Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947639

RESUMO

Heat stress is one of the most important environmental stressors facing poultry production and welfare worldwide. The detrimental effects of heat stress on poultry range from reduced growth and egg production to impaired health. Animal vocalisations are associated with different animal responses and can be used as useful indicators of the state of animal welfare. It is already known that specific chicken vocalisations such as alarm, squawk, and gakel calls are correlated with stressful events, and therefore, could be used as stress indicators in poultry monitoring systems. In this study, we focused on developing a hen vocalisation detection method based on machine learning to assess their thermal comfort condition. For extraction of the vocalisations, nine source-filter theory related temporal and spectral features were chosen, and a support vector machine (SVM) based classifier was developed. As a result, the classification performance of the optimal SVM model was 95.1 ± 4.3% (the sensitivity parameter) and 97.6 ± 1.9% (the precision parameter). Based on the developed algorithm, the study illustrated that a significant correlation existed between specific vocalisations (alarm and squawk call) and thermal comfort indices (temperature-humidity index, THI) (alarm-THI, R = -0.414, P = 0.01; squawk-THI, R = 0.594, P = 0.01). This work represents the first step towards the further development of technology to monitor flock vocalisations with the intent of providing producers an additional tool to help them actively manage the welfare of their flock.


Assuntos
Criação de Animais Domésticos/métodos , Galinhas/fisiologia , Espectrografia do Som/métodos , Máquina de Vetores de Suporte , Vocalização Animal/fisiologia , Bem-Estar do Animal , Animais , Feminino , Transtornos de Estresse por Calor/prevenção & controle , Abrigo para Animais , Umidade , Processamento de Sinais Assistido por Computador , Temperatura
2.
Ecol Evol ; 14(7): e11636, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962019

RESUMO

The study of animal sounds in biology and ecology relies heavily upon time-frequency (TF) visualisation, most commonly using the short-time Fourier transform (STFT) spectrogram. This method, however, has inherent bias towards either temporal or spectral details that can lead to misinterpretation of complex animal sounds. An ideal TF visualisation should accurately convey the structure of the sound in terms of both frequency and time, however, the STFT often cannot meet this requirement. We evaluate the accuracy of four TF visualisation methods (superlet transform [SLT], continuous wavelet transform [CWT] and two STFTs) using a synthetic test signal. We then apply these methods to visualise sounds of the Chagos blue whale, Asian elephant, southern cassowary, eastern whipbird, mulloway fish and the American crocodile. We show that the SLT visualises the test signal with 18.48%-28.08% less error than the other methods. A comparison between our visualisations of animal sounds and their literature descriptions indicates that the STFT's bias may have caused misinterpretations in describing pygmy blue whale songs and elephant rumbles. We suggest that use of the SLT to visualise low-frequency animal sounds may prevent such misinterpretations. Finally, we employ the SLT to develop 'BASSA', an open-source, GUI software application that offers a no-code, user-friendly tool for analysing short-duration recordings of low-frequency animal sounds for the Windows platform. The SLT visualises low-frequency animal sounds with improved accuracy, in a user-friendly format, minimising the risk of misinterpretation while requiring less technical expertise than the STFT. Using this method could propel advances in acoustics-driven studies of animal communication, vocal production methods, phonation and species identification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA