Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2402025, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766971

RESUMO

Aqueous aluminum ion batteries (AAIBs) possess the advantages of high safety, cost-effectiveness, eco-friendliness and high theoretical capacity. However, the Al2O3 film on the Al anode surface, a natural physical barrier to the plating of hydrated aluminum ions, is a key factor in the decomposition of the aqueous electrolyte and the severe hydrogen precipitation reaction. To circumvent the obnoxious Al anode, a proof-of-concept of an anode-free AAIB is first proposed, in which Al2TiO5, as a cathode pre-aluminum additive (Al source), can replenish Al loss by over cycling. The Al-Cu alloy layer, formed by plating Al on the Cu foil surface during the charge process, possesses a reversible electrochemical property and is paired with a polyaniline (cathode) to stimulate the battery to exhibit high initial discharge capacity (175 mAh g-1), high power density (≈410 Wh L-1) and ultra-long cycle life (4000 cycles) with the capacity retention of ≈60% after 1000 cycles. This work will act as a primer to ignite the enormous prospective researches on the anode-free aqueous Al ion batteries.

2.
Angew Chem Int Ed Engl ; 63(12): e202316925, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38284505

RESUMO

During multivalent ions insertion processes, intense electrostatic interaction between charge carriers and host makes the high-performance reversible Al3+ storage remains an elusive target. On account of the strong electrostatic repulsion and poor robustness, Prussian Blue analogues (PBAs) suffer severely from the inevitable and large strain and phase change during reversible Al3+ insertion. Herein, we demonstrate an entropy-driven strategy to realize ultralong life aqueous Al-ion batteries (AIBs) based on medium entropy PBAs (ME-PBAs) host. By multiple redox active centers introduction, the intrinsic poor conductivity can be enhanced simultaneously, resulting in outstanding capabilities of electrochemical Al3+ storage. Meanwhile, the co-occupation at metal sites in PBA frameworks can also increase the M-N bond intensity, which is beneficial for constraining the phase change during consecutive Al3+ reversible insertion, to realize an extended lifespan over 10,000 cycles. Based on the calculation at different operation states, the fluctuation of ME-PBA lattice parameters is only 1.2 %. Assembled with MoO3 anodes, the full cells can also deliver outstanding electrochemical properties. The findings highlight that, the entropy regulation strategy could uncover the isochronous constraint on both strain and phase transition for long-term reversible Al3+ storage, providing a promising design for advanced electrode materials for aqueous multivalent ions batteries.

3.
Small ; 16(37): e2002856, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32797720

RESUMO

A highly electrically conductive film-type current collector is an essential part of batteries. Apart from the metal-based current collectors, lightweight and highly conductive carbon materials such as reduced graphene oxide (RGO) and carbon nanotubes (CNTs) show great potential as current collectors. However, traditional RGO manufacturing usually requires a long time and high energy, which decreases the product yielding rate and manufacturing efficiency. Moreover, the performance of the manufactured RGO needs to be further improved. In this work, CNT and GO are evenly mixed into GO-CNT, which can be directly reduced into RGO-CNT by Joule heating at 2936 K within less than 1 min. The fabricated RGO-CNT achieves a high electrical conductivity of 2750 S cm-1 , and realizes a 106 -fold increase. The assembled flexible aqueous Al-ion battery with RGO-CNT as the current collector exhibits impressive electrochemical performance in terms of superior cycling stability and exceptional rate capability, and excellent mechanical ability regarding the tolerance to mechanical damage such as bending, folding, piercing, and cutting without detrimental consequences.

4.
Adv Mater ; 36(24): e2400642, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428042

RESUMO

Achieving reversible insertion/extraction in most cathodes for aqueous aluminum ion batteries (AAIBs) is a significant challenge due to the high charge density of Al3+ and strong electrostatic interactions. Organic materials facilitate the hosting of multivalent carriers and rapid ions diffusion through the rearrangement of chemical bonds. Here, a bipolar conjugated poly(2,3-diaminophenazine) (PDAP) on carbon substrates prepared via a straightforward electropolymerization method is introduced as cathode for AAIBs. The integration of n-type and p-type active units endow PDAP with an increased number of sites for ions interaction. The long-range conjugated skeleton enhances electron delocalization and collaborates with carbon to ensure high conductivity. Moreover, the strong intermolecular interactions including π-π interaction and hydrogen bonding significantly enhance its stability. Consequently, the Al//PDAP battery exhibits a large capacity of 338 mAh g-1 with long lifespan and high-rate capability. It consistently demonstrates exceptional electrochemical performances even under extreme conditions with capacities of 155 and 348 mAh g-1 at -20 and 45 °C, respectively. In/ex situ spectroscopy comprehensively elucidates its cation/anion (Al3+/H3O+ and ClO4 -) storage with 3-electron transfer in dual electroactive centers (C═N and -NH-). This study presents a promising strategy for constructing high-performance organic cathode for AAIBs over a wide temperature range.

5.
Small Methods ; 5(10): e2100611, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34927954

RESUMO

Most reported cathode materials for rechargeable aqueous Al metal batteries are based on an intercalative-type chemistry mechanism. Herein, iodine embedded in MOF-derived N-doped microporous carbon polyhedrons (I2 @ZIF-8-C) is proposed to be a conversion-type cathode material for aqueous aluminum-ion batteries based on "water-in-salt" electrolytes. Compared with the conventional Al-I2 battery using ionic liquid electrolyte, the proposed aqueous Al-I2 battery delivers much enhanced electrochemical performance in terms of specific capacity and voltage plateaus. Benefitting from the confined liquid-solid conversion of iodine in hierarchical N-doped microporous carbon polyhedrons and enhanced reaction kinetics of aqueous electrolytes, the I2 @ZIF-8-C electrode delivers high reversibility, superior specific capacity (≈219.8 mAh g-1 at 2 A g-1 ), and high rate performance (≈102.6 mAh g-1 at 8 A g-1 ). The reversible reaction between I2 and I- , with I3 - and I5 - as intermediates, is confirmed via ex situ Raman spectra and X-ray photoelectron spectroscopy. Furthermore, solid-state hydrogel electrolyte is employed to fabricate a flexible Al-I2 battery, which shows performance comparable to batteries using liquid electrolyte and can be integrated to power wearable devices as a reliable energy supply.

6.
Small Methods ; 5(9): e2100491, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34928058

RESUMO

Aqueous Al-ion battery (AAIB) is regarded as a promising candidate for large-scale energy storage systems due to its high capacity, high safety, and low cost, with MnO2 proved to be a high-performance cathode. However, the potential commercial application of this type of battery is plagued by the frequent structural collapse of MnO2 . Herein, an in situ, electrochemically reformed, urchin-like Alx MnO2 cathode is developed for water-in-salt electrolyte-based AAIBs. Benefiting from its unique α-MnO2 coated Mn2 AlO4 structure, a high Al ion storage capacity is achieved together with a high discharge voltage plateau of 1.9 V by reversible MnO2 electrolysis. Consequently, the battery exhibits a high specific capacity of 285 mAh g-1 and a high energy density of 370 Wh kg-1 at a high current density of 500 mA g-1 . Improved stability with record capacity retention is also obtained at an ultrahigh current density of 5 A g-1 after 500 cycles. Such a high-capacity and high-stability Alx MnO2 cathode would pave the way for in situ electrochemical transformation of cathode design and thus boost the practical application of AAIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA