Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(18): 1630-1641, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39230874

RESUMO

Aminoacyl-transfer RiboNucleic Acid synthetases (ARSs) are essential enzymes that catalyze the attachment of each amino acid to their cognate tRNAs. Mitochondrial ARSs (mtARSs), which ensure protein synthesis within the mitochondria, are encoded by nuclear genes and imported into the organelle after translation in the cytosol. The extensive use of next generation sequencing (NGS) has resulted in an increasing number of variants in mtARS genes being identified and associated with mitochondrial diseases. The similarities between yeast and human mitochondrial translation machineries make yeast a good model to quickly and efficiently evaluate the effect of variants in mtARS genes. Genetic screening of patients with a clinical suspicion of mitochondrial disorders through a customized gene panel of known disease-genes, including all genes encoding mtARSs, led to the identification of missense variants in WARS2, NARS2 and RARS2. Most of them were classified as Variant of Uncertain Significance. We exploited yeast models to assess the functional consequences of the variants found in these genes encoding mitochondrial tryptophanyl-tRNA, asparaginyl-tRNA, and arginyl-tRNA synthetases, respectively. Mitochondrial phenotypes such as oxidative growth, oxygen consumption rate, Cox2 steady-state level and mitochondrial protein synthesis were analyzed in yeast strains deleted in MSW1, SLM5, and MSR1 (the yeast orthologues of WARS2, NARS2 and RARS2, respectively), and expressing the wild type or the mutant alleles. Pathogenicity was confirmed for most variants, leading to their reclassification as Likely Pathogenic. Moreover, the beneficial effects observed after asparagine and arginine supplementation in the growth medium suggest them as a potential therapeutic approach.


Assuntos
Aminoacil-tRNA Sintetases , Mitocôndrias , Doenças Mitocondriais , Saccharomyces cerevisiae , Humanos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Doenças Mitocondriais/genética , Saccharomyces cerevisiae/genética , Mitocôndrias/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Mutação de Sentido Incorreto
2.
J Biol Chem ; 300(9): 107679, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39154912

RESUMO

Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.


Assuntos
Biossíntese de Proteínas , RNA de Transferência , RNA de Transferência/metabolismo , RNA de Transferência/genética , Humanos , Animais , Ribossomos/metabolismo , Códon/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
3.
Annu Rev Genet ; 51: 45-62, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28853922

RESUMO

The standard genetic code (SGC) is virtually universal among extant life forms. Although many deviations from the universal code exist, particularly in organelles and prokaryotes with small genomes, they are limited in scope and obviously secondary. The universality of the code likely results from the combination of a frozen accident, i.e., the deleterious effect of codon reassignment in the SGC, and the inhibitory effect of changes in the code on horizontal gene transfer. The structure of the SGC is nonrandom and ensures high robustness of the code to mutational and translational errors. However, this error minimization is most likely a by-product of the primordial code expansion driven by the diversification of the repertoire of protein amino acids, rather than a direct result of selection. Phylogenetic analysis of translation system components, in particular aminoacyl-tRNA synthetases, shows that, at a stage of evolution when the translation system had already attained high fidelity, the correspondence between amino acids and cognate codons was determined by recognition of amino acids by RNA molecules, i.e., proto-tRNAs. We propose an experimentally testable scenario for the evolution of the code that combines recognition of amino acids by unique sites on proto-tRNAs (distinct from the anticodons), expansion of the code via proto-tRNA duplication, and frozen accident.


Assuntos
Biota/genética , Evolução Molecular , Código Genético , Genoma , Modelos Genéticos , Biossíntese de Proteínas , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Anticódon/química , Anticódon/metabolismo , Códon/química , Códon/metabolismo , Extinção Biológica , Transferência Genética Horizontal , Filogenia , RNA de Transferência/genética , RNA de Transferência/metabolismo
4.
Crit Rev Biochem Mol Biol ; 57(1): 1-15, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34384295

RESUMO

Among the enzyme lineages that undoubtedly emerged prior to the last universal common ancestor is the so-called HUP, which includes Class I aminoacyl tRNA synthetases (AARSs) as well as enzymes mediating NAD, FAD, and CoA biosynthesis. Here, we provide a detailed analysis of HUP evolution, from emergence to structural and functional diversification. The HUP is a nucleotide binding domain that uniquely catalyzes adenylation via the release of pyrophosphate. In contrast to other ancient nucleotide binding domains with the αßα sandwich architecture, such as P-loop NTPases, the HUP's most conserved feature is not phosphate binding, but rather ribose binding by backbone interactions to the tips of ß1 and/or ß4. Indeed, the HUP exhibits unusual evolutionary plasticity and, while ribose binding is conserved, the location and mode of binding to the base and phosphate moieties of the nucleotide, and to the substrate(s) reacting with it, have diverged with time, foremost along the emergence of the AARSs. The HUP also beautifully demonstrates how a well-packed scaffold combined with evolvable surface elements promotes evolutionary innovation. Finally, we offer a scenario for the emergence of the HUP from a seed ßαß fragment, and suggest that despite an identical architecture, the HUP and the Rossmann represent independent emergences.


Assuntos
Aminoacil-tRNA Sintetases , Ribose , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Evolução Molecular , Nucleotídeos , Alinhamento de Sequência
5.
J Biol Chem ; 299(3): 102860, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596362

RESUMO

Parasitic diseases result in considerable human morbidity and mortality. The continuous emergence and spread of new drug-resistant parasite strains is an obstacle to controlling and eliminating many parasitic diseases. Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous enzymes essential for protein synthesis. The design and development of diverse small molecule, drug-like inhibitors against parasite-encoded and expressed aaRSs have validated this enzyme family as druggable. In this work, we have compiled the progress to date towards establishing the druggability of aaRSs in terms of their biochemical characterization, validation as targets, inhibitor development, and structural interpretation from parasites responsible for malaria (Plasmodium), lymphatic filariasis (Brugia,Wuchereria bancrofti), giardiasis (Giardia), toxoplasmosis (Toxoplasma gondii), leishmaniasis (Leishmania), cryptosporidiosis (Cryptosporidium), and trypanosomiasis (Trypanosoma). This work thus provides a robust framework for the systematic dissection of aaRSs from these pathogens and will facilitate the cross-usage of potential inhibitors to jump-start anti-parasite drug development.


Assuntos
Aminoacil-tRNA Sintetases , Desenvolvimento de Medicamentos , Parasitos , Doenças Parasitárias , Animais , Humanos , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Criptosporidiose , Cryptosporidium/genética , Cryptosporidium/metabolismo , Eucariotos/classificação , Eucariotos/metabolismo , Parasitos/classificação , Parasitos/enzimologia , Parasitos/fisiologia , RNA de Transferência , Doenças Parasitárias/tratamento farmacológico
6.
Neurogenetics ; 25(3): 287-291, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38652341

RESUMO

Aminoacyl-tRNA synthetases (ARSs) aminoacylate tRNA molecules with their cognate amino acid, enabling information transmission and providing substrates for protein biosynthesis. They also take part in nontranslational functions, mediated by the presence of other proteins domains. Mutations in ARS genes have been described as responsive to numerous factors, including neurological, autoimmune, and oncological. Variants of the ARS genes, both in heterozygosity and homozygosity, have been reported to be responsible for different pathological pictures in humankind. We present the case of a patient referred in infancy for failure to thrive and acquired microcephaly (head circumference: -5 SD). During follow-up we highlighted: dysphagia (which became increasingly severe until it became incompatible with oral feeding, with gastrostomy implantation, resulting in resolution of feeding difficulties), strabismus, hypotonia. NCV (Nerve Conduction Velocity) showed four limbs neuropathy, neurophysiological examination performed at 2 years of age mainly sensory and demyelinating. Exome sequencing (ES) was performed, detecting two novel compound heterozygous variants in the NARS1 gene (OMIM *108410): NM_004539:c.[662 A > G]; [1155dup], p.[(Asn221Ser)]; [(Arg386Thrfs*19)], inherited from mother and father respectively. In this article, we would like to focus on the presence of progressive dysphagia and severe neurodevelopmental disorder, associated with two novel variants in the NARS1 gene.


Assuntos
Transtornos de Deglutição , Transtornos do Neurodesenvolvimento , Humanos , Transtornos de Deglutição/genética , Transtornos de Deglutição/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Aminoacil-tRNA Sintetases/genética , Masculino , Mutação/genética , Lactente , Pré-Escolar , Feminino
7.
IUBMB Life ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39247978

RESUMO

The aminoacyl-tRNA synthetases (aaRS) are a large group of enzymes that implement the genetic code in all known biological systems. They attach amino acids to their cognate tRNAs, moonlight in various translational and non-translational activities beyond aminoacylation, and are linked to many genetic disorders. The aaRS have a subtle ontology characterized by structural and functional idiosyncrasies that vary from organism to organism, and protein to protein. Across the tree of life, the 22 coded amino acids are handled by 16 evolutionary families of Class I aaRS and 21 families of Class II aaRS. We introduce AARS Online, an interactive Wikipedia-like tool curated by an international consortium of field experts. This platform systematizes existing knowledge about the aaRS by showcasing a taxonomically diverse selection of aaRS sequences and structures. Through its graphical user interface, AARS Online facilitates a seamless exploration between protein sequence and structure, providing a friendly introduction to the material for non-experts and a useful resource for experts. Curated multiple sequence alignments can be extracted for downstream analyses. Accessible at www.aars.online, AARS Online is a free resource to delve into the world of the aaRS.

8.
IUBMB Life ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963319

RESUMO

tRNAs are not only essential for decoding the genetic code, but their abundance also has a strong impact on the rate of protein production, folding, and on the stability of the translated messenger RNAs. Plasmodium expresses a unique surface protein called tRip, involved in the import of exogenous tRNAs into the parasite. Comparative proteomic analysis of the blood stage of wild-type and tRip-KO variant of P. berghei parasites revealed that downregulated proteins in the mutant parasite are distinguished by a bias in their asparagine content. Furthermore, the demonstration of the possibility of charging host tRNAs with Plasmodium aminoacyl-tRNA synthetases led us to propose that imported host tRNAs participate in parasite protein synthesis. These results also suggest a novel mechanism of translational control in which import of host tRNAs emerge as regulators of gene expression in the Plasmodium developmental cycle and pathogenesis, by enabling the synthesis of asparagine-rich regulatory proteins that efficiently and selectively control the parasite infectivity.

9.
J Biol Chem ; 298(3): 101601, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065077

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that synthesize aminoacyl-tRNAs to facilitate translation of the genetic code. Quality control by aaRS proofreading and other mechanisms maintains translational accuracy, which promotes cellular viability. Systematic disruption of proofreading, as recently demonstrated for alanyl-tRNA synthetase (AlaRS), leads to dysregulation of the proteome and reduced viability. Recent studies showed that environmental challenges such as exposure to reactive oxygen species can also alter aaRS synthetic and proofreading functions, prompting us to investigate if oxidation might positively or negatively affect AlaRS activity. We found that while oxidation leads to modification of several residues in Escherichia coli AlaRS, unlike in other aaRSs, this does not affect proofreading activity against the noncognate substrates serine and glycine and only results in a 1.6-fold decrease in efficiency of cognate Ala-tRNAAla formation. Mass spectrometry analysis of oxidized AlaRS revealed that the critical proofreading residue in the editing site, Cys666, and three methionine residues (M217 in the active site, M658 in the editing site, and M785 in the C-Ala domain) were modified to cysteine sulfenic acid and methionine sulfoxide, respectively. Alanine scanning mutagenesis showed that none of the identified residues were solely responsible for the change in cognate tRNAAla aminoacylation observed under oxidative stress, suggesting that these residues may act as reactive oxygen species "sinks" to protect catalytically critical sites from oxidative damage. Combined, our results indicate that E. coli AlaRS proofreading is resistant to oxidative damage, providing an important mechanism of stress resistance that helps to maintain proteome integrity and cellular viability.


Assuntos
Alanina-tRNA Ligase , Escherichia coli , Alanina-tRNA Ligase/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Estresse Oxidativo , Proteoma , RNA de Transferência de Alanina/genética , RNA de Transferência de Alanina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Trends Genet ; 36(2): 105-117, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31839378

RESUMO

Aminoacyl-tRNA synthetases (ARS) are ubiquitously expressed, essential enzymes that charge tRNA with cognate amino acids. Variants in genes encoding ARS enzymes lead to myriad human inherited diseases. First, missense alleles cause dominant peripheral neuropathy. Second, missense, nonsense, and frameshift alleles cause recessive multisystem disorders that differentially affect tissues depending on which ARS is mutated. A preponderance of evidence has shown that both phenotypic classes are associated with loss-of-function alleles, suggesting that tRNA charging plays a central role in disease pathogenesis. However, it is currently unclear how perturbation in the function of these ubiquitously expressed enzymes leads to tissue-specific or tissue-predominant phenotypes. Here, we review our current understanding of ARS-associated disease phenotypes and discuss potential explanations for the observed tissue specificity.


Assuntos
Aminoacil-tRNA Sintetases/genética , Predisposição Genética para Doença , Doenças do Sistema Nervoso Periférico/genética , RNA de Transferência/genética , Alelos , Aminoácidos/genética , Humanos , Mutação/genética , Doenças do Sistema Nervoso Periférico/patologia , Fenótipo , Aminoacilação de RNA de Transferência/genética
11.
Chembiochem ; 24(11): e202300020, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37156744

RESUMO

Macrocyclization has proven to be a beneficial strategy to improve upon some of the disadvantages of peptides as therapeutics. Nevertheless, many peptide cyclization strategies are not compatible with in vitro display technologies like mRNA display. Here we describe the novel amino acid p-chloropropynyl phenylalanine (pCPF). pCPF is a substrate for a mutant phenylalanyl-tRNA synthetase and its introduction into peptides via in vitro translation leads to spontaneous peptide macrocyclization in the presence of peptides containing cysteine. Macrocyclization occurs efficiently with a wide variety of ring sizes. Moreover, pCPF can be reacted with thiols after charging onto tRNA, enabling the testing of diverse ncAAs in translation. The versatility of pCPF should facilitate downstream studies of translation and enable the creation of novel macrocyclic peptide libraries.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Aminoácidos/química , Fenilalanina/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Peptídeos/química , RNA de Transferência/metabolismo
12.
J Autoimmun ; 134: 102951, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470210

RESUMO

OBJECTIVES: Autoantibodies are thought to play a key role in the pathogenesis of idiopathic inflammatory myopathies (IIM). However, up to 40% of IIM patients, even those with clinical manifestations of anti-synthetase syndrome (ASSD), test seronegative to known myositis-specific autoantibodies. We hypothesized the existence of new potential autoantigens among human cytoplasmic aminoacyl tRNA synthetases (aaRS) in patients with IIM. METHODS: Plasma samples from 217 patients with IIM according to 2017 EULAR/ACR criteria, including 50 patients with ASSD, 165 without, and two with unknown ASSD status were identified retrospectively, as well as age and gender-matched sera from 156 population controls, and 219 disease controls. Patients with previously documented ASSD had to test positive for at least one of the five most common anti-aaRS autoantibodies (anti-Jo1, -PL7, -PL12, -EJ, and -OJ) and present with one or more of the following clinical manifestations: interstitial lung disease, myositis, arthritis, Raynaud's phenomenon, fever, or mechanic's hands. Demographics, laboratory, and clinical data of the IIM cohort (ASSD and non-ASSD) were compared. Samples were screened using a multiplex bead array assay for presence of autoantibodies against a panel of 117 recombinant protein variants, representing 33 myositis-related proteins, including all nineteen cytoplasmic aaRS. Prospectively collected clinical data for the IIM cohort were retrieved and compared between groups within the IIM cohort and correlated with the results of the autoantibody screening. Principal component analysis was used to analyze clinical manifestations between ASSD, non-ASSD groups, and individuals with novel anti-aaRS autoantibodies. RESULTS: We identified reactivity towards 16 aaRS in 72 of the 217 IIM patients. Twelve patients displayed reactivity against nine novel aaRS. The novel autoantibody specificities were detected in four previously seronegative patients for myositis-specific autoantibodies and eight with previously detected myositis-specific autoantibodies. IIM individuals with novel anti-aaRS autoantibodies (n = 12) all had signs of myositis, and they had either muscle weakness and/or muscle enzyme elevation, 2/12 had mechanic's hands, 3/12 had interstitial lung disease, and 2/12 had arthritis. The individuals with novel anti-aaRS and a pathological muscle biopsy all presented widespread up-regulation of major histocompatibility complex class I. The reactivities against novel aaRS could be confirmed in ELISA and western blot. Using the multiplex bead array assay, we could confirm previously known reactivities to four of the most common aaRS (Jo1, PL12, PL7, and EJ (n = 45)) and identified patients positive for anti-Zo, -KS, and -HA (n = 10) that were not previously tested. A low frequency of anti-aaRS autoantibodies was also detected in controls. CONCLUSION: Our results suggest that most, if not all, cytoplasmic aaRS may become autoantigenic. Autoantibodies against new aaRS may be found in plasma of patients previously classified as seronegative with potential high clinical relevance.


Assuntos
Aminoacil-tRNA Sintetases , Artrite , Doenças Pulmonares Intersticiais , Miosite , Humanos , Estudos Retrospectivos , Autoantígenos , Autoanticorpos , Síndrome
13.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176068

RESUMO

While protein synthesis is vital for the majority of cell types of the human body, diversely differentiated cells require specific translation regulation. This suggests the specialization of translation machinery across tissues and organs. Using transcriptomic data from GTEx, FANTOM, and Gene Atlas, we systematically explored the abundance of transcripts encoding translation factors and aminoacyl-tRNA synthetases (ARSases) in human tissues. We revised a few known and identified several novel translation-related genes exhibiting strict tissue-specific expression. The proteins they encode include eEF1A1, eEF1A2, PABPC1L, PABPC3, eIF1B, eIF4E1B, eIF4ENIF1, and eIF5AL1. Furthermore, our analysis revealed a pervasive tissue-specific relative abundance of translation machinery components (e.g., PABP and eRF3 paralogs, eIF2B and eIF3 subunits, eIF5MPs, and some ARSases), suggesting presumptive variance in the composition of translation initiation, elongation, and termination complexes. These conclusions were largely confirmed by the analysis of proteomic data. Finally, we paid attention to sexual dimorphism in the repertoire of translation factors encoded in sex chromosomes (eIF1A, eIF2γ, and DDX3), and identified the testis and brain as organs with the most diverged expression of translation-associated genes.


Assuntos
Aminoacil-tRNA Sintetases , Proteômica , Humanos , Fatores de Iniciação de Peptídeos , Fator 1 de Elongação de Peptídeos
14.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203392

RESUMO

Selenocysteine (Sec) was discovered as the 21st genetically encoded amino acid. In nature, site-directed incorporation of Sec into proteins requires specialized biosynthesis and recoding machinery that evolved distinctly in bacteria compared to archaea and eukaryotes. Many organisms, including higher plants and most fungi, lack the Sec-decoding trait. We review the discovery of Sec and its role in redox enzymes that are essential to human health and important targets in disease. We highlight recent genetic code expansion efforts to engineer site-directed incorporation of Sec in bacteria and yeast. We also review methods to produce selenoproteins with 21 or more amino acids and approaches to delivering recombinant selenoproteins to mammalian cells as new applications for selenoproteins in synthetic biology.


Assuntos
Antifibrinolíticos , Selenoproteínas , Humanos , Animais , Selenoproteínas/genética , Aminoácidos , Archaea , Saccharomyces cerevisiae , Selenocisteína/genética , Mamíferos
15.
J Biol Chem ; 297(4): 101203, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34537243

RESUMO

Aminoacyl-tRNA synthetases (ARSs) catalyze the charging of specific amino acids onto cognate tRNAs, an essential process for protein synthesis. Mutations in ARSs are frequently associated with a variety of human diseases. The human EPRS1 gene encodes a bifunctional glutamyl-prolyl-tRNA synthetase (EPRS) with two catalytic cores and appended domains that contribute to nontranslational functions. In this study, we report compound heterozygous mutations in EPRS1, which lead to amino acid substitutions P14R and E205G in two patients with diabetes and bone diseases. While neither mutation affects tRNA binding or association of EPRS with the multisynthetase complex, E205G in the glutamyl-tRNA synthetase (ERS) region of EPRS is defective in amino acid activation and tRNAGlu charging. The P14R mutation induces a conformational change and altered tRNA charging kinetics in vitro. We propose that the altered catalytic activity and conformational changes in the EPRS variants sensitize patient cells to stress, triggering an increased integrated stress response (ISR) that diminishes cell viability. Indeed, patient-derived cells expressing the compound heterozygous EPRS show heightened induction of the ISR, suggestive of disruptions in protein homeostasis. These results have important implications for understanding ARS-associated human disease mechanisms and development of new therapeutics.


Assuntos
Doenças Ósseas , Diabetes Mellitus , Doenças Genéticas Inatas , Glutamato-tRNA Ligase , Mutação de Sentido Incorreto , Estresse Fisiológico/genética , Substituição de Aminoácidos , Doenças Ósseas/enzimologia , Doenças Ósseas/genética , Diabetes Mellitus/enzimologia , Diabetes Mellitus/genética , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/genética , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Células HEK293 , Humanos , Masculino
16.
BMC Genomics ; 23(1): 7, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983386

RESUMO

BACKGROUND: With the exponential growth of publicly available genome sequences, pangenome analyses have provided increasingly complete pictures of genetic diversity for many microbial species. However, relatively few studies have scaled beyond single pangenomes to compare global genetic diversity both within and across different species. We present here several methods for "comparative pangenomics" that can be used to contextualize multi-pangenome scale genetic diversity with gene function for multiple species at multiple resolutions: pangenome shape, genes, sequence variants, and positions within variants. RESULTS: Applied to 12,676 genomes across 12 microbial pathogenic species, we observed several shared resolution-specific patterns of genetic diversity: First, pangenome openness is associated with species' phylogenetic placement. Second, relationships between gene function and frequency are conserved across species, with core genomes enriched for metabolic and ribosomal genes and accessory genomes for trafficking, secretion, and defense-associated genes. Third, genes in core genomes with the highest sequence diversity are functionally diverse. Finally, certain protein domains are consistently mutation enriched across multiple species, especially among aminoacyl-tRNA synthetases where the extent of a domain's mutation enrichment is strongly function-dependent. CONCLUSIONS: These results illustrate the value of each resolution at uncovering distinct aspects in the relationship between genetic and functional diversity across multiple species. With the continued growth of the number of sequenced genomes, these methods will reveal additional universal patterns of genetic diversity at the pangenome scale.


Assuntos
Filogenia
17.
Biochem Biophys Res Commun ; 587: 92-98, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34872004

RESUMO

Aminoacyl tRNA synthetases (ARSs) are a group of proteins, acting as transporters to transfer and attach the appropriate amino acids onto their cognate tRNAs for translation. So far, 18 out of 20 cytoplasmic ARSs are reported to be connected to different neuropathy disorders with multi-organ defects that are often accompanied with developmental delays. Thus, it is important to understand functions and impacts of ARSs at the whole organism level. Here, we systematically analyzed the spatiotemporal expression of 14 ars and 2 aimp genes during development in zebrafish that have not be previously reported. Not only in the brain, their dynamic expression patterns in several tissues such as in the muscles, liver and intestine suggest diverse roles in a wide range of development processes in addition to neuronal function, which is consistent with potential involvement in multiple syndrome diseases associated with ARS mutations. In particular, hinted by its robust expression pattern in the brain, we confirmed that aimp1 is required for the formation of cerebrovasculature by a loss-of-function approach. Overall, our systematic profiling data provides a useful basis for studying roles of ARSs during development and understanding their potential functions in the etiology of related diseases.


Assuntos
Aminoacil-tRNA Sintetases/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Aminoacil-tRNA Sintetases/classificação , Aminoacil-tRNA Sintetases/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Embrião não Mamífero , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Intestinos/crescimento & desenvolvimento , Intestinos/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Anotação de Sequência Molecular , Morfolinos/administração & dosagem , Morfolinos/genética , Morfolinos/metabolismo , Músculos/metabolismo , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/classificação , Proteínas de Peixe-Zebra/metabolismo
18.
Chembiochem ; 23(1): e202100299, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34416067

RESUMO

In this comprehensive review, I focus on the twenty E. coli aminoacyl-tRNA synthetases and their ability to charge non-canonical amino acids (ncAAs) onto tRNAs. The promiscuity of these enzymes has been harnessed for diverse applications including understanding and engineering of protein function, creation of organisms with an expanded genetic code, and the synthesis of diverse peptide libraries for drug discovery. The review catalogues the structures of all known ncAA substrates for each of the 20 E. coli aminoacyl-tRNA synthetases, including ncAA substrates for engineered versions of these enzymes. Drawing from the structures in the list, I highlight trends and novel opportunities for further exploitation of these ncAAs in the engineering of protein function, synthetic biology, and in drug discovery.


Assuntos
Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Escherichia coli/enzimologia , Aminoácidos/química , Aminoacil-tRNA Sintetases/química , Engenharia de Proteínas , Biologia Sintética
19.
RNA ; 26(8): 910-936, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32303649

RESUMO

The aminoacyl-tRNA synthetases are an essential and universally distributed family of enzymes that plays a critical role in protein synthesis, pairing tRNAs with their cognate amino acids for decoding mRNAs according to the genetic code. Synthetases help to ensure accurate translation of the genetic code by using both highly accurate cognate substrate recognition and stringent proofreading of noncognate products. While alterations in the quality control mechanisms of synthetases are generally detrimental to cellular viability, recent studies suggest that in some instances such changes facilitate adaption to stress conditions. Beyond their central role in translation, synthetases are also emerging as key players in an increasing number of other cellular processes, with far-reaching consequences in health and disease. The biochemical versatility of the synthetases has also proven pivotal in efforts to expand the genetic code, further emphasizing the wide-ranging roles of the aminoacyl-tRNA synthetase family in synthetic and natural biology.


Assuntos
Aminoacil-tRNA Sintetases/genética , RNA de Transferência/genética , Animais , Código Genético , Humanos , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Aminoacilação de RNA de Transferência/genética
20.
RNA ; 26(11): 1589-1602, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32680846

RESUMO

Cyclodipeptide synthases (CDPSs) catalyze the synthesis of various cyclodipeptides by using two aminoacyl-tRNA (aa-tRNA) substrates in a sequential mechanism. Here, we studied binding of phenylalanyl-tRNAPhe to the CDPS from Candidatus Glomeribacter gigasporarum (Cglo-CDPS) by gel filtration and electrophoretic mobility shift assay. We determined the crystal structure of the Cglo-CDPS:Phe-tRNAPhe complex to 5 Å resolution and further studied it in solution using small-angle X-ray scattering (SAXS). The data show that the major groove of the acceptor stem of the aa-tRNA interacts with the enzyme through the basic ß2 and ß7 strands of CDPSs belonging to the XYP subfamily. A bending of the CCA extremity enables the amino acid moiety to be positioned in the P1 pocket while the terminal A76 adenosine occupies the P2 pocket. Such a positioning indicates that the present structure illustrates the binding of the first aa-tRNA. In cells, CDPSs and the elongation factor EF-Tu share aminoacylated tRNAs as substrates. The present study shows that CDPSs and EF-Tu interact with opposite sides of tRNA. This may explain how CDPSs hijack aa-tRNAs from canonical ribosomal protein synthesis.


Assuntos
Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Burkholderiaceae/efeitos dos fármacos , Burkholderiaceae/genética , Cromatografia em Gel , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA