Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Fish Dis ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974459

RESUMO

Bacterial coldwater disease (BCWD), caused by Flavobacterium psychrophilum, results in significant losses among multiple salmonid (family Salmonidae) species. Molecular epidemiology and serotyping studies have suggested that some variants are host specific; however, these associations have not been evaluated by cross-challenging fish species with putatively host-associated F. psychrophilum isolates via more natural (i.e. immersion) exposure routes. To this end, F. psychrophilum isolates US19-COS, US62-ATS and US87-RBT, each originally recovered from diseased coho salmon (Oncorhynchus kisutch), Atlantic salmon (Salmo salar) or rainbow trout (O. mykiss), and belonging to a host-associated multilocus sequence typing clonal complex (e.g. CC-ST9, CC-ST232 or CC-ST10), were PCR-serotyped, evaluated for proteolytic activity, and used to challenge adipose fin-clipped 4-month old Atlantic salmon, coho salmon and rainbow trout via immersion. Findings showed US87-RBT caused disease and mortality only in rainbow trout (e.g. 56.7% survival probability). US19-COS and US62-ATS caused more mortality in coho salmon and Atlantic salmon but also caused disease in both other host species, albeit to a lesser extent. Observed survival differences may be due to variant antigenic/virulence determinants as differences in serotype and proteolytic activity were discovered. Collectively, results highlight the intricacies of F. psychrophilum-host interactions and provide further in vivo evidence that some F. psychrophilum MLST variants are host specific, which may have implications for the development of BCWD prevention and control strategies.

2.
J Fish Dis ; 46(8): 887-894, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37210748

RESUMO

Flavobacterium psychrophilum affects many cultured fish species and is considered one of the most important bacterial pathogens causing substantial economic losses in salmonid aquaculture worldwide. Here, F. psychrophilum was identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nested PCR as the aetiological agent causing mortality in diseased juvenile Siberian sturgeons (Acipenser baerii) reared on a freshwater fish farm. Diseased sturgeons were lethargic and displayed dark skin pigmentation, increased mucus production and the presence of skin ulcerations and haemorrhages specially on the ventral side and the base of fins. The histological examination of fish revealed proliferative branchitis, ulcerative and necrotizing dermatitis and myositis, lymphoid tissue atrophy, liver and kidney degeneration and thrombosis. To the best of our knowledge, this is the first report describing the infection of Siberian sturgeons by F. psychrophilum. The detection of F. psychrophilum in diseased Siberian sturgeons and the description of the pathological findings observed during the outbreak may contribute to a better understanding of the bacterium pathogenicity and the range of fish species susceptible to infection.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Salmonidae , Animais , Infecções por Flavobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Flavobacterium , Oncorhynchus mykiss/microbiologia
3.
J Fish Dis ; 45(6): 801-813, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35262925

RESUMO

Aquatic pathogens are a major concern for fish hatchery production, fisheries management, and conservation, and disease control needs to be addressed. Two important salmonid pathogens are Myxobolus cerebralis and Flavobacterium psychrophilum that cause whirling disease and bacterial coldwater disease (BCWD), respectively. Innate disease resistance is a potential option for reducing disease-related mortality in hatchery-reared rainbow trout (Oncorhynchus mykiss, Walbaum). Two experiments were conducted to assess pathogen resistance of first-generation (F1) rainbow trout created by crossing M. cerebralis- and F. psychrophilum-resistant strains. In the first experiment, we exposed two rainbow trout strains and one F1 cross to six treatments: control (no exposure), mock injection, F. psychrophilum only, M. cerebralis only, F. psychrophilum then M. cerebralis, and M. cerebralis then F. psychrophilum. Results indicated that the F1 cross was not resistant to either pathogen. In the second experiment, we exposed five rainbow trout strains and four rainbow trout crosses to F. psychrophilum. The second experiment indicated that at least one rainbow trout cross was F. psychrophilum-resistant. Achieving dual resistance may be possible using selective breeding but only some multigenerational strains are suitable candidates for further evaluation.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Myxobolus , Oncorhynchus mykiss , Animais , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium , Oncorhynchus mykiss/microbiologia
4.
J Fish Dis ; 45(7): 1023-1032, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35466417

RESUMO

Lake whitefish (Coregonus clupeaformis; LWF) is an economically and ecologically valuable native species to the Great Lakes, but recent declines in their recruitment have generated significant concern about their future viability. Although studies have sought to identify factors contributing to declining recruitment, the potential role(s) of infectious diseases has not been thoroughly investigated. In 2018 and 2019, adult LWF were collected from Lakes Superior, Michigan, and Huron for clinical examination and bacteriological analyses. Herein, we describe the first isolation of Flavobacterium psychrophilum, aetiological agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS), from systemically infected adult LWF. Bacterial isolates were yellow-orange, Gram-negative, filamentous bacilli that were oxidase and catalase positive, and produced a flexirubin-type pigment in 3% potassium hydroxide. Isolate identity was confirmed via F. psychrophilum-specific PCR, and multilocus sequence typing revealed three new singleton sequence types (STs) that were distinct from all previously described F. psychrophilum STs. The prevalence of F. psychrophilum infections was 3.3, 1.7, and 0.0% in Lakes Superior, Michigan and Huron respectively. Findings illustrate the potential for F. psychrophilum to cause systemic infections in adult LWF and highlight the need for future studies to investigate the bacterium's potential role in declining LWF recruitment.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Animais , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/epidemiologia , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium , Oncorhynchus mykiss/microbiologia
5.
J Fish Dis ; 44(5): 521-531, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33476403

RESUMO

Flavobacterium psychrophilum causes bacterial coldwater disease (BCWD) in salmonids, resulting in significant losses worldwide. Several serotyping and genetic studies of F. psychrophilum have suggested some geno-/serotypes may be either host-specific or generalistic in nature; however, this association has not been adequately explored in vivo using more natural exposure routes. Herein, F. psychrophilum isolate US19-COS, originally recovered from coho salmon (Oncorhynchus kisutch) and belonging to multilocus sequence typing clonal complex (CC) CC-ST9, and isolate US53-RBT, recovered from rainbow trout (Oncorhynchus mykiss) and belonging to CC-ST10, were serotyped via PCR, evaluated for proteolytic activity and utilized to determine their median lethal dose in immersion-challenged coho salmon fingerlings. US19-COS belonged to serotype 0, hydrolysed casein and gelatin but not elastin, led to fulminant multiorgan infections and elicited severe gross and microscopic pathology. In contrast, US53-RBT, belonging to serotype 2, hydrolysed all three substrates, but did not lead to detectable infections, disease signs or mortality in any exposed coho salmon despite proving virulent to rainbow trout in previous experiments. This study provides in vivo evidence for potential host specificity of some F. psychrophilum genotypes that can also be serologically distinct, a matter of importance towards better understanding F. psychrophilum disease ecology and epidemiology.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/genética , Flavobacterium/fisiologia , Genótipo , Oncorhynchus kisutch , Oncorhynchus mykiss , Animais , Infecções por Flavobacteriaceae/microbiologia , Especificidade de Hospedeiro , Tipagem de Sequências Multilocus/veterinária , Proteólise , Sorogrupo , Virulência
6.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658978

RESUMO

Flavobacterium psychrophilum, the etiological agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS), causes significant economic losses in salmonid aquaculture, particularly in rainbow trout (Oncorhynchus mykiss). Prior studies have used multilocus sequence typing (MLST) to examine genetic heterogeneity within F. psychrophilum At present, however, its population structure in North America is incompletely understood, as only 107 isolates have been genotyped. Herein, MLST was used to investigate the genetic diversity of an additional 314 North American F. psychrophilum isolates that were recovered from ten fish host species from 20 U.S. states and 1 Canadian province over nearly four decades. These isolates were placed into 66 sequence types (STs), 47 of which were novel, increasing the number of clonal complexes (CCs) in North America from 7 to 12. Newly identified CCs were diverse in terms of host association, distribution, and association with disease. The largest F. psychrophilum CC identified was CC-ST10, within which 10 novel genotypes were discovered, most of which came from O. mykiss experiencing BCWD. This discovery, among others, provides evidence for the hypothesis that ST10 (i.e., the founding ST of CC-ST10) originated in North America. Furthermore, ST275 (in CC-ST10) was recovered from wild/feral adult steelhead and marks the first recovery of CC-ST10 from wild/feral fish in North America. Analyses also revealed that at the allele level, the diversification of F. psychrophilum in North America is driven three times more frequently by recombination than random nucleic acid mutation, possibly indicating how new phenotypes emerge within this species.IMPORTANCEFlavobacterium psychrophilum is the causative agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS), both of which cause substantial losses in farmed fish populations worldwide. To better prevent and control BCWD and RTFS outbreaks, we sought to characterize the genetic diversity of several hundred F. psychrophilum isolates that were recovered from diseased fish across North America. Results highlighted multiple F. psychrophilum genetic strains that appear to play an important role in disease events in North American aquaculture facilities and suggest that the practice of trading fish eggs has led to the continental and transcontinental spread of this bacterium. The knowledge generated herein will be invaluable toward guiding the development of future disease prevention techniques.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/isolamento & purificação , Animais , Aquicultura , Canadá/epidemiologia , Doenças dos Peixes/epidemiologia , Infecções por Flavobacteriaceae/epidemiologia , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/classificação , Flavobacterium/genética , Genótipo , Tipagem de Sequências Multilocus , Oncorhynchus mykiss/microbiologia , Filogenia
7.
Microbiol Spectr ; 12(2): e0360123, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38112454

RESUMO

Flavobacterium psychrophilum causes bacterial coldwater disease (BCWD) and is responsible for substantial losses in farm and hatchery-reared salmonids (Family Salmonidae). Although F. psychrophilum infects multiple economically important salmonids and is transmitted horizontally, the extent of knowledge regarding F. psychrophilum shedding rates and duration is limited to rainbow trout (Oncorhynchus mykiss). Concurrently, hundreds of F. psychrophilum sequence types (STs) have been described using multilocus sequence typing (MLST), and evidence suggests that some variants have distinct phenotypes, including differences in host associations. Whether shedding dynamics differ among F. psychrophilum variants and/or salmonids remains unknown. Thus, three F. psychrophilum isolates (e.g., US19, US62, and US87) in three MLST STs (e.g., ST13, ST277, and ST275) with apparent host associations for coho salmon (O. kisutch), Atlantic salmon (Salmo salar), or rainbow trout were intramuscularly injected into each respective fish species. Shedding rates of live and dead fish were determined by quantifying F. psychrophilum loads in water via quantitative PCR. Both live and dead Atlantic and coho salmon shed F. psychrophilum, as did live and dead rainbow trout. Regardless of salmonid species, dead fish shed F. psychrophilum at higher rates (e.g., up to ~108-1010 cells/fish/hour) compared to live fish (up to ~107-109 cells/fish/hour) and for a longer duration (5-35 days vs 98 days); however, shedding dynamics varied by F. psychrophilum variant and/or host species, a matter that may complicate BCWD management. Findings herein expand knowledge on F. psychrophilum shedding dynamics across multiple salmonid species and can be used to inform future BCWD management strategies.IMPORTANCEFlavobacterium psychrophilum causes bacterial coldwater disease (BCWD) and rainbow trout fry syndrome, both of which cause substantial losses in farmed and hatchery-reared salmon and trout populations worldwide. This study provides insight into F. psychrophilum shedding dynamics in rainbow trout (Oncorhynchus mykiss) and, for the first time, coho salmon (O. kisutch) and Atlantic salmon (Salmo salar). Findings revealed that live and dead fish of all fish species shed the bacterium. However, dead fish shed F. psychrophilum at higher rates than living fish, emphasizing the importance of removing dead fish in farms and hatcheries. Furthermore, shedding dynamics may differ according to F. psychrophilum genetic variant and/or fish species, a matter that may complicate BCWD management. Overall, study results provide deeper insight into F. psychrophilum shedding dynamics and will guide future BCWD management strategies.


Assuntos
Infecções Bacterianas , Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus kisutch , Oncorhynchus mykiss , Animais , Tipagem de Sequências Multilocus , Infecções por Flavobacteriaceae/microbiologia , Oncorhynchus mykiss/microbiologia , Flavobacterium/genética , Oncorhynchus kisutch/microbiologia , Doenças dos Peixes/microbiologia
8.
Front Immunol ; 13: 965099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016951

RESUMO

Flavobacterium psychrophilum, the etiological agent of bacterial coldwater disease and rainbow trout fry syndrome, causes considerable losses in salmonid aquaculture globally. Systemic F. psychrophilum infections in rainbow trout (Oncorhynchus mykiss) lead to a range of clinical signs, including ulcerative lesions in the skin and muscle and splenitis. Previous studies offered an integrative analysis of the skeletal muscle response to F. psychrophilum infection in rainbow trout. However, little is known about the molecular mechanism of immune response in the spleen, which is an important immune organ of rainbow trout. Here, we investigated the time-course splenic transcriptome profiles in uninfected rainbow trout (CK) and F. psychrophilum-infected rainbow trout at day 3 and day 7 (D3, D7) by RNA-seq analyses. Among the 7,170 differentially expressed genes (DEGs) in the three comparisons (D3 vs. CK, D7 vs. CK, D3 vs. D7), 1,286 DEGs showed consistent upregulation or downregulation at D3 and D7 and were associated with pattern recognition, acute-phase response, complement cascade, chemokine and cytokine signaling, and apoptosis. The Real time quantitative PCR (RT-qPCR) analysis of eight DEGs confirmed the accuracy of the RNA-Sequencing (RNA-seq) data. Our results reflected a general process from pathogen recognition to inflammatory cytokine generation and delineated a putative Toll-like receptor signaling pathway in rainbow trout spleen, following F. psychrophilum infection. Taken together, these results provide new insights into the molecular mechanism of the immune response to F. psychrophilum infection and are a valuable resource for future research on the prevention and control of bacterial coldwater disease during salmon culture.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Animais , Citocinas/genética , Infecções por Flavobacteriaceae/genética , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium , Perfilação da Expressão Gênica , Baço/patologia
9.
Microbiol Spectr ; 9(2): e0033021, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34523994

RESUMO

Flavobacterium psychrophilum, the etiological agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome, causes great economic losses in salmonid aquaculture worldwide. Recent molecular studies have uncovered important epidemiological and ecological aspects of this pathogen; however, such data are lacking for F. psychrophilum populations affecting aquaculture in China. Herein, F. psychrophilum phenotype, genotype, and virulence were characterized for isolates recovered from epizootics in multiple salmonid aquaculture facilities across China. Thirty-one F. psychrophilum isolates, originating from four provinces and three host fish species, were predominantly homogeneous biochemically but represented 5 sequence types (STs) according to multilocus sequence typing (MLST) that belonged to clonal complex CC-ST10 or 3 newly recognized singleton STs. PCR-based serotyping classified 19 and 12 F. psychrophilum isolates into molecular serotypes 1 and 0, respectively, showing an obvious relationship with host species. Antimicrobial susceptibility analysis via broth microdilution revealed reduced susceptibility to enrofloxacin, flumequine, and oxolinic acid, moderate susceptibility to gentamicin, erythromycin, and florfenicol, and variable susceptibility to ampicillin and oxytetracycline. In vivo challenge experiments confirmed the ability of two representative Chinese F. psychrophilum isolates to induce typical signs of BCWD and mortality in 1-year-old rainbow trout (Oncorhynchus mykiss). Findings collectively demonstrate (i) that BCWD outbreaks in China studied thus far are caused by F. psychrophilum lineages that are common on other continents (e.g., CC-ST10) and others that have not been reported elsewhere (e.g., ST355, ST356, ST357), (ii) that F. psychrophilum molecular serotypes distinguish isolates from different host fish species, even within STs, and (iii) reduced F. psychrophilum antimicrobial susceptibility against compounds used for BCWD control in China. IMPORTANCE Flavobacterium psychrophilum causes substantial economic losses in salmonid aquaculture worldwide. Although this bacterium is also believed to be a disease source in China, published reports of its presence do not yet exist. Herein, F. psychrophilum was linked to multiple disease outbreaks in several salmonid aquaculture facilities within four Chinese provinces, and polyphasic characterization revealed that most isolates were genetically distinct from strains recovered on other continents. Analyses further revealed the predominating molecular serotypes, antimicrobial susceptibility profiles, and pathogenic potential of two representative recovered isolates. Collectively, the results presented here provide important data on the epidemiology and disease ecology of F. psychrophilum in China and pave the way for targeted prevention and control methods to be pursued in the future.


Assuntos
Flavobacterium/efeitos dos fármacos , Flavobacterium/genética , Oncorhynchus kisutch/microbiologia , Oncorhynchus mykiss/microbiologia , Osmeriformes/microbiologia , Animais , Antibacterianos/farmacologia , Aquicultura/economia , China , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Flavobacterium/isolamento & purificação , Flavobacterium/patogenicidade , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Fatores de Virulência/genética
10.
FEMS Microbiol Lett ; 359(2): 154-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25091473

RESUMO

Flavobacterium psychrophilum is the causative agent of bacterial coldwater disease and can cause significant mortality in salmonid aquaculture. To better evaluate disease prevention or treatment methods for F. psychrophilum in the laboratory, a waterborne challenge model that mimics a natural outbreak is needed. Here we report on the development of a waterborne challenge model for F. psychrophilum in which we incorporated variables that may influence challenge success: specifically, scarification prior to bacterial exposure and culture of F. psychrophilum under iron-limited culture conditions to potentially increase the probability of establishing disease. Additionally, two F. psychrophilum strains, CSF 259-93 and THC 02-90, were used in this model to test whether there were virulence differences between strains. Mortality was significantly higher in scarred fish than unscarred fish (81.5 vs. 19.4%), supporting the hypothesis that disruptions in the dermal layer enhance mortality in F. psychrophilum waterborne challenges. Although mortality differences were not significant between iron-replete and iron-limited treatments, mortality was high overall (> 30%). There was a significant difference in mortality between CSF 259-93 and THC 02-90 treatments, although both strains caused high mortality in injection challenges. In conclusion, this waterborne challenge model can be used to evaluate potential disease prevention and treatment methods.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/patogenicidade , Oncorhynchus mykiss/microbiologia , Animais , Aquicultura , Meios de Cultura/química , Doenças dos Peixes/mortalidade , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/mortalidade , Ferro/análise , Modelos Animais , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA