Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(14): e2217698120, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996111

RESUMO

The use of strong acids and low atom efficiency in conventional hydrometallurgical recycling of spent lithium-ion batteries (LIBs) results in significant secondary wastes and CO2 emissions. Herein, we utilize the waste metal current collectors in spent LIBs to promote atom economy and reduce chemicals consumption in a conversion process of spent Li1-xCoO2 (LCO) → new LiNi0.80Co0.15Al0.05O2 (NCA) cathode. Mechanochemical activation is employed to achieve moderate valence reduction of transition metal oxides (Co3+→Co2+,3+) and efficient oxidation of current collector fragments (Al0→Al3+, Cu0→Cu1+,2+), and then due to stored internal energy from ball-milling, the leaching rates of Li, Co, Al, and Cu in the ≤4 mm crushed products uniformly approach 100% with just weak acetic acid. Instead of corrosive precipitation reagents, larger Al fragments (≥4 mm) are used to control the oxidation/reduction potential (ORP) in the aqueous leachate and induce the targeted removal of impurity ions (Cu, Fe). After the upcycling of NCA precursor solution to NCA cathode powders, we demonstrate excellent electrochemical performance of the regenerated NCA cathode and improved environmental impact. Through life cycle assessments, the profit margin of this green upcycling path reaches about 18%, while reducing greenhouse gas emissions by 45%.

2.
J Environ Manage ; 370: 122401, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39255578

RESUMO

The pursuit of clean energy generation and environmental preservation is of utmost importance for societal progress. However, couple clean energy production and pollution control is still a difficulty. In this study, a novel electrospun composite mat, with nano zero valent iron (Fe0, nZVI) encapsulated into polyacrylonitrile (PAN) nanofibers was acted as a catalyst. The activation energy (Ea) for the hydrolysis of NaBH4 to produce hydrogen is 22 kJ·mol-1, hydrogen atom utilization efficiency (HGE) of NaBH4 is 60.80%. Three kinds of organic dyes 4-nitrophenol (4-NP), methylene blue (MB), and Rhodamine B (RhB) were served as the model pollutant, to construct NaBH4-organic system for energy production and pollution reduction. The NaBH4-organic system demonstrates a collaborative capability to simultaneously remove organic pollutants and generate hydrogen, with a coupling equilibrium point between the two processes. The hydrogen generation rate (HGR) and HGE increased with the concentration of pollutants increased. The degradation of 4-NP, MB, and RhB followed pseudo-first-order kinetics, with RhB degrading dosage 20 and 44 times higher than 4-NP and MB, respectively. H2 and H· contributed to the organic degradation. nZVI directly participated in the formation H2 and H·. PAN@Fe0 possessed good recyclability and moderate cost. The degradation process adhered to the classical surface reaction controlled Langmuir-Hinshelwood (L-H) model. The integration of synergistic production capacity and pollutant degradation aligns well with the principles of green chemistry and sustainable development. This study demonstrates a novel approach to no precursor loss catalysts preparation, efficient production clean H2, advanced treatment of dye-containing wastewater, carbon neutral operation of sewage treatment plant.

3.
Angew Chem Int Ed Engl ; 63(18): e202402109, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38421344

RESUMO

This review explores the pivotal role of sulfur in advancing sustainable carbon-carbon (C-C) coupling reactions. The unique electronic properties of sulfur, as a soft Lewis base with significant mesomeric effect make it an excellent candidate for initiating radical transformations, directing C-H-activation, and facilitating cycloaddition and C-S bond dissociation reactions. These attributes are crucial for developing waste-free methodologies in green chemistry. Our mini-review is focused on existing sulfur-directed C-C coupling techniques, emphasizing their sustainability and comparing state-of-the-art methods with traditional approaches. The review highlights the importance of this research in addressing current challenges in organic synthesis and catalysis. The innovative use of sulfur in photocatalytic, electrochemical and metal-catalyzed processes not only exemplifies significant advancements in the field but also opens new avenues for environmentally friendly chemical processes. By focusing on atom economy and waste minimization, the analysis provides broad appeal and potential for future developments in sustainable organic chemistry.

4.
Angew Chem Int Ed Engl ; : e202406548, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39218783

RESUMO

The cycloaddition reaction involving bicyclo[1.1.0]butanes (BCBs) offers a versatile and efficient synthetic platform for producing C(sp3)-rich rigid bridged ring scaffolds, which act as phenyl bioisosteres. However, there is a scarcity of catalytic asymmetric cycloadditions of BCBs to fulfill the need for enantioenriched saturated bicycles in drug design and development. In this study, an efficient synthesis of valuable azabicyclo[2.1.1]hexanes (aza-BCHs) by an enantioselective zinc-catalyzed (3+2) cycloadditions of BCBs with imines is reported. The reaction proceeds effectively with a novel type of BCB that incorporates a 2-acyl imidazole group and a diverse array of alkynyl- and aryl-substituted imines. The target aza-BCHs, which consist of α-chiral amine fragments and two quaternary carbon centers, are efficiently synthesized with up to 94% yield and 96.5:3.5 er under mild conditions. Experimental and computational studies reveal that the reaction follows a concerted nucleophilic ring-opening mechanism of BCBs with imines. This mechanism is distinct from previous studies on Lewis acid-catalyzed cycloadditions of BCBs.

5.
Angew Chem Int Ed Engl ; 63(13): e202314208, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38240738

RESUMO

In modern organic chemistry, harnessing the power of multicomponent radical reactions presents both significant challenges and extraordinary potential. This article delves into this scientific frontier by addressing the critical issue of controlling selectivity in such complex processes. We introduce a novel approach that revolves around the reversible addition of thiyl radicals to multiple bonds, reshaping the landscape of multicomponent radical reactions. The key to selectivity lies in the intricate interplay between reversibility and the energy landscapes governing C-C bond formation in thiol-yne-ene reactions. The developed approach not only allows to prioritize the thiol-yne-ene cascade, dominating over alternative reactions, but also extends the scope of coupling products obtained from alkenes and alkynes of various structures and electron density distributions, regardless of their relative polarity difference, opening doors to more versatile synthetic possibilities. In the present study, we provide a powerful tool for atom-economical C-S and C-C bond formation, paving the way for the efficient synthesis of complex molecules. Carrying out our experimental and computational studies, we elucidated the fundamental mechanisms underlying radical cascades, a knowledge that can be broadly applied in the field of organic chemistry.

6.
Chemistry ; 29(57): e202301736, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439586

RESUMO

An efficient, simple and general protocol for the selective hydration of terminal alkynes into the corresponding methyl ketones has been developed by using a cheap, easy-to-synthesise and sustainable FeIII -based eutectic mixture [FeCl3 ⋅ 6H2 O/Gly (3 : 1)] as both promoter and solvent for the hydration reaction, working: i) under mild (45 °C) and bench-type reaction conditions (air); and ii) in the absence of ligands, co-catalysts, co-solvents or toxic, non-abundant and expensive noble transition metals (Au, Ru, Pd). When the final methyl ketones are solid/insoluble in the eutectic mixture, the hydration reaction takes place in 30 min, and the obtained methyl ketones can be isolated by simply decanting the liquid FeIII -DES, allowing the direct isolation of the desired ketones without VOC solvents. By using this straightforward and simple isolation protocol, we have been able to recycle the FeIII -based eutectic mixture system up to eight consecutive times. Furthermore, the FeIII -eutectic mixture is able to promote the selective and efficient formal oxidation of internal alkynes into 1,2-diketones, with the possibility of recycling this system up to three consecutive times. Preliminary investigations into a possible mechanism for the oxidation of the internal alkynes seem to indicate that it proceeds through the formation of the corresponding methyl ketones and α-chloroketones.

7.
Chemistry ; 29(25): e202300301, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36757635

RESUMO

TBAI-catalysed [4+4]-cyclization reaction of anthranils with hydrazones to deliver oxa-bridged eight-membered heterocycles in accepted yields was developed. Preliminary mechanistic studies indicated that the reaction involved the in situ generation of vinyldiazenes from readily available hydrazones followed by an aza-Michael addition of the anthranil substrates onto the vinyldiazenes and subsequent annulation. This transformation involved the formation of two new C-N bonds and C-O bond in one pot, overcoming the synthetic limitations of anthranils in organic chemistry. This strategy benefits from high efficiency and atomic economy with mild reaction conditions.

8.
Nano Lett ; 22(7): 3047-3053, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35315672

RESUMO

Metallic lithium is considered as the ultimate anode material for lithium-based batteries due to its highest energy density. However, as an anode, commercial Li metal foils are too thick, with a large amount of trouble to balance its exorbitant areal capacity with common cathodes in full cells. Here, a new chemical thinning strategy is proposed via a simple surface dissolving reaction between lithium and naphthalene, which enables scalable, continuous, and roll-to-roll preparation of ultrathin Li foil. A Li foil less than 15 µm with a clean surface can be successfully obtained within 20 min. The thinning rate and thickness of the lithium foil can be easily adjusted by changing the concentration, temperature, and operation mode. The produced Li-Naph solution after thinning can also be used as a multifunctional reagent of great value, and the Li ions in the final waste solution can be further extracted in the form of Li2CO3, showing superior lithium atom economy of our strategy.

9.
Angew Chem Int Ed Engl ; 62(28): e202304219, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37195571

RESUMO

The utilization of carbon resources stored in plastic polymers through chemical recycling and upcycling is a promising approach for mitigating plastic waste. However, most current methods for upcycling suffer from limited selectivity towards a specific valuable product, particularly when attempting full conversion of the plastic. We present a highly selective reaction route for transforming polylactic acid (PLA) into 1,2-propanediol utilizing a Zn-modified Cu catalyst. This reaction exhibits excellent reactivity (0.65 g gcat -1 h-1 ) and selectivity (99.5 %) towards 1,2-propanediol, and most importantly, can be performed in a solvent-free mode. Significantly, the overall solvent-free reaction is an atom-economical reaction with all the atoms in reactants (PLA and H2 ) fixed into the final product (1,2-propanediol), eliminating the need for a separation process. This method provides an innovative and economically viable solution for upgrading polyesters to produce high-purity products under mild conditions with optimal atom utilization.

10.
Angew Chem Int Ed Engl ; 62(32): e202306095, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285238

RESUMO

A novel, air and thermally stable, yet highly reactive trifluoromethylthiolating reagent, CF3 SO2 SCF3 (1), was prepared easily in one step from commercially inexpensive CF3 SO2 Na and Tf2 O. 1 is a highly versatile and atom-efficient reagent that can generate one equivalent of CF3 S+ , two equivalents of CF3 S- , or a combination of CF3 S⋅/CF3 ⋅ species. Many high-yielding CF3 S reactions of C, O, S, and N-nucleophiles were achieved, including the simple-step preparations of many reported CF3 S reagents. 1 delivered a hitherto hard-to-synthesize ArOSCF3 that was followed by a novel CF3 SII -rearrangement. Through Cu or TDAE/Ph3 P combinations, 1 generated two equivalents of CF3 S anion species, and the photo-catalyzed reactions of alkenes with 1 provided CF3 /CF3 S-containing products in high atom-efficiency.

11.
Molecules ; 27(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234778

RESUMO

Protected 2-O-benzyolated glycosyl formates were synthesized in one-step from the corresponding orthoester using formic acid as the sole reagent. Glucopyranosyl, mannopyranosyl and galactopyranosyl donors were synthesized and their glycosylation properties studied using model glycosyl acceptors of varied steric bulk and reactivity. Bismuth triflate was the preferred catalyst and KPF6 was used as an additive. The 1,2-trans-selectivities resulting from neighboring-group participation were excellent and the glycosylations were generally high-yielding.


Assuntos
Formiatos , Catálise , Glicosilação , Indicadores e Reagentes , Estereoisomerismo
12.
Angew Chem Int Ed Engl ; 61(31): e202204912, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35614025

RESUMO

Despite growing progress in the construction of chiral organosilicon compounds, the catalytic asymmetric synthesis of silicon-stereogenic silanols is less explored and remains a considerable challenge. Herein, we report the first enantioselective construction of silicon-stereogenic silanols by the catalytic asymmetric hydrolytic oxidation of dihydrosilanes. This practical procedure features ambient reaction conditions, high atom economy, good functional-group compatibility, and H2 as the only by-product, and produces a wide range of valuable chiral silanols and bis-silanols in decent yields with excellent chemo- and stereoselectivity.

13.
Chemistry ; 27(48): 12272-12275, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34323319

RESUMO

Vinyl triflimides were only accessible recently and their chemistry is yet to be discovered. Herein, we describe a general, straightforward and atom-economical synthesis of these materials from alkynes and triflimide. A vast array of terminal and internal alkynes with broad spectrum of functionalities could be employed to generate various di- and trisubstituted vinyl triflimides regiospecifically with high to specific stereoselectivity. Moreover, the protocol could be conducted on gram scale using terminal and internal alkynes. Preliminarily attempts to probe the unprecedented reactivity of vinyl triflimides revealed part of its chemical properties.

14.
Chem Rec ; 21(12): 3884-3896, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34747571

RESUMO

The field of gold catalysis has been in constant expansion during the last twenty years. Based on the precept of π-activation of unsaturated simple substrates, several new rearrangements have been discovered, implying aryl, alkyne, alkene or keto derivatives as key partners. In this personal account, the main contributions in the field of gold catalysis from our group will be highlighted, emphasizing the recent reports, starting from 1,6- and 1,5-enynes and then moving to keto-ynes derivatives. The gold-catalyzed reactions will be presented starting from classical skeletal rearrangements (cycloisomerization) and then domino processes. In each part, the presentation of asymmetric versions will be highlighted.


Assuntos
Carvão Vegetal , Ouro , Catálise , Ciclização , Estrutura Molecular
15.
Chem Rec ; 21(9): 2585-2600, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33834595

RESUMO

Progress in electroorganic synthesis is linked to innovation of new synthetic reactions with impact on medicinal chemistry and drug discovery and to the desire to minimise waste and to provide energy-efficient chemical transformations for future industrial processes. Paired electrosynthetic processes that combine the use of both anode and cathode (convergent or divergent) with minimal (or without) intentionally added electrolyte or need for additional reagents are of growing interest. In this overview, recent progress in developing paired electrolytic reactions is surveyed. The discussion focuses on electrosynthesis technology with proven synthetic value for the preparation of small molecules. Reactor types are contrasted and the concept of translating light-energy driven photoredox reactions into paired electrolytic reactions is highlighted as a newly emerging trend.

16.
Molecules ; 26(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926128

RESUMO

Diazocarbonyl compounds have found numerous applications in many areas of chemistry. Among the most developed fields of diazo chemistry is the preparation of azoles from diazo compounds. This approach represents a useful alternative to more conventional methods of the synthesis of azoles. A comprehensive review on the preparation of various azoles (oxazoles, thiazoles, imidazoles, pyrazoles, triazoles, and tetrazoles) from diazocarbonyl and related compounds is presented for the first time along with discussion of advantages and disadvantages of «diazo¼ approaches to azoles.

17.
Molecules ; 26(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34771061

RESUMO

Metalloporphyrins are involved in many and diverse applications that require the preparation of these compounds in an efficient manner, which nowadays, also involves taking into consideration sustainability issues. In this context, we use ball milling mechanochemistry and sonochemistry for the rational development of synthetic strategies for the sustainable preparation of metalloporphyrins. Zinc, copper, cobalt and palladium complexes of hydrophobic porphyrins were obtained in high yields and under mechanical action with a moderate excess of the metal salt, without any solvent or additive. Sonochemistry prove to be a good alternative for the preparation of metal complexes of water-soluble porphyrins in good yields and short reaction times. Both strategies have good sustainability scores, close to the ideal values, which is useful in comparing and helping to choose the more adequate method.

18.
Angew Chem Int Ed Engl ; 60(28): 15482-15489, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33951273

RESUMO

The clever one-pot combination of two macromolecular concepts, ring-opening polymerization (ROP) and step-growth polymerization (SGP), is demonstrated to be a simple, yet powerful tool to design a library of sequence-controlled polymers with diverse and spatially regulated degradability functions. ROP and SGP occur sequentially at room temperature when the organocatalytic conditions are switched from basic to acidic, and each allows the encoding of specific degradable bonds. ROP controls the sequence length and position of the degradability functions, while SGP between the complementary vinyl ether and hydroxyl chain-ends enables the formation of acetal bonds and high-molar-mass copolymers. The result is the rational combination of cleavable bonds prone to either bulk or surface erosion within the same macromolecule. The strategy is versatile and offers higher chemical diversity and level of control over the primary structure than current aliphatic polyesters or polycarbonates, while being simple, effective, and atom-economical and having potential for scalability.

19.
Beilstein J Org Chem ; 17: 1041-1047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025809

RESUMO

Deep eutectic solvents (DESs) have gained attention as green and safe as well as economically and environmentally sustainable alternative to the traditional organic solvents. Here, we report the combination of an atom-economic, very convenient and inexpensive reagent, such as BH3NH3, with bio-based eutectic mixtures as biorenewable solvents in the synthesis of nitroalkanes, valuable precursors of amines. A variety of nitrostyrenes and alkyl-substituted nitroalkenes, including α- and ß-substituted nitroolefins, were chemoselectively reduced to the nitroalkanes, with an atom economy-oriented, simple and convenient experimental procedure. A reliable and easily reproducible protocol to isolate the product without the use of any organic solvent was established, and the recyclability of the DES mixture was successfully investigated.

20.
Chem Rec ; 20(12): 1530-1552, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33021077

RESUMO

Organophosphorus chemistry is a broad field with multi-dimensional applications in research area of organic, biology, drug design and agrochemicals. Conventional methods have been adopted extensively to access phosphorylated compounds that rely on the use of toxic, moisture sensitive phosphorylating agents and occur in the presence of oxidants, catalysts, as well as high temperatures and harsh conditions are required for complete transformations. However, recent progress has been made for phosphorylation reactions using electricity to introduce green and sustainable synthetic procedures. These reactions can be performed at mild conditions and proceed with excellent atom economy. Herein, we targeted electrochemical phosphorylation reactions with generation of new bonds such as C(sp3 ) -P, C(sp2 ) -P, O-P, N-P, S-P and Se-P. This review is aimed to offer an overview of recent developments in the synthetic methodology to easy access of organophosphorus compounds using electrochemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA