Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(17): 5371-5378, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647348

RESUMO

Artificial synapses and bionic neurons offer great potential in highly efficient computing paradigms. However, complex requirements for specific electronic devices in neuromorphic computing have made memristors face the challenge of process simplification and universality. Herein, reconfigurable Ag/HfO2/NiO/Pt memristors are designed for feasible switching between volatile and nonvolatile modes by compliance current controlled Ag filaments, which enables stable and reconfigurable synaptic and neuronal functions. A neuromorphic computing system effectively replicates the biological synaptic weight alteration and continuously accomplishes excitation and reset of artificial neurons, which consist of bionic synapses and artificial neurons based on isotype Ag/HfO2/NiO/Pt memristors. This reconfigurable electrical performance of the Ag/HfO2/NiO/Pt memristors takes advantage of simplified hardware design and delivers integrated circuits with high density, which exhibits great potency for future neural networks.

2.
Proc Natl Acad Sci U S A ; 110(37): E3468-76, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23878215

RESUMO

The quest to implement intelligent processing in electronic neuromorphic systems lacks methods for achieving reliable behavioral dynamics on substrates of inherently imprecise and noisy neurons. Here we report a solution to this problem that involves first mapping an unreliable hardware layer of spiking silicon neurons into an abstract computational layer composed of generic reliable subnetworks of model neurons and then composing the target behavioral dynamics as a "soft state machine" running on these reliable subnets. In the first step, the neural networks of the abstract layer are realized on the hardware substrate by mapping the neuron circuit bias voltages to the model parameters. This mapping is obtained by an automatic method in which the electronic circuit biases are calibrated against the model parameters by a series of population activity measurements. The abstract computational layer is formed by configuring neural networks as generic soft winner-take-all subnetworks that provide reliable processing by virtue of their active gain, signal restoration, and multistability. The necessary states and transitions of the desired high-level behavior are then easily embedded in the computational layer by introducing only sparse connections between some neurons of the various subnets. We demonstrate this synthesis method for a neuromorphic sensory agent that performs real-time context-dependent classification of motion patterns observed by a silicon retina.


Assuntos
Cognição , Modelos Neurológicos , Redes Neurais de Computação , Animais , Inteligência Artificial , Humanos , Primatas/fisiologia , Primatas/psicologia , Semicondutores
3.
Adv Mater ; 36(36): e2407751, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39011791

RESUMO

In the pursuit of artificial neural systems, the integration of multimodal plasticity, memory retention, and perceptual functions stands as a paramount objective in achieving neuromorphic perceptual components inspired by the human brain, to emulating the neurological excitability tuning observed in human visual and respiratory collaborations. Here, an artificial visual-respiratory synapse is presented with monolayer oxidized MXene (VRSOM) exhibiting synergistic light and atmospheric plasticity. The VRSOM enables to realize facile modulation of synaptic behaviors, encompassing postsynaptic current, sustained photoconductivity, stable facilitation/depression properties, and "learning-experience" behavior. These performances rely on the privileged photocarrier trapping characteristics and the hydroxyl-preferential selectivity inherent of oxidized vacancies. Moreover, environment recognitions and multimodal neural network image identifications are achieved through multisensory integration, underscoring the potential of the VRSOM in reproducing human-like perceptual attributes. The VRSOM platform holds significant promise for hardware output of human-like mixed-modal interactions and paves the way for perceiving multisensory neural behaviors in artificial interactive devices.


Assuntos
Sinapses , Sinapses/fisiologia , Humanos , Oxirredução , Materiais Biomiméticos/química , Redes Neurais de Computação , Respiração
4.
Front Neurosci ; 15: 690950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267624

RESUMO

Neuromorphic devices that can emulate the bionic sensory and perceptual functions of neural systems have great applications in personal healthcare monitoring, neuro-prosthetics, and human-machine interfaces. In order to realize bionic sensing and perception, it's crucial to prepare neuromorphic devices with the function of perceiving environment in real-time. Up to now, lots of efforts have been made in the incorporation of the bio-inspired sensing and neuromorphic engineering in the booming artificial intelligence industry. In this review, we first introduce neuromorphic devices based on diverse materials and mechanisms. Then we summarize the progress made in the emulation of biological sensing and perception systems. Finally, the challenges and opportunities in these fields are also discussed.

5.
Adv Mater ; 31(49): e1902761, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31550405

RESUMO

As the research on artificial intelligence booms, there is broad interest in brain-inspired computing using novel neuromorphic devices. The potential of various emerging materials and devices for neuromorphic computing has attracted extensive research efforts, leading to a large number of publications. Going forward, in order to better emulate the brain's functions, its relevant fundamentals, working mechanisms, and resultant behaviors need to be re-visited, better understood, and connected to electronics. A systematic overview of biological and artificial neural systems is given, along with their related critical mechanisms. Recent progress in neuromorphic devices is reviewed and, more importantly, the existing challenges are highlighted to hopefully shed light on future research directions.


Assuntos
Biomimética/instrumentação , Eletrônica/instrumentação , Rede Nervosa/fisiologia , Animais , Materiais Biomiméticos/química , Desenho de Equipamento , Humanos , Rede Nervosa/anatomia & histologia , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA