Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(2): 551-565, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921467

RESUMO

Clostridium butyricum is a probiotic that forms anaerobic spores and plays a crucial role in regulating gut microbiota. However, the total viable cell count and spore yield of C. butyricum in industrial production are comparatively low. To this end, we investigated the metabolic characteristics of the strain and proposed three distinct pH regulation strategies for enhancing spore production. In addition, precise measurement of fermentation parameters such as substrate concentration, total viable cell count, and spore concentration is crucial for successful industrial probiotics production. Nevertheless, online measurement of these intricate parameters in the fermentation of C. butyricum poses a considerable challenge owing to the complex, nonlinear, multivariate, and strongly coupled characteristics of the production process. Therefore, we analyzed the capacitance and conductivity acquired from a viable cell sensor as the core parameters for the fermentation process. Subsequently, a robust soft sensor was developed using a seven-input back-propagation neural network model with input variables of fermentation time, capacitance, conductivity, pH, initial total sugar concentration, ammonium ion concentration, and calcium ion concentration. The model enables the online monitoring of total viable biomass count, substrate concentrations, and spore yield, and can be extended to similar fermentation processes with pH changes as a characteristic feature.


Assuntos
Clostridium butyricum , Clostridium butyricum/metabolismo , Esporos Bacterianos , Fermentação , Redes Neurais de Computação , Concentração de Íons de Hidrogênio
2.
Environ Res ; 247: 118199, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246303

RESUMO

Accurate detection of pollutant levels in water bodies using fusion algorithms combined with spectral data has become a critical issue for water conservation. However, the number of samples is too small and the model is unstable, which often leads to poor prediction and fails to achieve the measurement goal well. To address these challenges, this paper proposes a practical and effective method to precisely predict the concentrations of nitrite pollution in aquatic environments. The proposed method consists of three steps. Firstly, the dimension of the spectral data is reduced using Kernel Principal Component Analysis (KPCA), followed by sample augmentation using Generative Adversarial Network (GAN) to reduce calculation cost and increase the diversity and scale of the data. Secondly, several improvement strategies, including multi-cluster competitive and adaptive parameter updating, are introduced to enhance the capability of the Particle Swarm Optimization (PSO) algorithm. The improved PSO algorithm is then applied to optimize the initialization weights and biases of the Back Propagation neural network, thereby improving the model fitting and training performance. Finally, the developed prediction model is employed to predict the test set samples. The result suggests that the R2, RMSE, and MAE values are 0.976290, 0.008626, and 0.006617, which outperform the state-of-the-art and provided a promising model for the prediction of nitrite concentration in water.


Assuntos
Nitritos , Água , Redes Neurais de Computação , Algoritmos , Análise de Componente Principal
3.
Int J Biometeorol ; 68(3): 511-525, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38197984

RESUMO

Crop evapotranspiration is a key parameter influencing water-saving irrigation and water resources management of agriculture. However, current models for estimating maize evapotranspiration primarily rely on meteorological data and empirical coefficients, and the estimated evapotranspiration contains uncertainties. In this study, the evapotranspiration data of summer maize were collected from typical stations in Northern China (Yucheng Station), and a back-propagation neural network (BP) model for predicting maize evapotranspiration was constructed based on meteorological data, soil data, and crop data. To further improve its accuracy, the maize evapotranspiration model was optimized using three bionic optimization algorithms, namely the sand cat swarm optimization (SCSO) algorithms, hunter-prey optimizer (HPO) algorithm, and golden jackal optimization (GJO) algorithm. The results showed that the fusion of meteorological, soil moisture, and crop data can effectively improve the accuracy of the maize evapotranspiration model. The model showed higher accuracy with the hybrid optimization model SCSO-BP compared to the stand-alone BP neural network model, with improvements of 2.7-4.8%, 17.2-25.5%, 13.9-26.8%, and 3.3-5.6% in terms of R2, RMSE, MAE, and NSE, respectively. Comprehensively compared with existing maize evapotranspiration models, the SCSO-BP model presented the highest accuracy, with R2 = 0.842, RMSE = 0.433 mm/day, MAE = 0.316 mm/day, NSE = 0.840, and overall global evaluation index (GPI) ranking the first. The results have reference value for the calculation of daily evapotranspiration of maize in similar areas of northern China.


Assuntos
Solo , Zea mays , Redes Neurais de Computação , Algoritmos , Agricultura
4.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732803

RESUMO

A two-stage decoupling model based on an artificial neural network with polynomial regression is proposed for the six-component force sensor load decoupling problem in the case of multidimensional mixed loading. The six-dimensional load categorization stage model constructed in the first stage combines 63 load category label sets with a deep BP neural network. The six-dimensional load regression stage model was constructed by combining polynomial regression with a BP neural network in the second stage. Meanwhile, the six-component force sensor with a fiber Bragg grating (FBG) sensor as the sensitive element was designed, and the elastomer simulation and calibration experimental dataset was established to realize the validation of the two-stage decoupling model. The results based on the simulation data show that the accuracy of the classification stage is 93.65%. The MAPE for the force channel in the regression stage is 6.29%, and 3.24% for the moment channel. The results based on experimental data show that the accuracy of the classification stage is 87.80%. The MAPE for the force channel in the regression phase is 5.63%, and 4.82% for the moment channel.

5.
Sensors (Basel) ; 24(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794027

RESUMO

The dependable functioning of switchgear is essential to maintain the stability of power supply systems. Partial discharge (PD) is a critical phenomenon affecting the insulation of switchgear, potentially leading to equipment failure and accidents. PDs are generally grouped into metal particle discharge, suspended discharge, and creeping discharge. Different types of PDs are closely related to the severity of a PD. Partial discharge pattern recognition (PDPR) plays a vital role in the early detection of insulation defects. In this regard, a Back Propagation Neural Network (BPNN) for PDPR in switchgear is proposed in this paper. To eliminate the sensitivity to initial values of BPNN parameters and to enhance the generalized ability of the proposed BPRN, an improved Mantis Search Algorithm (MSA) is proposed to optimize the BPNN. The improved MSA employs some boundary handling strategies and adaptive parameters to enhance the algorithm's efficiency in optimizing the network parameters of BPNN. Principal Component Analysis (PCA) is introduced to reduce the dimensionality of the feature space to achieve significant time saving in comparable recognition accuracy. The initially extracted 14 feature values are reduced to 7, reducing the BPNN parameter count from 183 with 14 features to 113 with 7 features. Finally, numerical results are presented and compared with Decision Tree (DT), k-Nearest Neighbor classifiers (KNN), and Support Vector Machine (SVM). The proposed method in this paper exhibits the highest recognition accuracy in metal particle discharge and suspended discharge.

6.
J Environ Manage ; 370: 122455, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244924

RESUMO

Interception loss (IL) is an important process in the hydrological cycle within semi-arid forest ecosystems, directly affecting the amount of effective rainfall. However, the factors influencing IL during individual rainfall events remain to be quantified. This study collected rainfall, vegetation, and interception data during the 2022 and 2023 growing seasons in a typical black locust forest within the Zhifanggou watershed. It employed the Random Forest Regression (RFR) and back-propagation neural network (BPNN) methods to quantitatively evaluate the contribution rates of various factors to the IL and interception loss percentage (ILP). The IL among the 48 effective rainfall events was 172.05 mm, accounting for 19.54% of the rainfall amount. IL and ILP increased as the distance from the trunk decreased. During all rainfall events, both IL and ILP were significantly negatively correlated with the leaf area index (LAI) and canopy cover (CC); IL is significantly positively correlated with total rainfall (TR) and rainfall intensity (RI), while ILP is significantly negatively correlated with TR, RI, and rainfall duration (RD). The BPNN and RFR results indicated that rainfall, canopy, and tree characteristics contributed 43.06%, 44.79%, and 12.15% to IL, respectively, and 57.27%, 34.09%, and 8.63% to ILP, respectively. TR, CC, and LAI represented the primary influencing factors. Rainfall and canopy characteristics were the main factors affecting IL (ILP). As rainfall event magnitude increases, canopy contributions to IL and ILP decrease. In semi-arid areas, managing forest canopies to control IL helps address water imbalances in ecosystems.

7.
Environ Monit Assess ; 196(2): 132, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200367

RESUMO

In the optimal design of groundwater pollution monitoring network (GPMN), the uncertainty of the simulation model always affects the reliability of the monitoring network design when applying simulation-optimization methods. To address this issue, in the present study, we focused on the uncertainty of the pollution source intensity and hydraulic conductivity. In particular, we utilized simulation-optimization and Monte Carlo methods to determine the optimal layout scheme for monitoring wells under these uncertainty conditions. However, there is often a substantial computational load incurred due to multiple calls to the simulation model. Hence, we employed a back-propagation neural network (BPNN) to develop a surrogate model, which could substantially reduce the computational load. We considered the dynamic pollution plume migration process in the optimal design of the GPMN. Consequently, we formulated a long-term GPMN optimization model under uncertainty conditions with the aim of maximizing the pollution monitoring accuracy for each yearly period. The spatial moment method was used to measure the approximation degree between the pollution plume interpolated for the monitoring network and the actual plume, which could effectively evaluate the superior monitoring accuracy. Traditional methods are easily trapped in local optima when solving the optimization model. To overcome this limitation, we used the grey wolf optimizer (GWO) algorithm. The GWO algorithm has been found to be effective in avoiding local optima and in exploring the search space more effectively, especially when dealing with complex optimization problems. A hypothetical example was designed for evaluating the effectiveness of our method. The results indicated that the BPNN surrogate model could effectively fit the input-output relationship from the simulation model, as well as significantly reduce the computational load. The GWO algorithm effectively solved the optimization model and improved the solution accuracy. The pollution plume distribution in each monitoring yearly period could be accurately characterized by the optimized monitoring network. Thus, combining the simulation-optimization method with the Monte Carlo method effectively addressed the optimal monitoring network design problem under uncertainty.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Reprodutibilidade dos Testes , Incerteza , Redes Neurais de Computação , Algoritmos
8.
Philos Trans A Math Phys Eng Sci ; 381(2254): 20220303, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37454682

RESUMO

Due to improper operation of the shield construction process and unknown geological surveys, shield construction faces many risks in passing through complex strata, among which the excavation face instability is the most serious, potentially leading to disastrous accidents. To address these issues, this research focuses on the limit support pressure and the excavation face stability in the soil when crossing the Yangtze River. First, an analytical formula for the limit support pressure of the excavation face is established through the wedge model. The support safety coefficient is used to assess the excavation face stability quantitatively. Then the rough set algorithm is used to analyse the sensitivity of each index to establish the reduced evaluation index system for the excavation face stability. The back propagation (BP) neural network is used to train the learning data, and a neural network evaluation model with a prediction error of 5.7675 × 10-4 is established. The prediction performance of BP is verified by comparison with the TOPSIS prediction model and the cloud model. The evaluation method proposed in this paper provides an essential reference for evaluating the underwater shield tunnel excavation face stability. This article is part of the theme issue 'Artificial intelligence in failure analysis of transportation infrastructure and materials'.

9.
BMC Geriatr ; 23(1): 322, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226135

RESUMO

BACKGROUND: The use of creatinine-based glomerular filtration rate (GFR)-estimating equations to evaluate kidney function in elderly individuals does not appear to offer any performance advantages. We therefore aimed to develop an accurate GFR-estimating tool for this age group. METHODS: Adults aged ≥ 65 years who underwent GFR measurement by technetium-99 m-diethylene triamine pentaacetic acid (99mTc-DTPA) renal dynamic imaging were included. Data were randomly split into a training set containing 80% of the participants and a test set containing the remaining 20% of the subjects. The Back propagation neural network (BPNN) approach was used to derive a novel GFR estimation tool; then we compared the performance of the BPNN tool with six creatinine-based equations (Chronic Kidney Disease-Epidemiology Collaboration [CKD-EPI], European Kidney Function Consortium [EKFC], Berlin Initiative Study-1 [BIS1], Lund-Malmö Revised [LMR], Asian modified CKD-EPI, and Modification of Diet in Renal Disease [MDRD]) in the test cohort. Three equation performance criteria were considered: bias (difference between measured GFR and estimated GFR), precision (interquartile range [IQR] of the median difference), and accuracy P30 (percentage of GFR estimates that are within 30% of measured GFR). RESULTS: The study included 1,222 older adults. The mean age of both the training cohort (n = 978) and the test cohort (n = 244) was 72 ± 6 years, with 544 (55.6%) and 129 (52.9%) males, respectively. The median bias of BPNN was 2.06 ml/min/1.73 m2, which was smaller than that of LMR (4.59 ml/min/1.73 m2; p = 0.03), and higher than that of the Asian modified CKD-EPI (-1.43 ml/min/1.73 m2; p = 0.02). The median bias between BPNN and each of CKD-EPI (2.19 ml/min/1.73 m2; p = 0.31), EKFC (-1.41 ml/min/1.73 m2; p = 0.26), BIS1 (0.64 ml/min/1.73 m2; p = 0.99), and MDRD (1.11 ml/min/1.73 m2; p = 0.45) was not significant. However, the BPNN had the highest precision IQR (14.31 ml/min/1.73 m2) and the greatest accuracy P30 among all equations (78.28%). At measured GFR < 45 ml/min/1.73 m2, the BPNN has highest accuracy P30 (70.69%), and highest precision IQR (12.46 ml/min/1.73 m2). The biases of BPNN and BIS1 equations were similar (0.74 [-1.55-2.78] and 0.24 [-2.58-1.61], respectively), smaller than any other equation. CONCLUSIONS: The novel BPNN tool is more accurate than the currently available creatinine-based GFR estimation equations in an older population and could be recommended for routine clinical use.


Assuntos
Rim , Insuficiência Renal Crônica , Idoso , Masculino , Humanos , Feminino , Taxa de Filtração Glomerular , Creatinina , Redes Neurais de Computação , Ácido Pentético , Insuficiência Renal Crônica/diagnóstico por imagem
10.
Ren Fail ; 45(1): 2217276, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37246750

RESUMO

OBJECTIVE: The brain neuromechanism in maintenance hemodialysis patients (MHD) with cognitive impairment (CI) remains unclear. The study aimed to probe the relationship between spontaneous brain activity and CI by using resting-state functional magnetic resonance imaging (rs-fMRI) data. METHODS: Here, 55 MHD patients with CI and 28 healthy controls were recruited. For baseline data, qualitative data were compared between groups using the χ2 test; quantitative data were compared between groups using the independent samples t-test, ANOVA test, Mann-Whitney U-test, or Kruskal-Wallis test. Comparisons of ALFF/fALFF/ReHo values among the three groups were calculated by using the DPABI toolbox, and then analyzing the correlation with clinical variables. p < .05 was considered a statistically significant difference. Furthermore, back propagation neural network (BPNN) was utilized to predict cognitive function. RESULTS: Compared with the MHD-NCI group, the patients with MHD-CI had more severe anemia and higher urea nitrogen levels, lower mALFF values in the left postcentral gyrus, lower mfALFF values in the left inferior temporal gyrus, and greater mALFF values in the right caudate nucleus (p < .05). The above-altered indicators were correlated with MOCA scores. BPNN prediction models indicated that the diagnostic efficacy of the model which inputs were hemoglobin, urea nitrogen, and mALFF value in the left central posterior gyrus was optimal (R2 = 0.8054), validation cohort (R2 = 0.7328). CONCLUSION: The rs-fMRI can reveal the neurophysiological mechanism of cognitive impairment in MHD patients. In addition, it can serve as a neuroimaging marker for diagnosing and evaluating cognitive impairment in MHD patients.


Assuntos
Mapeamento Encefálico , Disfunção Cognitiva , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Diálise Renal/efeitos adversos , Ureia
11.
Sensors (Basel) ; 23(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299903

RESUMO

The core of eLoran ground-based timing navigation systems is the accurate measurement of groundwave propagation delay. However, meteorological changes will disturb the conductive characteristic factors along the groundwave propagation path, especially for a complex terrestrial propagation environment, and may even lead to microsecond-level propagation delay fluctuation, seriously affecting the timing accuracy of the system. Aiming at this problem, this paper proposes a propagation delay prediction model based on a Back-Propagation neural network (BPNN) for a complex meteorological environment, which realizes the function of directly mapping propagation delay fluctuation through meteorological factors. First, the theoretical influence of meteorological factors on each component of propagation delay is analyzed based on calculation parameters. Then, through the correlation analysis of the measured data, the complex relationship between the seven main meteorological factors and the propagation delay, as well as their regional differences, are demonstrated. Finally, a BPNN prediction model considering regional changes of multiple meteorological factors is proposed, and the validity of the model is verified by long-term collected data. Experimental results show that the proposed model can effectively predict the propagation delay fluctuation in the next few days, and its overall performance is significantly improved compared with that of the existing linear model and simple neural network model.


Assuntos
Conceitos Meteorológicos , Redes Neurais de Computação , Modelos Lineares , Coleta de Dados
12.
Sensors (Basel) ; 23(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37514556

RESUMO

A Wireless Sensor Network (WSN) is a group of autonomous sensors geographically distributed for environmental monitoring and tracking purposes. Since the sensors in the WSN have limited battery capacity, the energy efficiency is considered a challenging task because of redundant data transmission and inappropriate routing paths. In this research, a Quasi-Oppositional Learning (QOL)-based African Vulture Optimization Algorithm (AVOA), referred to as QAVOA, is proposed for an effective data fusion and cluster-based routing in a WSN. The QAVOA-based Back Propagation Neural Network (BPNN) is developed to optimize the weights and threshold coefficients for removing the redundant information and decreasing the amount of transmitted data over the network. Moreover, the QAVOA-based optimal Cluster Head Node (CHN) selection and route discovery are carried out for performing reliable data transmission. An elimination of redundant data during data fusion and optimum shortest path discovery using the proposed QAVOA-BPNN is used to minimize the energy usage of the nodes, which helps to increase the life expectancy. The QAVOA-BPNN is analyzed by using the energy consumption, life expectancy, throughput, End to End Delay (EED), Packet Delivery Ratio (PDR) and Packet Loss Ratio (PLR). The existing approaches such as Cross-Layer-based Harris-Hawks-Optimization (CL-HHO) and Improved Sparrow Search using Differential Evolution (ISSDE) are used to evaluate the QAVOA-BPNN method. The life expectancy of QAVOA-BPNN for 500 nodes is 4820 rounds, which is high when compared to the CL-HHO and ISSDE.

13.
Sensors (Basel) ; 23(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679558

RESUMO

Attention refers to the human psychological ability to focus on doing an activity. The attention assessment plays an important role in diagnosing attention deficit hyperactivity disorder (ADHD). In this paper, the attention assessment is performed via a classification approach. First, the single-channel electroencephalograms (EEGs) are acquired from various participants when they perform various activities. Then, fast Fourier transform (FFT) is applied to the acquired EEGs, and the high-frequency components are discarded for performing denoising. Next, empirical mode decomposition (EMD) is applied to remove the underlying trend of the signals. In order to extract more features, singular spectrum analysis (SSA) is employed to increase the total number of the components. Finally, some typical models such as the random forest-based classifier, the support vector machine (SVM)-based classifier, and the back-propagation (BP) neural network-based classifier are used for performing the classifications. Here, the percentages of the classification accuracies are employed as the attention scores. The computer numerical simulation results show that our proposed method yields a higher classification performance compared to the traditional methods without performing the EMD and SSA.


Assuntos
Eletroencefalografia , Redes Neurais de Computação , Humanos , Análise de Fourier , Eletroencefalografia/métodos , Máquina de Vetores de Suporte , Algoritmo Florestas Aleatórias
14.
J Environ Manage ; 336: 117624, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868152

RESUMO

To mitigate aviation's carbon emissions of the aviation industry, the following steps are vital: accurately quantifying the carbon emission path by considering uncertainty factors, including transportation demand in the post-COVID-19 pandemic period; identifying gaps between this path and emission reduction targets; and providing mitigation measures. Some mitigation measures that can be employed by China's civil aviation industry include the gradual realization of large-scale production of sustainable aviation fuels and transition to 100% sustainable and low-carbon sources of energy. This study identified the key driving factors of carbon emissions by using the Delphi Method and set scenarios that consider uncertainty, such as aviation development and emission reduction policies. A backpropagation neural network and Monte Carlo simulation were used to quantify the carbon emission path. The study results show that China's civil aviation industry can effectively help the country achieve its carbon peak and carbon neutrality goals. However, to achieve the net-zero carbon emissions goal of global aviation, China needs to reduce its emissions by approximately 82%-91% based on the optimal emission scenario. Thus, under the international net-zero target, China's civil aviation industry will face significant pressure to reduce its emissions. The use of sustainable aviation fuels is the best way to reduce aviation emissions by 2050. Moreover, in addition to the application of sustainable aviation fuel, it will be necessary to develop a new generation of aircraft introducing new materials and upgrading technology, implement additional carbon absorption measures, and make use of carbon trading markets to facilitate China's civil aviation industry's contribution to reduce climate change.


Assuntos
Aviação , COVID-19 , Humanos , Dióxido de Carbono/análise , Incerteza , Pandemias , COVID-19/prevenção & controle , Desenvolvimento Econômico , China , Carbono/análise
15.
Fa Yi Xue Za Zhi ; 39(2): 115-120, 2023 Apr 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-37277373

RESUMO

OBJECTIVES: To estimate postmortem interval (PMI) by analyzing the protein changes in skeletal muscle tissues with the protein chip technology combined with multivariate analysis methods. METHODS: Rats were sacrificed for cervical dislocation and placed at 16 ℃. Water-soluble proteins in skeletal muscles were extracted at 10 time points (0 d, 1 d, 2 d, 3 d, 4 d, 5 d, 6 d, 7 d, 8 d and 9 d) after death. Protein expression profile data with relative molecular mass of 14 000-230 000 were obtained. Principal component analysis (PCA) and orthogonal partial least squares (OPLS) were used for data analysis. Fisher discriminant model and back propagation (BP) neural network model were constructed to classify and preliminarily estimate the PMI. In addition, the protein expression profiles data of human skeletal muscles at different time points after death were collected, and the relationship between them and PMI was analyzed by heat map and cluster analysis. RESULTS: The protein peak of rat skeletal muscle changed with PMI. The result of PCA combined with OPLS discriminant analysis showed statistical significance in groups with different time points (P<0.05) except 6 d, 7 d and 8 d after death. By Fisher discriminant analysis, the accuracy of internal cross-validation was 71.4% and the accuracy of external validation was 66.7%. The BP neural network model classification and preliminary estimation results showed the accuracy of internal cross-validation was 98.2%, and the accuracy of external validation was 95.8%. There was a significant difference in protein expression between 4 d and 25 h after death by the cluster analysis of the human skeletal muscle samples. CONCLUSIONS: The protein chip technology can quickly, accurately and repeatedly obtain water-soluble protein expression profiles in rats' and human skeletal muscles with the relative molecular mass of 14 000-230 000 at different time points postmortem. The establishment of multiple PMI estimation models based on multivariate analysis can provide a new idea and method for PMI estimation.


Assuntos
Mudanças Depois da Morte , Análise Serial de Proteínas , Animais , Humanos , Ratos , Análise Multivariada , Tecnologia
16.
J Magn Reson Imaging ; 56(2): 547-559, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34970824

RESUMO

BACKGROUND: Pretreatment individualized assessment of tumor response to induction chemotherapy (ICT) is a need in locoregionally advanced nasopharyngeal carcinoma (LANPC). Imaging method plays vital role in tumor response assessment. However, powerful imaging method for ICT response prediction in LANPC is insufficient. PURPOSE: To establish a robust model for predicting response to ICT in LANPC by comparing the performance of back propagation neural network (BPNN) model with logistic regression model. STUDY TYPE: Retrospective. POPULATION: A total of 286 LANPC patients were assigned to training (N = 200, 43.8 ± 10.9 years, 152 male) and testing (N = 86, 43.5 ± 11.3 years, 57 male) cohorts. FIELD STRENGTH/SEQUENCE: T2 -weighted imaging, contrast enhanced-T1 -weighted imaging using fast spin echo sequences at 1.5 T scanner. ASSESSMENT: Predictive clinical factors were selected by univariate and multivariate logistic models. Radiomic features were screened by interclass correlation coefficient, single-factor analysis, and the least absolute shrinkage selection operator (LASSO). Four models based on clinical factors (Modelclinic ), radiomics features (Modelradiomics ), and clinical factors + radiomics signatures using logistic (Modelcombined ), and BPNN (ModelBPNN ) methods were established, and model performances were compared. STATISTICAL TESTS: Student's t-test, Mann-Whitney U-test, and Chi-square test or Fisher's exact test were used for comparison analysis. The performance of models was assessed by area under the receiver operating characteristic (ROC) curve (AUC) and Delong test. P < 0.05 was considered statistical significance. RESULTS: Three significant clinical factors: Epstein-Barr virus-DNA (odds ratio [OR] = 1.748; 95% confidence interval [CI], 0.969-3.171), sex (OR = 2.883; 95% CI, 1.364-6.745), and T stage (OR = 1.853; 95% CI, 1.201-3.052) were identified via univariate and multivariate logistic models. Twenty-four radiomics features were associated with treatment response. ModelBPNN demonstrated the highest performance among Modelcombined , Modelradiomics , and Modelclinic (AUC of training cohort: 0.917 vs. 0.808 vs. 0.795 vs. 0.707; testing cohort: 0.897 vs. 0.755 vs. 0.698 vs. 0.695). CONCLUSION: A machine-learning approach using BPNN showed better ability than logistic regression model to predict tumor response to ICT in LANPC. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4 , Humanos , Quimioterapia de Indução/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Carcinoma Nasofaríngeo/diagnóstico por imagem , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/tratamento farmacológico , Redes Neurais de Computação , Estudos Retrospectivos
17.
Sensors (Basel) ; 22(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36081154

RESUMO

Six-axis force/torque sensors are widely installed in manipulators to help researchers achieve closed-loop control. When manipulators work in comic space and deep sea, the adverse ambient environment will cause various degrees of damage to F/T sensors. If the disability of one or two dimensions is restored by self-restoration methods, the robustness and practicality of F/T sensors can be considerably enhanced. The coupling effect is an important characteristic of multi-axis F/T sensors, which implies that all dimensions of F/T sensors will influence each other. We can use this phenomenon to speculate the broken dimension by other regular dimensions. Back propagation neural network (BPNN) is a classical feedforward neural network, which consists of several layers and adopts the back-propagation algorithm to train networks. Hyperparameters of BPNN cannot be updated by training, but they impact the network performance directly. Hence, the particle swarm optimization (PSO) algorithm is adopted to tune the hyperparameters of BPNN. In this work, each dimension of a six-axis F/T sensor is regarded as an element in the input vector, and the relationships among six dimensions can be obtained using optimized BPNN. The average MSE of restoring one dimension and two dimensions over the testing data is 1.1693×10-5 and 3.4205×10-5, respectively. Furthermore, the average quote error of one restored dimension and two restored dimensions are 8.800×10-3 and 8.200×10-3, respectively. The analysis of experimental results illustrates that the proposed fault restoration method based on PSO-BPNN is viable and practical. The F/T sensor restored using the proposed method can reach the original measurement precision.

18.
Sensors (Basel) ; 22(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684690

RESUMO

In this study, a Back Propagation (BP) neural network algorithm based on Genetic Algorithm (GA) optimization is proposed to plan and optimize the trajectory of a redundant robotic arm for the upper limb rehabilitation of patients. The feasibility of the trajectory was verified by numerical simulations. First, the collected dataset was used to train the BP neural network optimized by the GA. Subsequently, the critical points designated by the rehabilitation physician for the upper limb rehabilitation were used as interpolation points for cubic B-spline interpolation to plan the motion trajectory. The GA optimized the planned trajectory with the goal of time minimization, and the feasibility of the optimized trajectory was analyzed with MATLAB simulations. The planned trajectory was smooth and continuous. There was no abrupt change in location or speed. Finally, simulations revealed that the optimized trajectory reduced the motion time and increased the motion speed between two adjacent critical points which improved the rehabilitation effect and can be applied to patients with different needs, which has high application value.


Assuntos
Procedimentos Cirúrgicos Robóticos , Simulação por Computador , Humanos , Movimento (Física) , Redes Neurais de Computação , Extremidade Superior
19.
Sensors (Basel) ; 22(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35746236

RESUMO

This study proposed a noninvasive blood glucose estimation system based on dual-wavelength photoplethysmography (PPG) and bioelectrical impedance measuring technology that can avoid the discomfort created by conventional invasive blood glucose measurement methods while accurately estimating blood glucose. The measured PPG signals are converted into mean, variance, skewness, kurtosis, standard deviation, and information entropy. The data obtained by bioelectrical impedance measuring consist of the real part, imaginary part, phase, and amplitude size of 11 types of frequencies, which are converted into features through principal component analyses. After combining the input of seven physiological features, the blood glucose value is finally obtained as the input of the back-propagation neural network (BPNN). To confirm the robustness of the system operation, this study collected data from 40 volunteers and established a database. From the experimental results, the system has a mean squared error of 40.736, a root mean squared error of 6.3824, a mean absolute error of 5.0896, a mean absolute relative difference of 4.4321%, and a coefficient of determination (R Squared, R2) of 0.997, all of which fall within the clinically accurate region A in the Clarke error grid analyses.


Assuntos
Glicemia , Fotopletismografia , Pressão Sanguínea/fisiologia , Determinação da Pressão Arterial/métodos , Impedância Elétrica , Humanos , Redes Neurais de Computação , Fotopletismografia/métodos
20.
Sensors (Basel) ; 22(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146372

RESUMO

A method based on the high-frequency ultrasonic guided waves (UGWs) of a piezoelectric sensor array is proposed to monitor the depth of transverse cracks in rail bottoms. Selecting high-frequency UGWs with a center frequency of 350 kHz can enable the monitoring of cracks with a depth of 3.3 mm. The method of arranging piezoelectric sensor arrays on the upper surface and side of the rail bottom is simulated and analyzed, which allows the comprehensive monitoring of transverse cracks at different depths in the rail bottom. The multi-value domain features of the UGW signals are further extracted, and a back propagation neural network (BPNN) is used to establish the evaluation model of the transverse crack depth for the rail bottom. The optimal evaluation model of multi-path combination is reconstructed with the minimum value of the root mean square error (RMSE) as the evaluation standard. After testing and comparison, it was found that each metric of the reconstructed model is significantly better than each individual path; the RMSE is reduced to 0.3762; the coefficient of determination R2 reached 0.9932; the number of individual evaluation values with a relative error of less than 10% and 5% accounted for 100% and 87.50% of the total number of evaluations, respectively.


Assuntos
Redes Neurais de Computação , Ultrassom , Monitorização Fisiológica , Ondas Ultrassônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA