RESUMO
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of early myeloid progenitors and precursors at different stages of differentiation into granulocytes, macrophages, and dendritic cells. Blockade of their differentiation into mature myeloid cells in cancer results in an expansion of this population. High-grade gliomas are the most common malignant tumours of the central nervous system (CNS), with a poor prognosis despite intensive radiation and chemotherapy. Histopathological and flow cytometry analyses of human and rodent experimental gliomas revealed the extensive heterogeneity of immune cells infiltrating gliomas and their microenvironment. Immune cell infiltrates consist of: resident (microglia) and peripheral macrophages, granulocytes, myeloid-derived suppressor cells, and T lymphocytes. Intratumoural density of glioma-associated MDSCs correlates positively with the histological grade of gliomas and patient's survival. MDSCs have the ability to attract T regulatory lymphocytes to the tumour, but block the activation of tumour-reactive CD4+ T helper cells and cytotoxic CD8+ T cells. Immunomodulatory mechanisms employed by malignant gliomas pose an appalling challenge to brain tumour immunotherapy. In this mini-review we describe phenotypic and functional characteristics of MDSCs in humans and rodents, and their occurrence and potential roles in glioma progression. While understanding the complexity of immune cell interactions in the glioma microenvironment is far from being accomplished, there is significant progress that may lead to the development of immunotherapy for gliomas.
RESUMO
The immunomodulatory effects of many therapeutic agents are significantly challenged by their insufficient delivery efficiency and short retention time in tumors. Regarding the distinctively upregulated fibronectin (FN1) and tenascin C (TNC) in tumor stroma, herein a protease-activated FN1 and/or TNC binding peptide (FTF) is designed and an extracellular matrix (ECM)-trapped bioinspired lipoprotein (BL) (FTF-BL-CP) is proposed that can be preferentially captured by the TNC and/or FN1 for tumor retention, and then be responsively dissociated from the matrix to potentiate the antitumor immunity. The FTF-BL-CP treatment produces a 6.96-, 9.24-, 6.72-, 7.32-, and 6.73-fold increase of CD3+CD8+ T cells and their interferon-γ-, granzyme B-, perforin-, and Ki67-expressing subtypes versus the negative control, thereby profoundly eliciting the antitumor immunity. In orthotopic and lung metastatic breast cancer models, FTF-BL-CP produces notable therapeutic benefits of retarding tumor growth, extending survivals, and inhibiting lung metastasis. Therefore, this ECM-trapping strategy provides an encouraging possibility of prolonging tumor retention to potentiate the antitumor immunity for anticancer immunotherapy.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pulmonares , Humanos , Matriz Extracelular/metabolismo , Tenascina/metabolismo , Neoplasias Pulmonares/terapia , Lipoproteínas/metabolismoRESUMO
The morphological features of materials significantly influence their interactions with cells, consequently affecting the cellular uptake of these materials. In this study, we examine the cellular uptake behavior of spherical metal-organic frameworks (MOFs) and petaloid MOFs, both possessing similar sizes and compositions. In comparison to spherical MOFs, dendritic cells (DCs) and macrophages exhibit superior phagocytic uptake of petaloid MOFs. Next, the results demonstrate that R848@petaloid MOFs more effectively promote the repolarization of tumor-associated macrophages (TAMs) from the M2 to M1 phenotype and the maturation of DCs. More importantly, the R848-loaded petaloid MOFs are found to significantly enhance the therapeutic effects of radiotherapy (RT) by eliciting antitumor responses. Furthermore, R848@petaloid MOFs combined with RT and αPD-L1 elicit a potent abscopal effect, effectively suppressing tumor metastasis. Therefore, this work proposes a new strategy to enhance the uptake of immunomodulators by immune cells through modulating the morphology of drug delivery carriers.
Assuntos
Imidazóis , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Animais , Imidazóis/química , Imidazóis/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Portadores de Fármacos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Células RAW 264.7 , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Feminino , Antígeno B7-H1/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/imunologiaRESUMO
As the majority of ovarian cancer (OC) patients are diagnosed with metastatic disease, less than 40% will survive past 5 years after diagnosis. OC is characterized by a succession of remissions and recurrences. The most promising time point for immunotherapeutic interventions in OC is following debulking surgery. Accumulating evidence shows that T cells are important in OC; thus, cancer vaccines capable of eliciting antitumor T cells will be effective in OC treatment. In this review, we discuss different cancer vaccines and propose strategies for their incorporation into the OC standard-of-care regimens. Using the murine ID8 ovarian tumor model, we provide evidence that a cancer vaccine can be effectively combined with OC standard-of-care to achieve greater overall efficacy. We demonstrate several important similarities between the ID8 model and OC patients, in terms of response to immunotherapies, and the ID8 model can be an important tool for evaluating combinatorial regimens and clinical trial designs in OC. Other emerging models, including patient-derived xenograft and genetically engineered mouse models, are continuing to improve and can be useful for evaluating cancer vaccination therapies in the near future. Here, we provide a comprehensive review of the completed and current clinical trials evaluating cancer vaccines in OC.
RESUMO
The use of bacteria to specifically migrate to cancerous tissue and elicit an antitumor immune response provides a promising platform against cancer with significantly high potency. With dozens of clinical trials underway, some researchers hold the following views: "humans are nearing the first commercial live bacteria therapeutic." However, the facultative anaerobe Salmonella typhimurium VNP20009, which is particularly safe and shows anticancer effects in preclinical studies, had failed in a phase I clinical trial due to low tumor regression and undesired dose-dependent side effects. This is almost certain to disappoint people's inflated expectations, but it is noted that recent state-of-the-art research has turned attention to bacteria-mediated synergistic cancer therapy (BMSCT). In this review, the foundation of bacteria-mediated bio-therapy is outlined. Then, we summarize the potential benefits and challenges of bacterial bio-therapy in combination with different traditional anticancer therapeutic modalities (chemotherapy, photothermal therapy, reactive oxygen and nitrogen species therapy, immunotherapy, or prodrug-activating therapy) in the past 5 years. Next, we discuss multiple administration routes of BMSCT, highlighting potentiated antitumor responses and avoidance of potential side effects. Finally, we envision the opportunities and challenges for BMSCT development, with the purpose of inspiring medicinal scientists to widely utilize the microbiome approach in patient populations.
RESUMO
Natural killer (NK) cells are innate lymphocytes responsible for the elimination of infected or transformed cells. The activation or inhibition of NK cells is determined by the balance of target cell ligand recognition by stimulatory and inhibitory receptors on their surface. Previous reports have suggested that the glycosaminoglycan heparin is a ligand for the natural cytotoxicity receptors NKp30, NKp44 (human), and NKp46 (both human and mouse). However, the effects of heparin on NK cell homeostasis and function remain unclear. Here, we show that heparin does not enhance NK cell proliferation or killing through NK cell activation. Alternatively, in mice models, heparin promoted NK cell survival in vitro and controlled B16-F10 melanoma metastasis development in vivo. In human NK cells, heparin promisingly increased interferon (IFN)-γ production in synergy with IL-12, although the mechanism remains elusive. Our data showed that heparin is not able to increase NK cell cytotoxicity.