RESUMO
The present study aimed to characterize the antiproliferative and antimetastatic properties of two recently synthesized monoterpene-aminopyrimidine hybrids (1 and 2) on A2780 ovary cancer cells. Both agents exerted a more pronounced cell growth inhibitory action than the reference agent cisplatin, as determined by the MTT assay. Tumor selectivity was assessed using non-cancerous fibroblast cells. Hybrids 1 and 2 induced changes in cell morphology and membrane integrity in A2780 cells, as evidenced by Hoechst 33258-propidium iodide fluorescent staining. Cell cycle analysis by flow cytometry revealed substantial changes in the distribution of A2780 ovarian cancer cells, with an increased rate in the subG1 and G2/M phases, at the expense of the G1 cell population. Moreover, the tested molecules accelerated tubulin polymerization in a cell-free in vitro system. The antimetastatic properties of both tested compounds were investigated by wound healing and Boyden chamber assays after 24 and 48 h of incubation. Treatment with 1 and 2 resulted in time- and concentration-dependent inhibition of migration and invasion of A2780 cancer cells. These results support that the tested agents may be worth of further investigation as promising anticancer drug candidates.
Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de CélulasRESUMO
A series of novel diterpene-type 1,3-aminoalcohols and their regioisomers have been synthesised from natural stevioside in a stereoselective manner. The key intermediate ß-keto alcohol was prepared using Wagner-Meerwein rearrangement of the epoxide derived from steviol methyl ester. The primary aminoalcohol was formed via Raney-nickel-catalysed hydrogenation of an oxime, and a versatile library of aminoalcohols was synthesised using a Schiff base with the primary amines. The aminoalcohol regioisomers were prepared from the mesylate of the ß-keto alcohols. The corresponding primary aminoalcohol was formed via the palladium-catalysed hydrogenation of hydroxyl-azide, and click reactions of the latter were also carried out. The new compounds were characterised using 1D- and 2D-NMR techniques and HRMS measurements. The in vitro investigations showed high inhibition of cell growth in human cancer cell lines (HeLa, SiHa, A2780, MCF-7 and MDA-MB-231) in the case of naphthalic N-substituted derivatives. The antiproliferative effects were assayed using the MTT method.
Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Linhagem Celular Tumoral , Amino Álcoois/farmacologia , Células HeLaRESUMO
A series of novel diaminopyrimidines containing pinane moieties were synthesized via an efficient methodology starting from pinane-based aminoalcohols, aminodiols and 2,4-dichloropyrimidines. Bioassay tests demonstrated that compound 18a displayed much stronger antiproliferative activities against four human cancer cell lines (HeLa, Siha, MDA-MB-231, MCF-7 and A2780) than positive control cisplatin. In particular, compound 22a was found to be selective in inhibiting HeLa cell proliferation with cancer cell growth inhibition values higher than 95 %. Moreover, the inâ vitro screening of prepared compounds against different bacterial and fungal strains is reported. The results revealed that 12b and 17a, the most promising compounds, displayed selective inhibition for the Gram-positive bacteria (B.â subtilis and S.â aureus) with percent inhibition values ranging from 75 to 95 % at 10â µg/mL concentration. Both selective inhibition and the inâ vitro activity values demonstrated that these compounds have the potential to be developed into clinically important therapeutic choices for the treatment of infections caused by B.â subtilis and S.â aureus.
Assuntos
Anti-Infecciosos , Antineoplásicos , Neoplasias Ovarianas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Monoterpenos Bicíclicos , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Humanos , Estrutura Molecular , Staphylococcus aureus , Relação Estrutura-AtividadeRESUMO
Nowadays there is not an effective drug for the treatment of infections caused by human adenovirus (HAdV) which supposes a clinical challenge, especially for paediatric and immunosuppressed patients. Here, we describe the design, synthesis and biological evaluation as anti-adenovirus agents of a new library (57 compounds) of diester, monoester and triazole derivatives based on 3-amino-1,2-propanediol skeleton. Seven compounds (17, 20, 26, 34, 44, 60 and 66) were selected based on their high anti-HAdV activity at low micromolar concentration (IC50 from 2.47 to 5.75 µM) and low cytotoxicity (CC50 from 28.70 to >200 µM). In addition, our mechanistic assays revealed that compounds 20 and 44 might be targeting specifically the HAdV DNA replication process, and compound 66 would be targeting HAdV E1A mRNA transcription. For compounds 17, 20, 34 and 60, the mechanism of action seems to be associated with later steps after HAdV DNA replication.
Assuntos
Adenoviridae/efeitos dos fármacos , Antivirais/farmacologia , Desenho de Fármacos , Propanolaminas/farmacologia , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Propanolaminas/síntese química , Propanolaminas/química , Relação Estrutura-AtividadeRESUMO
Starting from isosteviol, a series of diterpenoid 1,3-aminoalcohol derivatives were stereoselectively synthesised. The acid-catalysed hydrolysis and rearrangement of natural stevioside gave isosteviol, which was transformed to the key intermediate methyl ester. In the next step, Mannich condensation of diterpenoid ketone, paraformaldehyde, and secondary amines resulted in the formation of 1,3-aminoketones with different stereoselectivities. During the Mannich condensation with dibenzylamine, an interesting N-benzyl â N-methyl substituent exchange was observed. Reduction of 1,3-aminoketones produced diastereoisomeric 1,3-aminoalcohols. Alternatively, aminoalcohols were obtained via stereoselective hydroxy-formylation, followed by oxime preparation, reduction, and finally, reductive alkylation of the obtained primary aminoalcohols. An alternative 1,3-aminoalcohol library was prepared by reductive amination of the intermediate 3-hydroxyaldehyde obtained from isosteviol in two-step synthesis. Cytotoxic activity of compounds against human tumour cell lines (A2780, SiHa, HeLa, MCF-7 and MDA-MB-231) was investigated. In our preliminary study, the 1,3-aminoalcohol function and N-benzyl substitution seemed to be essential for the reliable antiproliferative activity. To extend their application, a diterpenoid condensed with 2-phenylimino-1,3-thiazine and -1,3-oxazine was also attempted to prepare, but only formation of thioether intermediate was observed.
Assuntos
Amino Álcoois/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Diterpenos do Tipo Caurano/química , Neoplasias/tratamento farmacológico , Apoptose , Catálise , Proliferação de Células , Humanos , Neoplasias/patologia , Estereoisomerismo , Células Tumorais CultivadasRESUMO
In order to develop an efficient organocatalyst for the enantioselective N-H insertion reaction via carbene/carbenoid, the catalytic core of the cinchona alkaloids was investigated. According to our working hypothesis of an eight-membered ring transition state in the N-H insertion reaction, two pairs of enantiomers related to 2-amino-1-phenylethanol were investigated for their chiral inducing potential. Since both (1R,2S)-isomers gave the N-phenyl-1-phenylglycine derivative enriched in the R-form, while their enantiomers gave the S-form, the 2-amino-1-phenylethanol structure is concluded to be the catalytic core of the cinchona alkaloid in the enantioselective N-H insertion reaction via rhodium(II) carbenoid.
Assuntos
Amino Álcoois/química , Alcaloides de Cinchona/química , Álcoois Benzílicos/química , Catálise , Complexos de Coordenação/química , Hidrogênio/química , Nitrogênio/química , Ródio/química , EstereoisomerismoRESUMO
A library of 1,2-aminoalcohol derivatives with a neoisopulegol-based octahydrobenzofuran core was developed and applied as chiral catalysts in the addition of diethylzinc to benzaldehyde. The allylic chlorination of (+)-neoisopulegol, derived from natural (-)-isopulegol followed by cyclization, gave the key methyleneoctahydrobenzofuran intermediate. The stereoselective epoxidation of the key intermediate and subsequent oxirane ring opening with primary amines afforded the required 1,2-aminoalcohols. The ring closure of the secondary amine analogues with formaldehyde provided spiro-oxazolidine ring systems. The dihydroxylation of the methylenetetrahydrofuran moiety with OsO4/NMO (4-methylmorpholine N-oxide) resulted in the formation of a neoisopulegol-based diol in a highly stereoselective reaction. The antimicrobial activity of both the aminoalcohol derivatives and the diol was also explored.
Assuntos
Amino Álcoois/síntese química , Anti-Infecciosos/síntese química , Benzofuranos/química , Monoterpenos Cicloexânicos/química , Amino Álcoois/química , Amino Álcoois/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Benzaldeídos/química , Catálise , Ciclização , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Organometálicos/químicaRESUMO
Biocatalysts (enzymes) have many advantages as catalysts for the production of useful compounds as compared to chemical catalysts. The stereoselectivity of the enzymes is one advantage, and thus the stereoselective production of chiral compounds using enzymes is a promising approach. Importantly, industrial application of the enzymes for chiral compound production requires the discovery of a novel useful enzyme or enzyme function; furthermore, improving the enzyme properties through protein engineering and directed evolution approaches is significant. In this review, the significance of several enzymes showing stereoselectivity (quinuclidinone reductase, aminoalcohol dehydrogenase, old yellow enzyme, and threonine aldolase) in chiral compound production is described, and the improvement of these enzymes using protein engineering and directed evolution approaches for further usability is discussed. Currently, enzymes are widely used as catalysts for the production of chiral compounds; however, for further use of enzymes in chiral compound production, improvement of enzymes should be more essential, as well as discovery of novel enzymes and enzyme functions.
Assuntos
Enzimas/química , Engenharia de Proteínas , Biocatálise , Evolução Molecular Direcionada , Enzimas/genética , Enzimas/metabolismo , Microbiologia Industrial , Especificidade por SubstratoRESUMO
Aspirination of α-aminoalcohol (sarpogrelate M1) has been performed under various general esterification conditions. In most cases, the desired aspirinate ester was obtained at a low yield with unexpected byproducts, the formation of which was mostly derived from the chemical properties of the tertiary α-amino group. After systematic analysis of those methods, the aspirinated sarpogrelate M1 was prepared using a two-step approach combining salicylate ester formation and acetylation.
Assuntos
Amino Álcoois/química , Aspirina/química , Succinatos/química , EsterificaçãoRESUMO
Starting from isosteviol, a series of diterpenoid 1,3-aminoalcohol derivatives were prepared via stereoselective transformations. The acid-catalysed hydrolysis and rearrangement of natural stevioside produced isosteviol, which was transformed into the key intermediate methyl ester. In the next step, an 1,3-aminoalcohol library was prepared by the reductive amination of the intermediate 3-hydroxyaldehyde obtained from isosteviol in a two-step synthesis. To study the effect of the carboxylate ester function at position 4, the free carboxylic acid, benzyl ester and acryloyl ester analogues were prepared as elongated derivatives in comparison with our earlier results in this field. The antiproliferative activity of compounds against human tumour cell lines (A2780, HeLa, MCF-7 and MDA-MB-231) was investigated. In our preliminary study, the 1,3-aminoalcohol function with N-benzyl or (1H-imidazol-1-yl)-propyl substitution and benzyl ester moiety seemed essential for the reliable antiproliferative activity. The results obtained could be a good starting point to further functionalisation towards more efficient antiproliferative diterpenes.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Aconitum medicinal materials, such as Aconitum carmichaelii Debeaux (Chinese: Wutou/) and Aconitum kusnezoffii Reichb. (Chinese: Caowu/), are a kind of important Traditional Chinese Medicine (TCM) with great medicinal value. Statistics show that there are over 600 efficient TCM formulations comprising Aconitum medicinal materials. But high toxicity limits their clinical application. Clinically, the Aconitum medicinal materials must undergo a complex processing process that includes soaking, steaming, and boiling with pharmaceutical excipients, which makes highly toxic ester diterpenoid alkaloids are hydrolyzed to form less toxic aminoalcohol-diterpenoid alkaloids (ADAs). AIM OF THE STUDY: This review aims to summarize the pharmacokinetic and pharmacological activities of low-toxicity ADAs, providing a reference for future ADAs research and drug development. MATERIALS AND METHODS: Accessible literature on ADAs published between 1984 and 2022 were screened and obtained from available electronic databases such as PubMed, Web of Science, Springer, Science Direct and Google Scholar, followed by systematic analysis. RESULTS: ADAs are secondary products of plant metabolism, widely distributed in the Aconitum species and Delphinium species. The toxicity of ADAs as pharmacodynamic components of Aconitum medicinal materials is much lower than that of other diterpenoid alkaloids due to the absence of ester bonds. On the one hand, the pharmacokinetics of ADAs have received little attention compared to other toxic alkaloids. The research primarily focuses on aconine and mesaconine. According to existing studies, ADAs absorption in the gastrointestinal tract is primarily passive with a short Tmax. Simultaneously, efflux transporters have less impact on ADAs absorption than non-ADAs. After entering the body, ADAs are widely distributed in the heart, liver, lungs, and kidney, but less in the brain. Notably, aconine is not well metabolized by liver microsomes. Aconine and mesaconine are excreted in urine and feces, respectively. ADAs, on the other hand, have been shown to have a variety of pharmacological activities, including cardiac, analgesic, anti-inflammatory, anti-tumor, antioxidant, and regenerative effects via regulating multiple signaling pathways, including Nrf2/ARE, PERK/eIF2α/ATF4/Chop, ERK/CREB, NF-κB, Bcl-2/Bax, and GSK3ß/ß-catenin signaling pathways. CONCLUSIONS: ADAs have been shown to have beneficial effects on heart disease, neurological disease, and other systemic diseases. Moreover, ADAs have low toxicity and a wide range of safe doses. All of these suggest that ADAs have great potential for drug development.
Assuntos
Aconitum , Alcaloides , Diterpenos , Medicamentos de Ervas Chinesas , Aconitum/química , Alcaloides/química , Diterpenos/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/análise , Ésteres , Raízes de Plantas/químicaRESUMO
Here we present comparative studies of: (i) the formation of ZnO thin films via the sol-gel method using zinc acetate dihydrate (ZAD), 2-methoxyethanol (ME) as solvent, and the aminoalcohols (AA): ethanolamine, (S)-(+)-2-amino-1-propanol, (S)-(+)-2-amino-3-methyl-1-butanol, 2-aminophenol, and aminobenzyl alcohol, and (ii) elemental analyses, infrared spectroscopy, X-ray diffraction, scanning electron microscopy, absorption and emission spectra of films obtained after deposition by drop coating on glass surface, and thermal treatments at 300, 400, 500 and 600 °C. The results obtained provide conclusive evidences of the influence of the AA used (aliphatic vs. aromatic) on the ink stability (prior to deposition), and on the composition, structures, morphologies, and properties of films after calcination, in particular, those due to the different substituents, H, Me, or iPr, and to the presence or the absence of a -CH2 unit. Aliphatic films, more stable and purer than aromatic ones, contained the ZnO wurtzite form for all annealing temperatures, while the cubic sphalerite (zinc-blende) form was also detected after using aromatic AAs. Films having frayed fibers or quartered layers or uniform yarns evolved to "neuron-like" patterns. UV and photoluminescence studies revealed that these AAs also affect the optical band gap, the structural defects, and photo-optical properties of the films.
RESUMO
BACKGROUND: Infections by gastrointestinal nematodes cause significant economic losses and disease in both humans and animals worldwide. The discovery of novel anthelmintic drugs is crucial for maintaining control of these parasitic infections. METHODS: For this purpose, the aim of the present study was to evaluate the potential anthelmintic activity of three series of compounds against the gastrointestinal nematodes Trichuris muris and Heligmosomoides polygyrus in vitro. The compounds tested were derivatives of benzimidazole, lipidic aminoalcohols and diamines. A primary screening was performed to select those compounds with an ability to inhibit T. muris L1 motility by > 90% at a single concentration of 100 µM; then, their respective IC50 values were calculated. Those compounds with IC50 < 10 µM were also tested against the adult stage of T. muris and H. polygyrus at a single concentration of 10 µM. RESULTS: Of the 41 initial compounds screened, only compounds AO14, BZ6 and BZ12 had IC50 values < 10 µM on T. muris L1 assay, showing IC50 values of 3.30, 8.89 and 4.17 µM, respectively. However, only two of them displayed activity against the adult stage of the parasites: BZ12 killed 81% of adults of T. muris (IC50 of 8.1 µM) and 53% of H. polygyrus while BZ6 killed 100% of H. polygyrus adults (IC50 of 5.3 µM) but only 17% of T. muris. CONCLUSIONS: BZ6 and BZ12 could be considered as a starting point for the synthesis of further structurally related compounds.
Assuntos
Anti-Helmínticos , Nematoides , Nematospiroides dubius , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Benzimidazóis , TrichurisRESUMO
Malaria is the fifth most lethal parasitic infections in the world. Herein, five new series of aminoalcohol quinolines including fifty-two compounds were designed, synthesized and evaluated in vitro against Pf3D7 and PfW2 strains. Among them, fourteen displayed IC50 values below or near of 50.0 nM whatever the strain with selectivity index often superior to 100.17b was found as a promising antimalarial candidate with IC50 values of 14.9 nM and 11.0 nM against respectively Pf3D7 and PfW2 and a selectivity index higher than 770 whatever the cell line is. Further experiments were achieved to confirm the safety and to establish the preliminary ADMET profile of compound 17b before the in vivo study performed on a mouse model of P. berghei ANKA infection. The overall data of this study allowed to establish new structure-activity relationships and the development of novel agents with improved pharmacokinetic properties.
Assuntos
Amino Álcoois/farmacologia , Antimaláricos/farmacologia , Desenho de Fármacos , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Amino Álcoois/síntese química , Amino Álcoois/química , Animais , Antimaláricos/síntese química , Antimaláricos/química , Linhagem Celular , Cricetulus , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-AtividadeRESUMO
Gastrointestinal nematodes (GIN) infections are a serious problem in livestock production due to the great economic losses they cause. Their control is increasingly difficult because of the rapid development of drug resistance and the limited number of available drugs. Therefore, this study evaluated 18 aminoalcohol and 16 diamine derivatives against eggs, first and third stage larvae from a susceptible and a resistant isolate of Teladorsagia circumcincta collected from sheep. The effectiveness of the in vitro anthelmintic activity of the compounds was evaluated using three different procedures: Egg Hatch Test (EHT), Larval Mortality Test (LMT) and Larval Migration Inhibition Test (LMIT). Those compounds with activities higher than 90 % in the initial screening at 50 µM were selected to determine their half maximal effective concentration (EC50). In parallel, cytotoxicity assays were conducted on Caco2 and HepG2 cell lines to calculate Selectivity Indexes (SI) for each compound. The diamine 30 presented the best results in preventing egg hatching, displaying the lowest EC50 value (1.01⯱â¯0.04 µM) of all compounds tested and the highest SI (21.21 vs. Caco-2 cells). For the LMIT, the diamine 34 showed the highest efficacy, with EC50 values of 2.67⯱â¯0.08 and 3.02⯱â¯0.09 µM on the susceptible and resistant isolate of the parasite, respectively.
Assuntos
Álcoois , Anti-Helmínticos , Diaminas , Nematoides , Doenças dos Ovinos , Álcoois/farmacologia , Álcoois/uso terapêutico , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Células CACO-2 , Diaminas/farmacologia , Diaminas/uso terapêutico , Resistência a Medicamentos/efeitos dos fármacos , Fezes , Humanos , Óvulo/efeitos dos fármacos , Ovinos , Doenças dos Ovinos/tratamento farmacológicoRESUMO
Fuzi, a well-known traditional Chinese medicine developed from the lateral roots of Aconitum carmichaelii Debx., has been widely used for the treatment of heart failure. In order to search for active compounds from Fuzi, a phytochemical study was performed, which resulted in the isolation of 14 aminoalcohol-diterpenoid alkaloids, including one new compound (1). Their cardioprotective effects against doxorubicin-induced toxicity in H9c2 cells were evaluated. All of the alkaloids showed cardioprotective effects in a nonmonotonic concentration-response manner, with the maximum protection rates ranging from 17.96 ± 2.93% to 98.31 ± 0.35%. Compound 5 exhibited the most potent cardioprotective activity. Taking the maximum protection rate as an indicator, the preliminary structure-activity relationship analysis indicated that the substitutions of C-1, C-13, C-15, C-16, and N and the configurations of OMe-6 and OH-15 are important structural features for the cardioprotective activities of the aminoalcohol-diterpenoid alkaloids.
Assuntos
Aconitum/química , Alcaloides/farmacologia , Cardiotônicos/farmacologia , Diterpenos/farmacologia , Alcaloides/isolamento & purificação , Cardiotônicos/isolamento & purificação , Linhagem Celular , China , Diterpenos/isolamento & purificação , Doxorrubicina/toxicidade , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Raízes de Plantas/químicaRESUMO
This manuscript describes the synthesis and characterization of five new organic-inorganic hybrid (OIH) sol-gel materials that were obtained from a functionalized siloxane 3-glycidoxypropyltrimethoxysilane (GPTMS) by the reaction with the new Jeffamine®, namely three different diamines, i.e., EDR-148, RFD-270, and THF-170, a secondary diamine, i.e., SD-2001, and a triamine, i.e., T-403. The OIH sol-gel materials were characterized by UV-visible absorption spectrophotometry, steady-state photoluminescence spectroscopy, and electrochemical impedance spectroscopy. The reported OIH sol-gel materials showed that, with the exception of the samples prepared with Jeffamine® SD-2001, the transmittance values ranged between 61% and 79%. Regarding the capacitance data, the values reported changed between 0.008 and 0.013 nF cm-2. Due to their optical and electrical properties these new OIH materials show promising properties for applications as support films in an optical sensor area such as fiber sensor devices. Studies to assess the chemical stability of the OIH materials in contact with cement pastes after 7, 14, and 28 days were also performed. The samples prepared with THF-170 and GPTMS, when compared to the samples prepared with RFD-270 and T-403, exhibited improved behavior in the cement paste (alkaline environment), showing promising properties for application as support film in optical fiber sensors in the civil engineering field.
RESUMO
Whole cell biocatalysis is an ideal tool for biotransformations that demand enzyme regeneration or robustness to fluctuating pH, osmolarity and biocontaminant load in feedstocks. The methylotrophic yeast Komagataella phaffii is an attractive alternative to Escherichia coli for whole cell biocatalysis due to its genetic tractability and capacity to grow to up to 60% wet cell weight by volume. We sought to exploit high cell density K. phaffii to intensify whole-cell chiral amino-alcohol (CAA) biosynthesis. We engineered two novel K. phaffii GS115 strains: one by inserting a Chromobacterium violaceum ω-transaminase CV2025 transgene, for strain PpTAmCV708, and a second strain, PpTAm-TK16, by also inserting the same CV2025 transgene plus a second transgene for a native transketolase. At high cell density, both strains tolerated high substrate concentrations. When fed three low cost substrates, 200 mM glycolaldehyde, 200 mM hydroxypyruvate and 150 mM methylbenzylamine, PpTAm-TK16 whole cells achieved 0.29 g L-1 hr-1 space-time yield of the acetophenone by-product, a 49-fold increase of the highest levels reported for E. coli whole cells harboring the equivalent pathway. When fed only the low-cost substrate, 150 mM methylbenzylamine, strain PpTAmCV708 achieved a 105-fold increase of reported E. coli whole cell biocatalysis performance, with a space-time yield of 0.62 g L-1 hr-1 of the CAA, 2-amino-1,3,4-butanetriol (ABT). The rapid growth and high biomass characteristics of K. phaffii were successfully exploited for production of ABT by whole-cell biocatalysis at higher levels than the previously achieved with E. coli in the presence of the same substrates.
Assuntos
Amino Álcoois/metabolismo , Chromobacterium/enzimologia , Escherichia coli/metabolismo , Engenharia de Proteínas , Saccharomycetales/metabolismo , Transcetolase/metabolismo , Amino Álcoois/química , Biotransformação , Escherichia coli/citologia , TransgenesRESUMO
BACKGROUND: Numerous synthetic bile acid derivatives have been recognized for their various biological activities. Among these, bile acid amides have emerged as an attractive antibacterial agent. We herein illustrate the synthesis and antibacterial evaluation of deoxycholic acidamino alcohols conjugates. OBJECTIVE: Design and Synthesis of novel deoxycholic acid-amino alcohol conjugates to investigate their antibacterial activity against E. coli and S. aureus. METHODS: Novel deoxycholic acid-amino alcohol conjugates were synthesized, from conjugation of deoxycholic acid-NHS ester with amino alcohols. Various amino alcohols moieties were appended to the C24 position of deoxycholic acid to yield deoxycholic acid-amino alcohol conjugates. All the synthesized compounds were characterized by 1H NMR, 13C NMR, IR and massspectroscopy. The entire synthesized deoxycholic acid-amino alcohol conjugates were evaluated for their antibacterial activity against E. coli and S. aureus using the broth dilution method. RESULTS: The outcome illustrated that some of the novel deoxycholic acid-amino alcohol conjugates exhibited enhanced anti-bacterial activities. Amongst them, deoxycholic acid-amino alcohol conjugate containing (-R)-2-aminocyclohexanol (1) demonstrated promising efficacy against both strains S. aureus ATCC 25923 (MIC 15 µg/mL) and E. coli ATCC 25922 (MIC 45 µg/mL) and was identified as a lead molecule. CONCLUSION: Numbers of novel deoxycholic acid-amino alcohol conjugates were synthesized and their antimicrobial activities provided useful information that the potency was strongly depending on the structures of deoxycholic acid-amino alcohol conjugates.
Assuntos
Amino Álcoois/farmacologia , Antibacterianos/farmacologia , Ácido Desoxicólico/análogos & derivados , Ácido Desoxicólico/farmacologia , Amino Álcoois/síntese química , Antibacterianos/síntese química , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
New waterborne polyurethane-urea dispersions with adequate adhesion and cohesion properties have been synthesized by reacting isophorone diisocyanate, copolymer of ether and carbonate diol polyol and three amino-alcohols with different number of OH groups chain extenders using the prepolymer method. The waterborne polyurethane-urea dispersions were characterized by pH, particle-size distribution, and viscosity, and the polyurethane-urea films were characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and plate-plate rheology (temperature and frequency sweeps). Polyurethane-urea pressure-sensitive adhesives (PUU PSAs) were prepared by placing the waterborne polyurethane dispersions on polyethylene terephthalate (PET) films and they were characterized at 25 °C by creep test, tack and 180° peel test. The waterborne polyurethane-urea dispersions showed mean particle sizes between 51 and 78 nm and viscosities in the range of 58-133 mPa·s. The polyurethane-urea films showed glass transition temperatures (Tgs) lower than -64 °C, and they showed a cross of the storage and loss moduli between -8 and 68 °C depending on the number of OH groups in the amino-alcohol chain extender. Different types of PUU PSAs (removable, high shear) were obtained by changing the number of OH groups in the amino-alcohol chain extender. The tack at 25 °C of the PUU PSAs varied between 488 and 1807 kPa and the 180° peel strength values ranged between 0.4 and 6.4 N/cm, and their holding times were between 2 min and 5 days. The new PUU PSAs made with amino-alcohol chain extender seemed very promising for designing environmentally friendly waterborne PSAs with high tack and improved cohesion and adhesion property.