Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(11): e0076423, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37843261

RESUMO

In a looming post-antibiotic era, antibiotic alternatives have become key players in the combat against pathogens. Although recent advances in genomic research allow scientists to fully explore an organism's genome in the search for novel antibacterial molecules, laborious work is still needed in order to dissect each individual gene product for its antibacterial activity. Here, we exploited phage-induced bacterial morphological changes as anchors to explore and discover a potential phage-derived antimicrobial embedded in the phage genome. We found that, upon vibriophage KVP40 infection, Vibrio parahaemolyticus exhibited morphological changes similar to those observed when treated with mecillinam, a cell wall synthesis inhibitor, suggesting the mechanism of pre-killing that KVP40 exerts inside the bacterial cell upon sieging the host. Genome analysis revealed that, of all the annotated gene products in the KVP40 genome that are involved in cell wall degradation, lytic transglycosylase (LT) is of particular interest for subsequent functional studies. A single-cell morphological analysis revealed that heterologous expression of wild-type KVP40-LT induced similar bacterial morphological changes to those treated with the whole phage or mecillinam, prior to cell burst. On the contrary, neither the morphology nor the viability of the bacteria expressing signal-peptide truncated- or catalytic mutant E80A- KVP40-LT was affected, suggesting the necessity of these domains for the antibacterial activities. Altogether, this research paves the way for the future development of the discovery of phage-derived antimicrobials that is guided through phage-induced morphological changes.


Assuntos
Anti-Infecciosos , Bacteriófagos , Vibrio parahaemolyticus , Bacteriófagos/genética , Antibacterianos/farmacologia , Andinocilina
2.
Phytopathology ; 113(7): 1171-1179, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36750555

RESUMO

Huanglongbing (HLB), referred to as citrus greening disease, is a bacterial disease impacting citrus production worldwide and is fatal to young trees and mature trees of certain varieties. In some areas, the disease is devastating the citrus industry. A successful solution to HLB will be measured in economics: citrus growers need treatments that improve tree health, fruit production, and most importantly, economic yield. The profitability of citrus groves is the ultimate metric that truly matters when searching for solutions to HLB. Scientific approaches used in the laboratory, greenhouse, or field trials are critical to the discovery of those solutions and to estimate the likelihood of success of a treatment aimed at commercialization. Researchers and the citrus industry use a number of proxy evaluations of potential HLB solutions; understanding the strengths and limitations of each assay, as well as how best to compare different assays, is critical for decision-making to advance therapies into field trials and commercialization. This perspective aims to help the reader compare and understand the limitations of different proxy evaluation systems based on the treatment and evaluation under consideration. The researcher must determine the suitability of one or more of these metrics to identify treatments and predict the usefulness of these treatments in having an eventual impact on citrus production and HLB mitigation. As therapies advance to field trials in the next few years, a reevaluation of these metrics will be useful to guide future research efforts on strategies to mitigate HLB and vascular bacterial pathogens in other perennial crops.


Assuntos
Citrus , Rhizobiaceae , Citrus/microbiologia , Liberibacter , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Árvores
3.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38052426

RESUMO

Microbial natural products are specialized metabolites that are sources of many bioactive compounds including antibiotics, antifungals, antiparasitics, anticancer agents, and probes of biology. The assembly of libraries of producers of natural products has traditionally been the province of the pharmaceutical industry. This sector has gathered significant historical collections of bacteria and fungi to identify new drug leads with outstanding outcomes-upwards of 60% of drug scaffolds originate from such libraries. Despite this success, the repeated rediscovery of known compounds and the resultant diminishing chemical novelty contributed to a pivot from this source of bioactive compounds toward more tractable synthetic compounds in the drug industry. The advent of advanced mass spectrometry tools, along with rapid whole genome sequencing and in silico identification of biosynthetic gene clusters that encode the machinery necessary for the synthesis of specialized metabolites, offers the opportunity to revisit microbial natural product libraries with renewed vigor. Assembling a suitable library of microbes and extracts for screening requires the investment of resources and the development of methods that have customarily been the proprietary purview of large pharmaceutical companies. Here, we report a perspective on our efforts to assemble a library of natural product-producing microbes and the establishment of methods to extract and fractionate bioactive compounds using resources available to most academic labs. We validate the library and approach through a series of screens for antimicrobial and cytotoxic agents. This work serves as a blueprint for establishing libraries of microbial natural product producers and bioactive extract fractions suitable for screens of bioactive compounds. ONE-SENTENCE SUMMARY: Natural products are key to discovery of novel antimicrobial agents: Here, we describe our experience and lessons learned in constructing a microbial natural product and pre-fractionated extract library.


Assuntos
Antineoplásicos , Produtos Biológicos , Produtos Biológicos/química , Biblioteca Gênica , Fungos/genética , Indústria Farmacêutica
4.
Microb Pathog ; 154: 104869, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33774106

RESUMO

Lipid transfer proteins (LTP) are members of the family of pathogenesis-related proteins (PR-14) that play a key role in plant defense mechanisms. In this study, a novel gene TdLTP4 encoding an antifungal protein from wheat (cv. Om Rabiaa) was cloned, overexpressed in Escherichia coli BL-21 (DE3) and enriched using ammonium sulfate fractionation. The TdLTP4 fusion protein was then tested against a panel of pathogens, food-borne and spoilage bacteria and fungi in order to evaluate the antimicrobial properties. TdLTP4 was applied to 0.5 µg/mL LPS-induced RAW 264.7 macrophages in vitro at different concentrations (5, 10, 20, 50 and 100 µg/mL). Levels of nitric oxide (NO), pro-inflammatory cytokines interleukin (IL)-1ß (IL-1 ß), interleukin (IL)-6 (IL-6), tumor necrosis factor (TNF-α) and anti-inflammatory cytokine IL-10 in the supernatant fraction were measured using enzyme-linked immunosorbent assay (ELISA). Expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were detected via Western blot. The inhibition zones and minimal inhibitory concentration (MIC) values of bacterial strains were in the range of 14-26 mm and 62.5-250 µg/mL, respectively. Moreover, a remarkable activity against several fungal strains was revealed. TdLTP4 (5-100 µg/mL) decreased the production of NO (IC50 = 4.32 µg/mL), IL-6 (IC50 = 11.52 µg/mL), IL-1ß (IC50 = 7.87 µg/mL) and TNF-α (IC50 = 8.66 µg/mL) by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. TdLTP4 could modulate the macrophages inflammatory mode by causing reduction in iNOS and COX-2. According to these findings, TdLTP4 fusion protein could be used as natural anti-inflammatory and antimicrobial agent in food preservation and human health.


Assuntos
Lipopolissacarídeos , Triticum , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
5.
Anal Biochem ; 598: 113645, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105739

RESUMO

New lanthanide complexes (1-3) of the general formulae [Ln(L)(NO3)(H2O)] have been synthesized by reaction of Ln(NO3)3 {Ln = La (1), Sm (2) and Yb (3)} with 2,2'-(((1E,1'E)-thiophene-2,5-diylbis(methaneylylidene))bis(azaneylylidene))diphenol (H2L). Based on elemental analysis, spectroscopic studies (UV-Vis., FT-IR, ESI-MS, 1H/13C NMR), molar conductance and thermogravimetric analysis, the Schiff base ligand was suggested to coordinate Ln(III) ions through the azomethine nitrogens, deprotonated hydroxyl groups, and thiophene sulphur atom. The interaction of the synthetic compounds with CT-DNA has been studied by the electronic spectroscopy, fluorometric competition studies with ethidium bromide and DNA viscosity measurements. Furthermore, due to the ligand and its Ln(III) complexes exhibit good DNA binding affinity, it is considered worthwhile to investigate their antioxidant activity. The data have shown that, the complexes are more effective inhibitors towards reactive oxygen species (ROS), such as superoxide anion and hydroxyl radical. The activity of test compounds in ascending order (1) > (2) > (3) > H2L in terms of IC50 value. The anticancer activities of the complexes have also been studied towards human colon carcinoma cancer (HCT-116) and human breast cancer (MCF-7) cell lines.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Complexos de Coordenação/farmacologia , Elementos da Série dos Lantanídeos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Aspergillus flavus/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Bovinos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , DNA/química , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Elementos da Série dos Lantanídeos/química , Células MCF-7 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Superóxidos/antagonistas & inibidores , Viscosidade
6.
J Asian Nat Prod Res ; 21(3): 262-269, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29683719

RESUMO

The total syntheses of four polyketides, surinone B (1), alatanones A-B (2-3), and trineurone A (4) were accomplished through an efficient and unified strategy via one-pot C-acylation reaction coupling 1,3-cyclohexadiones with EDC-activated acids under mild conditions. Alatanone A (2) was found to be a potent anti-microbial agent against Gram-positive and Gram-negative bacteria with MIC 31.25 µg/ml while alatanone B (3) was found to be a potent anti-fungal agent against Cladosporium cladosporioides with MIC 62.5 µg/ml compared to cycloheximide MIC 125 µg/ml. Our methodology allows performing kilogram scale of these scarce polyketides for the development of new antimicrobials.


Assuntos
Policetídeos/síntese química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Cladosporium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Policetídeos/química
7.
Molecules ; 24(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022871

RESUMO

Essential oils (EOs) have gained increasing attention due to their pharmacological effectiveness, and they also constitute some of the most popular natural products. In this study, we present the chemical characterization of the EO from Phania matricarioides and the in vitro activity/selectivity against a wide panel of bacteria, fungi and parasitic protozoa. Forty-five compounds were identified in the studied EO, of which lavandulyl acetate (40.1%) and thymyl isobutyrate (13.9%) were the major components. The EO did not inhibit bacterial or fungal growth at the maximum concentration tested (64 µg/mL), although it displayed activity on all evaluated protozoa (IC50 values ranging from 2.2 to 56.6 µg/mL). In parallel, the EO demonstrated a noteworthy cytotoxic activity against peritoneal macrophages (CC50 values of 28.0 µg/mL). The most sensitive microorganism was Trypanosoma cruzi, which had a superior activity (IC50 = 2.2 µg/mL) and selectivity (SI = 13) in respect to other parasitic protozoa and the reference drug (p < 0.05). Further in vivo studies are needed to evaluate the potential use of this EO and the main compounds as antitrypanosomal agents. To our knowledge, this is the first report of chemical characterization and antimicrobial assessment of the EO from P. matricarioides.


Assuntos
Asteraceae/química , Proliferação de Células/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Óleos Voláteis/química , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antiparasitários/química , Antiparasitários/isolamento & purificação , Antiparasitários/farmacologia , Fungos/efeitos dos fármacos , Fungos/patogenicidade , Humanos , Testes de Sensibilidade Microbiana , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/patogenicidade
8.
Bioorg Chem ; 76: 332-342, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29227917

RESUMO

Fifteen new substituted N-2-(2-oxo-3-phenylquinoxalin-1(2H)-yl) acetamides 5a-f, 6a-f, and 8a-c were synthesized by reacting ethyl 2-(2-oxo-3-phenylquinoxalin-1(2H)-yl)acetate with various primary amines including benzylamines, sulfonamides, and amino acids. The in vitro antimicrobial screening of the target compounds was screened to assess their antibacterial and antifungal activity. As a result, seven compounds namely; 5a, 5c, 5d, 6a, 6c, 8b and 8c showed a promising broad spectrum antibacterial activity against both Gram-positive and Gram-negative strains. Among these, the analogs 5c and 6d were nearly as equiactive as ciprofloxacin drug. Meanwhile, four compounds namely; 5c, 6a, 6f and 8c exhibited appreciable antifungal activity with MIC values range 33-40 mg/mL comparable with clotrimazole (MIC 25 mg/mL). In addition, the anticancer effects of the synthesized compounds were evaluated against three cancer lines. The data obtained revealed the benzylamines and sulpha derivatives were the most active compounds especially 5f and 6f ones. Further EGFR enzymatic investigation was carried out for these most active compounds 5f and 6f resulting in inhibitory activity by 1.89 and 2.05 µM respectively. Docking simulation was performed as a trial to study the mechanisms and binding modes of these compounds toward the enzyme target, EGFR protein kinase enzyme. The results revealed good compounds placement in the active sites and stable interactions similar to the co-crystallized reference ligand. Collectively, the analogs 5f and 6f could be further utilized and optimized as good cytotoxic agents.


Assuntos
Acetamidas/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Acetamidas/síntese química , Acetamidas/química , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Ciprofloxacina/farmacologia , Clotrimazol/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios Enzimáticos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Receptor ErbB-2/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
9.
Chem Pharm Bull (Tokyo) ; 66(11): 1072-1077, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30381659

RESUMO

The reaction of lauroyl isothiocyanate 1 with enaminonitrile derivative 2 furnished N-(6-cyano-3, 4-diphenylthieno[2,3-c]pyridazin-5-yl-carbamothioyl)dodecanamide 3, which was used as precursor for the synthesis of novel heterocyclic systems. Polyfunctional pyrimidine and fused pyrimidine derivatives were obtained by the cyclization of compound 3 under different basic conditions as well as its reactions with thiourea, o-aminothiophenol, hydrazine hydrate, phenyl hydrazine, ethyl phenyl acetate or ethyl benzoyl acetate. The structures of the new compounds were confirmed by microanalytical and spectral properties. The synthesised compounds were tested in-vitro for their antimicrobial activity and showed congruent results against most of the tested microorganisms compared to the standard drugs Gentamycin and Ketoconazol.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Isotiocianatos/farmacologia , Pirimidinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Aspergillus fumigatus/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Isotiocianatos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteus vulgaris/efeitos dos fármacos , Pirimidinas/síntese química , Pirimidinas/química , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
10.
Biologics ; 18: 207-228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130166

RESUMO

Introduction: This study aimed to investigate the fungal growth and diversity in the Sabkha marsh. The anti-bacterial properties of the isolated fungi were assessed using an agar disk diffusion assay, and the crude extracts were tested for their anticancer activities. Liquid chromatography-mass spectrometry was employed to identify the active compounds of the fungal secondary metabolites. In-silico studies were conducted to predict the toxicity, pharmacokinetic properties, and safety profiles of the identified compounds. Results: The analysis revealed that the isolated fungi belonged to the Aspergillus species, specifically Aspergillus flavus and Aspergillus niger. The crude extract of A. flavus exhibited significant anticancer activity against various cancer cell lines, while the antifungal activities against pathogenic bacteria varied between the two fungi. Liquid chromatography-mass spectrometry analysis identified several compounds in the fungal isolates. In Aspergillus flavus, the compounds included Aflavinine, Dihydro-24-hydroxyaflavinine, Phomaligin A, Hydroxysydonic acid, Gregatin B, Pulvinulin A, Chrysogine, Aspergillic acid, Aflatoxin B1, and Aflatoxin G1. In Aspergillus niger, the compounds identified were atromentin, fonsecin B, firalenone, rubrofusarin, aurasperone E, aurasperone D, aurasperone C, nigerone, and αß-dehydrocurvularin. Conclusion: This study demonstrated promising fungal growth and diversity in the Sabkha marsh, with Aspergillus species being the most prevalent. The fungal crude extract showed anticancer activities against various cancer cell lines, while the antifungal activities against pathogenic bacteria varied between the two fungi. Future research should focus on investigating the antimicrobial activities of these fungi against multidrug-resistant bacteria and exploring the genetic changes in bacteria and cancer cells treated with these fungal extracts. Additionally, it is important to test the anticancer activity of the active compounds separately to determine which one is the active agent against cancer cells. This information can be used in drug development trials.

11.
ACS Appl Bio Mater ; 7(7): 4323-4338, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38867473

RESUMO

The polymeric nanofiber mats were produced from polylactic acid, methylcellulose, and polyethylene glycol with 5-fluorouracil (5Fu) drug and iron oxide (Fe3O4) nanoparticles. Spectral and crystallographic studies clearly elucidated the ionic interactions, structure and nature of the mats. Fe3O4 nanoparticles <10 nm in size, along with methyl cellulose and polyethylene glycol, have significantly reduced the size of nanofiber mats. The mechanical properties for the mats was found to be challenging; however, surface wettability, swelling capacity, and drug encapsulation efficiency results were promising. A controlled drug release pattern was observed from in vitro drug release study, zero-order kinetics, and a Higuchi model. Nanofiber mats showed higher anticancer activity (78%) against MDA-MB 231 cancer cells, which reveals that a small amount of 5Fu drug (15.86%) with high levels of O2••, H2O2, and OH• radicals generated from Fe3O4 have catalyzed the Fenton's reaction to eradicate the cancer cells, in a shorter span of 24 h, itself. In addition, the apoptosis assay by dual AO/PI staining method clearly exhibited the apoptotic cancer cells by fluorescence microscopy. Incorporation of Fe3O4 nanoparticles enhanced the anticancer activity of the mats, compared to the commercially available standard 5Fu drug. Nanofiber mats significantly controlled the growth of selected pathogenic microbial strains by the action of the 5Fu drug and Fe3+ ions. The degradation of mats was investigated by an in vitro mass loss study for a period of 360 days. In a nutshell, promising nanofiber mats were produced as targeted drug delivery devices for chemotherapy.


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Proliferação de Células , Portadores de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila , Nanofibras , Tamanho da Partícula , Humanos , Apoptose/efeitos dos fármacos , Nanofibras/química , Fluoruracila/farmacologia , Fluoruracila/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Portadores de Fármacos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Testes de Sensibilidade Microbiana , Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas/química
12.
Antibiotics (Basel) ; 13(9)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39335084

RESUMO

Background: Heracleum sphondylium, a medicinal plant used in Romanian ethnopharmacology, has been proven to have remarkable biological activity. The escalating concerns surrounding antimicrobial resistance led to a special attention being paid to new efficient antimicrobial agents based on medicinal plants and nanotechnology. We report the preparation of a novel, simple phytocarrier that harnesses the bioactive properties of H. sphondylium and silver nanoparticles (HS-Ag system). Methods: H. sphondylium's low metabolic profile was determined through gas chromatography-mass spectrometry and electrospray ionization-quadrupole time-of-flight-mass spectrometry. The morphostructural properties of the innovative phytocarrier were analyzed by X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, dynamic light scattering, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The antioxidant activity was evaluated using total phenolic content, ferric reducing antioxidant power, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) in vitro assays. The antimicrobial activity screening against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli was conducted using the agar well diffusion method. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay estimated the in vitro potential cytotoxicity on normal human dermal fibroblasts (NHDF) and cervical cancer (HeLa) cells. Results: A total of 88 biomolecules were detected, such as terpenoids, flavonoids, phenolic acids, coumarins, phenylpropanoids, iridoids, amino acids, phytosterols, fatty acids. The HS-Ag phytocarrier heightened efficacy in suppressing the growth of all tested bacterial strains compared to H. sphondylium and exhibited a significant inhibition of HeLa cell viability. Conclusions: The new HS-Ag phytocarrier system holds promise for a wide range of medical applications. The data confirm the capacity to augment the pertinent theoretical understanding in the innovative field of antimicrobial agents.

13.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614421

RESUMO

Through the condensation of isatin (indoline-2, 3-dione) and aniline in a 1:1 ratio, a Schiff base ligand was synthesized and characterized via (1H-NMR, mass, IR, UV-Vis) spectra. Elemental analyses, spectroscopy (1H-NMR, mass, UV-Vis), magnetic susceptibility, molar conductivity, mass spectra, scanning electron microscope (SEM), and thermal analysis have all been used to characterize a series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) metal complexes derived from the titled ligand. The metal-to-ligand ratio is 1:1, according to the analytical data. The Schiff base ligand displayed bidentate behavior with NO coordination sites when it bonded to metal ions, as seen by the IR spectra. The magnetic moment measurement and UV-Vis spectral investigation showed the octahedral geometry of the Cr(III), Fe(III), Co(II), Ni(II), and Zn(II) complexes, whereas they suggested the tetrahedral geometry of the Mn(II), Cu(II), and Cd(II) complexes. The thermal analysis study confirmed the presence of both hydrated and coordinated water molecules in all the compounds, except for the Mn(II) complex, and showed that the complexes decomposed in three or five decomposition steps leaving the corresponding metal oxide as a residue. The ligand and its metal complexes' antibacterial efficacy were evaluated. The findings showed that the metal complexes had stronger antibacterial properties than the ligand alone. The ligand and its metal complexes' anticancer properties were also investigated. A DFT investigation is also reported to gather information regarding the electronic features of the ligand and its metal complexes. Finally, drug-likeness and ADME characteristics were also calculated as parameters.

14.
ACS Appl Bio Mater ; 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36062471

RESUMO

Nanosized metal oxide-incorporated drug carriers have received significant attention due to their biocompatibility, mechanical strength, controlled drug release, and biodegradability. Herein, an attempt was made to fabricate polycaprolactone-based electrospun nanofiber mats involving the 5-fluorouracil (5Fu) drug, MgO nanoparticle, methyl cellulose, and polyethylene glycol. The chemical interactions, surface wettability, mechanical properties, structural and morphological changes, and thermal stability were studied by the respective analyses. The ionic interaction between 5Fu, MgO, and polymers were found to be responsible for the controlled drug release. Zero-order kinetic and model data also revealed that a controlled drug release pattern was observed in a period of 16 days. Furthermore, the nanofiber mats were subjected to cytotoxicity studies against MDA-MB-231 cancer cell line and the results showed higher cytotoxicity in a short time of 24 h and less toxicity to normal L929 fibroblast cell line. The apoptosis in cancer cell lines was also tested by AO/PI staining assay and confirmed by fluorescence microscopy. In addition, the growth inhibition of several bacterial and fungal strains was tested for the mats and the results exhibited good inhibition activity. Hence, the reported nanofiber drug carrier was found to be an efficient implant for the controlled release of anticancer drug along with other significant properties.

15.
Appl Radiat Isot ; 174: 109774, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022501

RESUMO

A series of Co(II), Ni(II), Cu(II), Th(IV) and UO2(II) complexes have been synthesized from reaction of nitrogen based ligand (L) i.e. N',N'''-((Z)-ethane-1,2-diylidine)bis(2-aminobenzohydrazide)(L) with their salts. Investigation of synthesized metal complexes was achieved by using elemental analyses, magnetic moment, molar conductance, FT-IR, UV/Vis. spectroscopy, thermal techniques and 3D molecular modeling. An octahedral geometry has been suggested for all complexes except for Ni(II) complex (2) which adopted tetrahedral geometry. To through a light on the probability of structure changes with γ-irradiation, the effect of gamma irradiation on powder samples of the complexes [Co(L)Cl2].4H2O (1); [Ni2(L)(OAc)4].5H2O (2) and [Cu(L)Br2].5H2O (3) was investigated after being exposed to high energetic γ-rays at 100 kGy dose (hereafter referred to as (1A,2A,3A, respectively). Spectral, thermal, magnetic susceptibility, molar conductance and powder X-ray diffraction patterns (XRD) were performed before and after irradiation. In addition, the in vitro antimicrobial activity of the complexes against Staphylococcus aureus as Gram-positive strain, Escherichia coli as Gram-negative strain and antifungal Candida albicans was performed for both unirradiated and irradiated samples. The obtained results showed that the irradiated complexes were affected, but not greatly by the applied γ-irradiation dose.


Assuntos
Complexos de Coordenação/efeitos da radiação , Raios gama , Metais/química , Difração de Raios X/métodos , Anti-Infecciosos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Termogravimetria
16.
Appl Biochem Biotechnol ; 190(2): 373-390, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31363981

RESUMO

In this article, we have reported the preparation and structural characterization of a new Schiff base ligand (E)-2-(((2,6-difluorophenyl)imino)methyl)phenol (HSBL) and its derived metal(II) complexes [Cu(SBL)2] (1), [Ni(SBL)2] (2) and [Pd(SBL)2] (3). Using various analytical and spectroscopic techniques, their structural properties have been appraised. The proposed chemical structure of HSBL has been confirmed by Single crystal XRD studies. Bidentate characteristic of HSBL and its coordination with metal(II) ions through the oxygen atom of the phenolic group and nitrogen atom of the azomethine group have been evaluated from the FT-IR spectral analysis. Pd(II) complex of HSBL (complex 3) has found to be efficient in bringing about the interaction with DNA as well as BSA molecules. The in vitro antimicrobial studies have been demonstrated that complex 3 has a superior antimicrobial activity than HSBL, complexes 1 and 2. According to the values of zone of inhibition, the antimicrobial ability has been increased in the order of 3 > 1 > 2 > HSBL. A significant decrease in percent cell viability has been suggested that complex 3 has remarkable cytotoxicity (IC50 = 15.7 ± 0.6 µg/mL) on human breast cancer (MCF-7) cells. Besides, their induced apoptosis pathway of cytotoxicity has been demonstrated by fluorescence staining techniques using AO/EB staining method. We hope this article will be very helpful for future research on the development of new anticancer agents.


Assuntos
Sondas de DNA/química , Metais/química , Nitrogênio/química , Oxigênio/química , Bases de Schiff/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Cristalografia por Raios X , Humanos , Ligantes , Células MCF-7 , Simulação de Acoplamento Molecular
17.
Biotechnol Rep (Amst) ; 24: e00379, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31641623

RESUMO

Knowledge regarding new compounds, peptides, and/or secondary metabolites secreted by bacteria isolated from the intestine of phebotominae has the potential to control insect vectors and pathogens (viruses, bacteria, and parasites) transmitted by them. In this respect, twelve Gram-negative bacteria isolated from the intestine of Lutzomyia evansi were selected and screened for their enzymatic, antimicrobial, and leishmanicidal activity. E. cancerogenus, E. aerogenes, P. otitidis, E. cloacae, L. soli, and P. ananatis exhibited enzymatic activity. 83.3% of the isolates displayed lipolytic and nitrate reductase activity and 58.3% of the isolates displayed protease activity. Hemolytic activity (17%) was identified only in E. hormaechei, and P. ananatis. E. cancerogenus, A. calcoaceticus, and P. otitidis showed cellulolytic activity. A. gyllenbergii, P. aeruginosa, and E. hormaechei showed amylolytic activity. In general, the totality of methanolic extracts exhibited antimicrobial activity, where E. hormaechei, A. calcoaceticus, and E. cancerogenus presented the highest activity against the evaluated reference bacteria strains. Cell-free supernatants (CFSS) of the Gram-negative bacteria showed higher growth inhibitory activity against the reference Gram-positive bacteria. The CFS of A. gyllenbergii was the most active antimicrobial in this study, against S. aureus (AAODs = 95.12%) and E. faecalis (AAODs = 86.90%). The inhibition percentages of CFS against Gram-positive bacteria showed statistically significant differences (repeated measure ANOVA df= 2; F= 6.095; P= 0.007832). The E. hormaechei methanolic extract showed leishmanicidal activity (CE-50 µg/ml = 47.7 + 3.8) against metacyclic promastigotes of Leishmania braziliensis (UA301). Based on this finding, we discuss the possible implications of these bacteria in digestion and physiological processes in the Lu. evansi intestine. P. ananatis, E. cloacae, E. hormaechei, and P. otitidis were considered the most promising bacteria in this study and they could potentially be used for biological control.

18.
Front Microbiol ; 10: 893, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080444

RESUMO

The prevalence of antibiotic resistance and the decrease in novel antibiotic discovery in recent years necessitates the identification of potentially novel microbial resources to produce natural products. Ktedonobacteria, a class of deeply branched bacterial lineage in the ancient phylum Chloroflexi, are ubiquitous in terrestrial environments and characterized by their large genome size and complex life cycle. These characteristics indicate Ktedonobacteria as a potential active producer of bioactive compounds. In this study, we observed the existence of a putative "megaplasmid," multiple copies of ribosomal RNA operons, and high ratio of hypothetical proteins with unknown functions in the class Ktedonobacteria. Furthermore, a total of 104 antiSMASH-predicted putative biosynthetic gene clusters (BGCs) for secondary metabolites with high novelty and diversity were identified in nine Ktedonobacteria genomes. Our investigation of domain composition and organization of the non-ribosomal peptide synthetase and polyketide synthase BGCs further supports the concept that class Ktedonobacteria may produce compounds structurally different from known natural products. Furthermore, screening of bioactive compounds from representative Ktedonobacteria strains resulted in the identification of broad antimicrobial activities against both Gram-positive and Gram-negative tested bacterial strains. Based on these findings, we propose the ancient, ubiquitous, and spore-forming Ktedonobacteria as a versatile and promising microbial resource for natural product discovery.

19.
Pharmaceuticals (Basel) ; 12(4)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726663

RESUMO

The antimicrobial, antioxidant, and cytotoxic activities of a series of saccharin-tetrazolyl and -thiadiazolyl analogs were examined. The assessment of the antimicrobial properties of the referred-to molecules was completed through an evaluation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against Gram-positive and Gram-negative bacteria and yeasts. Scrutiny of the MIC and MBC values of the compounds at pH 4.0, 7.0, and 9.0 against four Gram-positive strains revealed high values for both the MIC and MBC at pH 4.0 (ranging from 0.98 to 125 µg/mL) and moderate values at pH 7.0 and 9.0, exposing strong antimicrobial activities in an acidic medium. An antioxidant activity analysis of the molecules was performed by using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method, which showed high activity for the TSMT (N-(1-methyl-2H-tetrazol-5-yl)-N-(1,1-dioxo-1,2-benzisothiazol-3-yl) amine, 7) derivative (90.29% compared to a butylated hydroxytoluene positive control of 61.96%). Besides, the general toxicity of the saccharin analogs was evaluated in an Artemia salina model, which displayed insignificant toxicity values. In turn, upon an assessment of cell viability, all of the compounds were found to be nontoxic in range concentrations of 0-100 µg/mL in H7PX glioma cells. The tested molecules have inspiring antimicrobial and antioxidant properties that represent potential core structures in the design of new drugs for the treatment of infectious diseases.

20.
Biotechnol Rep (Amst) ; 19: e00275, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30197871

RESUMO

Marine invertebrates-associated microorganisms were considered to be important sources of marine bioactive products. This study aims to isolate marine invertebrates associated bacteria with antimicrobial activity from the Red Sea and test their biosynthetic potential through the detection of PKS and NRPS gene clusters involved with the production of bioactive secondary metabolites. In this respect, fifty bacterial strains were isolated from eight different Red Sea marine invertebrates and screened for their antimicrobial activity against standard pathogenic bacteria (Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Bacillus subtilis ATCC 6633) and yeast (Candida albicans ATCC 10231) using the standard well diffusion assay. Five isolates showed antifungal activity against Candida albicans with no activity recorded against other pathogenic bacterial strains. On the other hand when these isolates were screened for the presence of biosynthetic gene clusters (PKS and NRPS) by PCR using five sets of degenerative primers, 60% of the isolates were shown to contain at least one type of PKS and NRPS gene clusters, which indicates the biosynthetic potential of these isolates even if the isolates didn't express any biological activity in vitro. Moreover the 16S rRNA molecular identification of the isolates reveal the biodiversity of the red sea marine invertebrates associated bacteria as they were found to belong to several bacterial groups present in Alphaproteobacteria, Gammaproteobacteria, Actinobacteria and Firmicutes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA