vitamin D deficiency is associated with an increased risk of SARS-CoV2 and other respiratory infections. Clinical trials in general demonstrate that correction of vitamin D deficiency reduces the risk of hospitalization, ICU admission, and death from SARS-CoV2 infection. The airway epithelium and alveolar macrophages express the enzyme, CYP27B1, that produces the active metabolite of vitamin D, 1,25(OH)2D, and the vitamin D receptor, VDR. Vitamin D and its metabolites promote the innate immune response, which provides the first line of defense against viral and bacterial infections while restricting the adaptive immune response, which if unchecked promotes the inflammatory response leading to the acute respiratory distress syndrome and death. The rationale for treating vitamin D deficiency to reduce the risk of SARS-CoV2 infection and supplementing patients with vitamin D early in the course of SARS-CoV2 infection rests primarily on the ability of vitamin D metabolites to promote an effective immune response to the infection.


Assuntos
COVID-19 , Deficiência de Vitamina D , Humanos , Imunidade Inata/fisiologia , RNA Viral , SARS-CoV-2 , Vitamina D/metabolismo , Deficiência de Vitamina D/complicações
10.
J Infect Dis ; 224(8): 1357-1361, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34289058

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 ) initiates entry into airway epithelia by binding its receptor, angiotensin-converting enzyme 2 (ACE2). METHODS: To explore whether interindividual variation in ACE2 abundance contributes to variability in coronavirus disease 2019 (COVID-19) outcomes, we measured ACE2 protein abundance in primary airway epithelial cultures derived from 58 human donor lungs. RESULTS: We found no evidence for sex- or age-dependent differences in ACE2 protein expression. Furthermore, we found that variations in ACE2 abundance had minimal effects on viral replication and induction of the interferon response in airway epithelia infected with SARS-CoV-2. CONCLUSIONS: Our results highlight the relative importance of additional host factors, beyond viral receptor expression, in determining COVID-19 lung disease outcomes.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/análise , Variação Biológica da População , Brônquios/citologia , Brônquios/patologia , Brônquios/virologia , COVID-19/virologia , Células Epiteliais , Feminino , Humanos , Masculino , Cultura Primária de Células , Receptores de Coronavírus/análise , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Fatores Sexuais , Internalização do Vírus
11.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802742

RESUMO

New anti-inflammatory treatments are needed for CF airway disease. Studies have implicated the endoplasmic reticulum stress transducer inositol requiring enzyme 1α (IRE1α) in CF airway inflammation. The activation of IRE1α promotes activation of its cytoplasmic kinase and RNase, resulting in mRNA splicing of X-box binding protein-1 (XBP-1s), a transcription factor required for cytokine production. We tested whether IRE1α kinase and RNase inhibition decreases cytokine production induced by the exposure of primary cultures of homozygous F508del CF human bronchial epithelia (HBE) to supernatant of mucopurulent material (SMM) from CF airways. We evaluated whether IRE1α expression is increased in freshly isolated and native CF HBE, and couples with increased XBP-1s levels. A FRET assay confirmed binding of the IRE1α kinase and RNase inhibitor, KIRA6, to the IRE1α kinase. F508del HBE cultures were exposed to SMM with or without KIRA6, and we evaluated the mRNA levels of XBP-1s, IL-6, and IL-8, and the secretion of IL-6 and IL-8. IRE1α mRNA levels were up-regulated in freshly isolated CF vs. normal HBE and coupled to increased XBP-1s mRNA levels. SMM increased XBP-1s, IL-6, and IL-8 mRNA levels and up-regulated IL-6 and IL-8 secretion, and KIRA6 blunted these responses in a dose-dependent manner. Moreover, a triple combination of CFTR modulators currently used in the clinic had no effect on SMM-increased XBP-1s levels coupled with increased cytokine production in presence or absence of KIRA6. These findings indicate that IRE1α mediates cytokine production in CF airways. Small molecule IRE1α kinase inhibitors that allosterically reduce RNase-dependent XBP-1s may represent a new therapeutic strategy for CF airway inflammation.


Assuntos
Fibrose Cística/tratamento farmacológico , Fibrose Cística/patologia , Endorribonucleases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Pulmão/patologia , Terapia de Alvo Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Células Cultivadas , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citocinas/biossíntese , Endorribonucleases/genética , Epitélio/efeitos dos fármacos , Epitélio/patologia , Humanos , Imidazóis/química , Imidazóis/farmacologia , Inflamação/genética , Modelos Biológicos , Naftalenos/química , Naftalenos/farmacologia , Proteínas Serina-Treonina Quinases/genética , Pirazinas/química , Pirazinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Proteína 1 de Ligação a X-Box/metabolismo
12.
Am J Physiol Cell Physiol ; 319(2): C331-C344, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432926

RESUMO

The pH of airway surface liquid (ASL) is a key factor that determines respiratory host defense; ASL acidification impairs and alkalinization enhances key defense mechanisms. Under healthy conditions, airway epithelia secrete base ([Formula: see text]) and acid (H+) to control ASL pH (pHASL). Neutrophil-predominant inflammation is a hallmark of several airway diseases, and TNFα and IL-17 are key drivers. However, how these cytokines perturb pHASL regulation is uncertain. In primary cultures of differentiated human airway epithelia, TNFα decreased and IL-17 did not change pHASL. However, the combination (TNFα+IL-17) markedly increased pHASL by increasing [Formula: see text] secretion. TNFα+IL-17 increased expression and function of two apical [Formula: see text] transporters, CFTR anion channels and pendrin Cl-/[Formula: see text] exchangers. Both were required for maximal alkalinization. TNFα+IL-17 induced pendrin expression primarily in secretory cells where it was coexpressed with CFTR. Interestingly, significant pendrin expression was not detected in CFTR-rich ionocytes. These results indicate that TNFα+IL-17 stimulate [Formula: see text] secretion via CFTR and pendrin to alkalinize ASL, which may represent an important defense mechanism in inflamed airways.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Interleucina-17/genética , Mucosa Respiratória/metabolismo , Transportadores de Sulfato/genética , Fator de Necrose Tumoral alfa/genética , Álcalis/metabolismo , Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
J Physiol ; 598(22): 5063-5071, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32515030

RESUMO

Tobacco smoking is highly addictive and causes respiratory disease, cardiovascular disease and multiple types of cancer. Electronic-cigarettes (e-cigarettes) are non-combustible tobacco alternatives that aerosolize nicotine and flavouring agents in a propylene glycol-vegetable glycerine vehicle. They were originally envisaged as a tobacco cessation aid, but whether or not they help people to quit tobacco use is controversial. In this review, we have compared and contrasted what is known regarding the effects of nicotine on the lungs vs. the effects of nicotine in the brain in the context of addiction. Critically, both combustible tobacco products and e-cigarettes contain nicotine, a highly addictive, plant-derived alkaloid that binds to nicotinic acetylcholine receptors (nAChRs). Nicotine's reinforcing properties are primarily mediated by activation of the brain's mesolimbic reward circuitry and release of the neurotransmitter dopamine that contribute to the development of addiction. Moreover, nicotine addiction drives repeated intake that results in chronic pulmonary exposure to either tobacco smoke or e-cigarettes despite negative respiratory symptoms. Beyond the brain, nAChRs are also highly expressed in peripheral neurons, epithelia and immune cells, where their activation may cause harmful effects. Thus, nicotine, a key ingredient of both conventional and electronic cigarettes, produces neurological effects that drive addiction and may damage the lungs in the process, producing a complex, multilevel pathological state. We conclude that vaping needs to be studied by multi-disciplinary teams that include pulmonary and neurophysiologists as well as behaviourists and addiction specialists to fully understand their impact on human physiology.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Encéfalo , Humanos , Pulmão , Nicotina
14.
J Cell Physiol ; 235(11): 8387-8401, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32239700

RESUMO

We investigated the regulation of Cl- secretion by adrenoceptors in polarized 16HBE14o- human bronchial epithelial cells. Treatment with the nonselective ß adrenoceptor agonist isoprenaline stimulated an increase in short-circuit current (ISC ), which was inhibited by the ß adrenoceptor blocker propranolol. Treatment with procaterol, an agonist specific for the ß2 adrenoceptor subtype, stimulated a similar increase in ISC , which was inhibited by the ß2 adrenoceptor antagonist ICI 118551. Inhibitors of cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated Cl- channel (CaCC), but not K+ channel blockers, were able to inhibit the increase in ISC . "Trimultaneous" recording of ISC and intracellular cyclic adenosine monophosphate (cAMP) and Ca2+ levels in 16HBE14o- epithelia confirmed that the ISC induced by isoprenaline or procaterol involved both cAMP and Ca2+ signaling. Our results demonstrate that ß2 adrenoceptors regulate Cl- secretion in the human airway epithelium by activating apical CFTRs and CaCCs via cAMP-dependent and intracellular Ca2+ -dependent mechanisms, respectively.


Assuntos
Canais de Cloreto/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Mucosa Respiratória/metabolismo , Transporte Biológico Ativo , Brônquios/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Transporte de Íons/fisiologia , Transdução de Sinais/fisiologia
15.
Am J Respir Crit Care Med ; 200(2): 220-234, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30973754

RESUMO

Rationale: The goal was to connect elements of idiopathic pulmonary fibrosis (IPF) pathogenesis, including chronic endoplasmic reticulum stress in respiratory epithelia associated with injury/inflammation and remodeling, distal airway mucus obstruction and honeycomb cyst formation with accumulation of MUC5B (mucin 5B), and associations between IPF risk and polymorphisms in the MUC5B promoter. Objectives: To test whether the endoplasmic reticulum (ER) stress sensor protein ERN2 (ER-to-nucleus signaling 2) and its downstream effector, the spliced form of XBP1S (X-box-binding protein 1), regulate MUC5B expression and differentially activate the MUC5B promoter variant in respiratory epithelia. Methods: Primary human airway epithelial (HAE) cells, transgenic mouse models, human IPF lung tissues, and cell lines expressing XBP1S and MUC5B promoters were used to explore relationships between the ERN2/XBP1S pathway and MUC5B. An inhibitor of the pathway, KIRA6, and XBP1 CRISPR-Cas9 were used in HAE cells to explore therapeutic potential. Measurements and Main Results: ERN2 regulated MUC5B and MUC5AC mRNAs. Downstream XBP1S selectively promoted MUC5B expression in vitro and in distal murine airway epithelia in vivo. XBP1S bound to the proximal region of the MUC5B promoter and differentially upregulated MUC5B expression in the context of the MUC5B promoter rs35705950 variant. High levels of ERN2 and XBP1S were associated with excessive MUC5B mRNAs in distal airways of human IPF lungs. Cytokine-induced MUC5B expression in HAE cells was inhibited by KIRA6 and XBP1 CRISPR-Cas9. Conclusions: A positive feedback bistable ERN2-XBP1S pathway regulates MUC5B-dominated mucus obstruction in IPF, providing an unfolded protein response-dependent mechanism linking the MUC5B promoter rs35705950 polymorphism with IPF pathogenesis. Inhibiting ERN2-dependent pathways/elements may provide a therapeutic option for IPF.


Assuntos
Endorribonucleases/genética , Fibrose Pulmonar Idiopática/genética , Proteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/genética , Mucosa Respiratória/metabolismo , Proteína 1 de Ligação a X-Box/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/metabolismo , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Polimorfismo Genético , Cultura Primária de Células , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo
16.
Biochem Biophys Res Commun ; 509(2): 521-528, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30598261

RESUMO

Cystic fibrosis transmembrane regulator (CFTR) is a cyclic AMP-dependent Cl- channel, and its dysfunction, due to CFTR gene mutations, causes the lethal inherited disorder cystic fibrosis (CF). To date, widespread dysregulation of certain coding genes in CF airway epithelial cells is well studied and considered as the driver of pulmonary abnormality. However, the involvement of non-coding genes, novel classes of functional RNAs with little or no protein-coding capacity, in the regulation of CF-associated gene dysregulation is poorly understood. Here, we utilized integrative analyses of human transcriptome array (HTA) and characterized 99 coding and 91 non-coding RNAs that are dysregulated in CFTR-defective CF bronchial epithelial cell line CFBE41o-. Among these genes, the expression level of linc-SUMF1-2, an intergenic non-coding RNA (lincRNA) whose function is unknown, was inversely correlated with that of WT-CFTR and consistently higher in primary human CF airway epithelial cells (DHBE-CF). Further integrative analyses under linc-SUMF1-knockdown condition determined MXRA5, SEMA5A, CXCL10, AK022877, CTGF, MYC, AREG and LAMB3 as both CFTR- and linc-SUMF1-2-dependent dysregulated gene sets in CF airway epithelial cells. Overall, our analyses reveal linc-SUMF1-2 as a dysregulated non-coding gene in CF as well as CFTR-linc-SUMF1-2 axis as a novel regulatory pathway involved in CF-associated gene dysregulation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , Transcriptoma , Brônquios/citologia , Brônquios/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Humanos
17.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29203545

RESUMO

The airway epithelium restricts the penetration of inhaled pathogens into the underlying tissue and plays a crucial role in the innate immune defense against respiratory infections. The whooping cough agent, Bordetella pertussis, adheres to ciliated cells of the human airway epithelium and subverts its defense functions through the action of secreted toxins and other virulence factors. We examined the impact of B. pertussis infection and of adenylate cyclase toxin-hemolysin (CyaA) action on the functional integrity of human bronchial epithelial cells cultured at the air-liquid interface (ALI). B. pertussis adhesion to the apical surface of polarized pseudostratified VA10 cell layers provoked a disruption of tight junctions and caused a drop in transepithelial electrical resistance (TEER). The reduction of TEER depended on the capacity of the secreted CyaA toxin to elicit cAMP signaling in epithelial cells through its adenylyl cyclase enzyme activity. Both purified CyaA and cAMP-signaling drugs triggered a decrease in the TEER of VA10 cell layers. Toxin-produced cAMP signaling caused actin cytoskeleton rearrangement and induced mucin 5AC production and interleukin-6 (IL-6) secretion, while it inhibited the IL-17A-induced secretion of the IL-8 chemokine and of the antimicrobial peptide beta-defensin 2. These results indicate that CyaA toxin activity compromises the barrier and innate immune functions of Bordetella-infected airway epithelia.


Assuntos
Toxina Adenilato Ciclase/toxicidade , Bordetella pertussis/metabolismo , Brônquios/microbiologia , Células Epiteliais/microbiologia , Coqueluche/microbiologia , Toxina Adenilato Ciclase/genética , Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/genética , Brônquios/citologia , Brônquios/metabolismo , AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Humanos , Interleucina-6/metabolismo , Mucina-5AC/metabolismo , Transdução de Sinais/efeitos dos fármacos , Coqueluche/genética , Coqueluche/metabolismo
18.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021400

RESUMO

Human bocavirus 1 (HBoV1) is a human parvovirus that causes acute respiratory tract infections in young children. In this study, we confirmed that, when polarized/well-differentiated human airway epithelia are infected with HBoV1 in vitro, they develop damage characterized by barrier function disruption and cell hypotrophy. Cell death mechanism analyses indicated that the infection induced pyroptotic cell death characterized by caspase-1 activation. Unlike infections with other parvoviruses, HBoV1 infection did not activate the apoptotic or necroptotic cell death pathway. When the NLRP3-ASC-caspase-1 inflammasome-induced pathway was inhibited by short hairpin RNA (shRNA), HBoV1-induced cell death dropped significantly; thus, NLRP3 mediated by ASC appears to be the pattern recognition receptor driving HBoV1 infection-induced pyroptosis. HBoV1 infection induced steady increases in the expression of interleukin 1α (IL-1α) and IL-18. HBoV1 infection was also associated with the marked expression of the antiapoptotic genes BIRC5 and IFI6 When the expression of BIRC5 and/or IFI6 was inhibited by shRNA, the infected cells underwent apoptosis rather than pyroptosis, as indicated by increased cleaved caspase-3 levels and the absence of caspase-1. BIRC5 and/or IFI6 gene inhibition also significantly reduced HBoV1 replication. Thus, HBoV1 infection of human airway epithelial cells activates antiapoptotic proteins that suppress apoptosis and promote pyroptosis. This response may have evolved to confer a replicative advantage, thus allowing HBoV1 to establish a persistent airway epithelial infection. This is the first report of pyroptosis in airway epithelia infected by a respiratory virus.IMPORTANCE Microbial infection of immune cells often induces pyroptosis, which is mediated by a cytosolic protein complex called the inflammasome that senses microbial pathogens and then activates the proinflammatory cytokines IL-1 and IL-18. While virus-infected airway epithelia often activate NLRP3 inflammasomes, studies to date suggest that these viruses kill the airway epithelial cells via the apoptotic or necrotic pathway; involvement of the pyroptosis pathway has not been reported previously. Here, we show for the first time that virus infection of human airway epithelia can also induce pyroptosis. Human bocavirus 1 (HBoV1), a human parvovirus, causes lower respiratory tract infections in young children. This study indicates that HBoV1 kills airway epithelial cells by activating genes that suppress apoptosis and thereby promote pyroptosis. This strategy appears to promote HBoV1 replication and may have evolved to allow HBoV1 to establish persistent infection of human airway epithelia.


Assuntos
Apoptose , Células Epiteliais/patologia , Bocavirus Humano/fisiologia , Piroptose , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 1/deficiência , Caspase 1/genética , Caspase 3/genética , Caspase 3/metabolismo , Replicação do DNA , Células Epiteliais/virologia , Humanos , Inflamassomos , Proteínas Inibidoras de Apoptose/deficiência , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Interleucina-18/genética , Interleucina-1alfa/genética , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , RNA Interferente Pequeno/genética , Survivina , Replicação Viral
19.
J Biol Chem ; 291(49): 25489-25504, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27756846

RESUMO

We previously reported that delivery of a microRNA-138 mimic or siRNA against SIN3A to cultured cystic fibrosis (ΔF508/ΔF508) airway epithelia partially restored ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR)-mediated cAMP-stimulated Cl- conductance. We hypothesized that dissecting this microRNA-138/SIN3A-regulated gene network would identify individual proteins contributing to the rescue of ΔF508-CFTR function. Among the genes in the network, we rigorously validated candidates using functional CFTR maturation and electrolyte transport assays in polarized airway epithelia. We found that depletion of the ubiquitin ligase SYVN1, the ubiquitin/proteasome system regulator NEDD8, or the F-box protein FBXO2 partially restored ΔF508-CFTR-mediated Cl- transport in primary cultures of human cystic fibrosis airway epithelia. Moreover, knockdown of SYVN1, NEDD8, or FBXO2 in combination with corrector compound 18 further potentiated rescue of ΔF508-CFTR-mediated Cl- conductance. This study provides new knowledge of the CFTR biosynthetic pathway. It suggests that SYVN1 and FBXO2 represent two distinct multiprotein complexes that may degrade ΔF508-CFTR in airway epithelia and identifies a new role for NEDD8 in regulating ΔF508-CFTR ubiquitination.


Assuntos
Sequência de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Proteínas F-Box/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Mucosa Respiratória/metabolismo , Deleção de Sequência , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo , Proteínas de Ciclo Celular/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/patologia , Proteínas F-Box/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Transporte de Íons/genética , Proteína NEDD8 , Proteínas do Tecido Nervoso/genética , Complexo de Endopeptidases do Proteassoma/genética , Mucosa Respiratória/fisiologia , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
20.
Pflugers Arch ; 469(9): 1073-1091, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28455748

RESUMO

Transepithelial bicarbonate secretion by human airway submucosal glands and surface epithelial cells is crucial to maintain the pH-sensitive innate defence mechanisms of the lung. cAMP agonists stimulate HCO3- secretion via coordinated increases in basolateral HCO3- influx and accumulation, as well as CFTR-dependent HCO3- efflux at the luminal membrane of airway epithelial cells. Here, we investigated the regulation of a basolateral located, DIDS-sensitive, Cl-/HCO3- exchanger, anion exchanger 2 (AE2; SLC4A2) which is postulated to act as an acid loader, and therefore potential regulator of HCO3- secretion, in human airway epithelial cells. Using intracellular pH measurements performed on Calu-3 cells, we demonstrate that the activity of the basolateral Cl-/HCO3- exchanger was significantly downregulated by cAMP agonists, via a PKA-independent mechanism and also required Ca2+ and calmodulin under resting conditions. AE2 contains potential phosphorylation sites by a calmodulin substrate, protein kinase CK2, and we demonstrated that AE2 activity was reduced in the presence of CK2 inhibition. Moreover, CK2 inhibition abolished the activity of AE2 in primary human nasal epithelia. Studies performed on mouse AE2 transfected into HEK-293T cells confirmed almost identical Ca2+/calmodulin and CK2 regulation to that observed in Calu-3 and primary human nasal cells. Furthermore, mouse AE2 activity was reduced by genetic knockout of CK2, an effect which was rescued by exogenous CK2 expression. Together, these findings are the first to demonstrate that CK2 is a key regulator of Cl--dependent HCO3- export at the serosal membrane of human airway epithelial cells.


Assuntos
Bicarbonatos/metabolismo , Caseína Quinase II/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Cloretos/metabolismo , Mucosa Nasal/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA