Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948034

RESUMO

Substitution of the conserved Histidine 448 present in one of the three consensus elements characterizing the guanosine nucleotide binding domain (IF2 G2) of Escherichia coli translation initiation factor IF2 resulted in impaired ribosome-dependent GTPase activity which prevented IF2 dissociation from the ribosome, caused a severe protein synthesis inhibition, and yielded a dominant lethal phenotype. A reduced IF2 affinity for the ribosome was previously shown to suppress this lethality. Here, we demonstrate that also a reduced IF2 affinity for fMet-tRNA can suppress this dominant lethal phenotype and allows IF2 to support faithful translation in the complete absence of GTP hydrolysis. These results strengthen the premise that the conformational changes of ribosome, IF2, and fMet-tRNA occurring during the late stages of translation initiation are thermally driven and that the energy generated by IF2-dependent GTP hydrolysis is not required for successful translation initiation and that the dissociation of the interaction between IF2 C2 and the acceptor end of fMet-tRNA, which represents the last tie anchoring the factor to the ribosome before the formation of an elongation-competent 70S complex, is rate limiting for both the adjustment of fMet-tRNA in a productive P site and the IF2 release from the ribosome.


Assuntos
Escherichia coli/crescimento & desenvolvimento , GTP Fosfo-Hidrolases/metabolismo , Genes Letais , Fator de Iniciação 2 em Procariotos/química , Fator de Iniciação 2 em Procariotos/metabolismo , RNA de Transferência de Metionina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/química , Hidrólise , Modelos Moleculares , Fenótipo , Fator de Iniciação 2 em Procariotos/genética , Conformação Proteica , Domínios Proteicos , Ribossomos/química , Ribossomos/metabolismo
2.
J Biol Chem ; 294(1): 372-378, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30409901

RESUMO

The ribosomal maturation factor P (RimP) is a highly conserved protein in bacteria and has been shown to be important in ribosomal assembly in Escherichia coli Because of its central importance in bacterial metabolism, RimP represents a good potential target for drug design to combat human pathogens such as Mycobacterium tuberculosis However, to date, the only RimP structure available is the NMR structure of the ortholog in another bacterial pathogen, Streptococcus pneumoniae Here, we report a 2.2 Å resolution crystal structure of MSMEG_2624, the RimP ortholog in the close M. tuberculosis relative Mycobacterium smegmatis, and using in vitro binding assays, we show that MSMEG_2624 interacts with the small ribosomal protein S12, also known as RpsL. Further analyses revealed that the conserved residues in the linker region between the N- and C-terminal domains of MSMEG_2624 are essential for binding to RpsL. However, neither of the two domains alone was sufficient to form strong interactions with RpsL. More importantly, the linker region was essential for in vivo ribosomal biogenesis. Our study provides critical mechanistic insights into the role of RimP in ribosome biogenesis. We anticipate that the MSMEG_2624 crystal structure has the potential to be used for drug design to manage M. tuberculosis infections.


Assuntos
Proteínas de Bactérias , Mycobacterium smegmatis , Proteínas Ribossômicas , Ribossomos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli , Mycobacterium smegmatis/química , Mycobacterium smegmatis/metabolismo , Ligação Proteica , Domínios Proteicos , Proteína S9 Ribossômica , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/química , Ribossomos/química , Ribossomos/metabolismo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/metabolismo
3.
Bioorg Med Chem ; 28(11): 115469, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32279921

RESUMO

A structure-activity relationship (SAR) study of NOSO-95179, a nonapeptide from the Odilorhabdin class of antibacterials, was performed by systematic variations of amino acids in positions 2 and 5 of the peptide. A series of non-proteinogenic amino acids was synthesized in high enantiomeric purity from Williams' chiral diphenyloxazinone by highly diastereoselective alkylation or by aldol-type reaction. NOSO-95179 analogues for SAR studies were prepared using solid-phase peptide synthesis. Inhibition of bacterial translation by each of the synthesized Odilorhabdin analogues was measured using an in vitro test. For the most efficient analogues, antibacterial efficacy was measured against two wild-type Enterobacteriaceae (Escherichia coli and Klebsiella pneumoniae) and against an efflux defective E. coli strain (ΔtolC) to evaluate the impact of efflux on the antibacterial activity.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Oligopeptídeos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Relação Estrutura-Atividade
4.
Artigo em Inglês | MEDLINE | ID: mdl-29987155

RESUMO

Antibacterial activity screening of a collection of Xenorhabdus strains led to the discovery of the odilorhabdins, a new antibiotic class with broad-spectrum activity against Gram-positive and Gram-negative pathogens. Odilorhabdins inhibit bacterial translation by a new mechanism of action on ribosomes. A lead optimization program identified NOSO-502 as a promising candidate. NOSO-502 has MIC values ranging from 0.5 to 4 µg/ml against standard Enterobacteriaceae strains and carbapenem-resistant Enterobacteriaceae (CRE) isolates that produce KPC, AmpC, or OXA enzymes and metallo-ß-lactamases. In addition, this compound overcomes multiple chromosome-encoded or plasmid-mediated resistance mechanisms of acquired resistance to colistin. It is effective in mouse systemic infection models against Escherichia coli EN122 (extended-spectrum ß-lactamase [ESBL]) or E. coli ATCC BAA-2469 (NDM-1), achieving a 50% effective dose (ED50) of 3.5 mg/kg of body weight and 1-, 2-, and 3-log reductions in blood burden at 2.6, 3.8, and 5.9 mg/kg, respectively, in the first model and 100% survival in the second, starting with a dose as low as 4 mg/kg. In a urinary tract infection (UTI) model with E. coli UTI89, urine, bladder, and kidney burdens were reduced by 2.39, 1.96, and 1.36 log10 CFU/ml, respectively, after injection of 24 mg/kg. There was no cytotoxicity against HepG2, HK-2, or human renal proximal tubular epithelial cells (HRPTEpiC), no inhibition of hERG-CHO or Nav 1.5-HEK current, and no increase of micronuclei at 512 µM. NOSO-502, a compound with a new mechanism of action, is active against Enterobacteriaceae, including all classes of CRE, has a low potential for resistance development, shows efficacy in several mouse models, and has a favorable in vitro safety profile.


Assuntos
Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Animais , Proteínas de Bactérias/metabolismo , Células CHO , Enterobacteriáceas Resistentes a Carbapenêmicos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Colistina/farmacologia , Cricetulus , Cães , Infecções por Enterobacteriaceae/tratamento farmacológico , Escherichia coli/metabolismo , Haplorrinos , Células Hep G2 , Humanos , Camundongos , Testes de Sensibilidade Microbiana/métodos , Plasmídeos/metabolismo , Ratos , beta-Lactamases/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-29891601

RESUMO

Evidence is provided that solithromycin is a bactericidal against not only fast-growing chlamydial organisms but also those slowed by gamma interferon (IFN-γ) in vitro At sublethal concentrations, Sol impedes homotypic fusion of Chlamydia-containing vacuoles and reduces secretion of the type III secretion (T3S) effector IncA. Sol may therefore represent a potential new clinical treatment for Chlamydia infections. Selective perturbation of the T3S system suggests a novel mode of antibacterial action for Sol that warrants further investigation.


Assuntos
Antibacterianos/farmacologia , Chlamydia trachomatis/efeitos dos fármacos , Macrolídeos/farmacologia , Triazóis/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Interferon gama/genética , Interferon gama/metabolismo
6.
RNA Biol ; 15(8): 991-994, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28296576

RESUMO

Transfer-tRNAs (tRNAs) are central entities for translation that deliver amino acids to the ribosome to translate genetic information in an mRNA-template dependent manner. Recent discoveries from our laboratory show that in E. coli and B. licheniformis, some tRNAs are poorly charged despite the plentiful intracellular cognate amino acid. Specifically, tRNAs carrying amino acids that exert toxicity and inhibit bacterial growth when added separately to the growth medium are poorly charged. Here, we discuss various evolutionary strategies different bacterial cells have adopted to precisely hone the competition between amino acid utilization for translation and proliferation and combat the inhibitory effect toward maximizing bacterial fitness. These data add a new twist to the amino acid flux models and to our understanding of the complex intimate link between dynamics of translation and bacterial growth.


Assuntos
Aminoácidos/metabolismo , Bactérias/metabolismo , Poluentes Ambientais , Biossíntese de Proteínas , Animais , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Humanos
7.
BMC Biol ; 15(1): 76, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28854918

RESUMO

BACKGROUND: While methods for annotation of genes are increasingly reliable, the exact identification of translation initiation sites remains a challenging problem. Since the N-termini of proteins often contain regulatory and targeting information, developing a robust method for start site identification is crucial. Ribosome profiling reads show distinct patterns of read length distributions around translation initiation sites. These patterns are typically lost in standard ribosome profiling analysis pipelines, when reads from footprints are adjusted to determine the specific codon being translated. RESULTS: Utilising these signatures in combination with nucleotide sequence information, we build a model capable of predicting translation initiation sites and demonstrate its high accuracy using N-terminal proteomics. Applying this to prokaryotic translatomes, we re-annotate translation initiation sites and provide evidence of N-terminal truncations and extensions of previously annotated coding sequences. These re-annotations are supported by the presence of structural and sequence-based features next to N-terminal peptide evidence. Finally, our model identifies 61 novel genes previously undiscovered in the Salmonella enterica genome. CONCLUSIONS: Signatures within ribosome profiling read length distributions can be used in combination with nucleotide sequence information to provide accurate genome-wide identification of translation initiation sites.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo
8.
Microorganisms ; 10(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35456773

RESUMO

In bacteria, the translation of genetic information can begin through at least three different mechanisms: canonical or Shine-Dalgarno-led initiation, readthrough or 70S scanning initiation, or leaderless initiation. Here, we discuss the main features and regulation of the last, which is characterized mainly by the ability of 70S ribosomal particles to bind to AUG located at or near the 5' end of mRNAs to initiate translation. These leaderless mRNAs (lmRNAs) are rare in enterobacteria, such as Escherichia coli, but are common in other bacteria, such as Mycobacterium tuberculosis and Deinococcus deserti, where they may represent more than 20% and even up to 60% of the genes. Given that lmRNAs are devoid of a 5' untranslated region and the Shine-Dalgarno sequence located within it, the mechanism of translation regulation must depend on molecular strategies that are different from what has been observed in the Shine-Dalgarno-led translation. Diverse regulatory mechanisms have been proposed, including the processing of ribosomal RNA and changes in the abundance of translation factors, but all of them produce global changes in the initiation of lmRNA translation. Thus, further research will be required to understand how the initiation of the translation of particular lmRNA genes is regulated.

9.
Methods Mol Biol ; 2252: 3-26, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33765269

RESUMO

Modern DNA sequencing technologies have allowed for the sequencing of tens of thousands of bacterial genomes. While this explosion of information has brought about new insights into the diversity of the prokaryotic world, much less is known of the identity of proteins encoded within these genomes, as well as their rates of production. The advent of ribosome profiling, or the deep sequencing of ribosome-protected footprints, has recently enabled the systematic evaluation of every protein-coding region in a given experimental condition, the rates of protein production for each gene, and the variability in translation rates across each message. Here, I provide an update to the bacterial ribosome profiling approach, with a particular emphasis on a simplified strategy to reduce cloning time.


Assuntos
Bactérias/metabolismo , RNA Mensageiro/genética , Ribossomos/metabolismo , Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Biossíntese de Proteínas , RNA Bacteriano/genética , Análise de Sequência de RNA
10.
Methods Mol Biol ; 2252: 27-55, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33765270

RESUMO

The knowledge of translation start sites is crucial for annotation of genes in bacterial genomes. However, systematic mapping of start codons in bacterial genes has mainly relied on predictions based on protein conservation and mRNA sequence features which, although useful, are not always accurate. We recently found that the pleuromutilin antibiotic retapamulin (RET) is a specific inhibitor of translation initiation that traps ribosomes specifically at start codons, and we used it in combination with ribosome profiling to map start codons in the Escherichia coli genome. This genome-wide strategy, that was named Ribo-RET, not only verifies the position of start codons in already annotated genes but also enables identification of previously unannotated open reading frames and reveals the presence of internal start sites within genes. Here, we provide a detailed Ribo-RET protocol for E. coli. Ribo-RET can be adapted for mapping the start codons of the protein-coding sequences in a variety of bacterial species.


Assuntos
Códon de Iniciação , Biologia Computacional/métodos , Escherichia coli/genética , Ribossomos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Códon de Iniciação/efeitos dos fármacos , Diterpenos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Genoma Bacteriano , Anotação de Sequência Molecular , Fases de Leitura Aberta , Biossíntese de Proteínas/efeitos dos fármacos
11.
Genome Biol Evol ; 11(11): 3194-3206, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31621842

RESUMO

Microorganisms require efficient translation to grow and replicate rapidly, and translation is often rate-limited by initiation. A prominent feature that facilitates translation initiation in bacteria is the Shine-Dalgarno (SD) sequence. However, there is much debate over its conservation in Cyanobacteria and in chloroplasts which presumably originated from endosymbiosis of ancient Cyanobacteria. Elucidating the utilization of SD sequences in Cyanobacteria and in chloroplasts is therefore important to understand whether 1) SD role in Cyanobacterial translation has been reduced prior to chloroplast endosymbiosis or 2) translation in Cyanobacteria and in plastid has been subjected to different evolutionary pressures. To test these alternatives, we employed genomic, proteomic, and transcriptomic data to trace differences in SD usage among Synechocystis species, Microcystis aeruginosa, cyanophages, Nicotiana tabacum chloroplast, and Arabidopsis thaliana chloroplast. We corrected their mis-annotated 16S rRNA 3' terminus using an RNA-Seq-based approach to determine their SD/anti-SD locational constraints using an improved measurement DtoStart. We found that cyanophages well-mimic Cyanobacteria in SD usage because both have been under the same selection pressure for SD-mediated initiation. Whereas chloroplasts lost this similarity because the need for SD-facilitated initiation has been reduced in plastids having much reduced genome size and different ribosomal proteins as a result of host-symbiont coevolution. Consequently, SD sequence significantly increases protein expression in Cyanobacteria but not in chloroplasts, and only Cyanobacterial genes compensate for a lack of SD sequence by having weaker secondary structures at the 5' UTR. Our results suggest different evolutionary pressures operate on translation initiation in Cyanobacteria and in chloroplast.


Assuntos
Cloroplastos/genética , Cianobactérias/genética , Fatores de Iniciação em Procariotos/genética , Regiões 5' não Traduzidas , Evolução Molecular , Simbiose/genética
12.
J Mol Biol ; 429(20): 3102-3112, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28918092

RESUMO

Cellular growth crucially depends on protein synthesis and the abundance of translational components. Among them, aminoacyl-tRNAs play a central role in biosynthesis and shape the kinetics of mRNA translation, thus influencing protein production. Here, we used microarray-based approaches to determine the charging levels and tRNA abundance of Bacillus licheniformis. We observed an interesting cross-talk among tRNA expression, charging pattern, and growth rate. For a large subset of tRNAs, we found a co-regulated and augmented expression at high growth rate. Their tRNA aminoacylation level is kept relatively constant through riboswitch-regulated expression of the cognate aminoacyl-tRNA-synthetase (AARS). We show that AARSs with putative riboswitch-controlled expression are those charging tRNAs with amino acids which disfavor cell growth when individually added to the nutrient medium. Our results suggest that the riboswitch-regulated AARS expression in B. licheniformis is a powerful mechanism not only to maintain a constant ratio of aminoacyl-tRNA independent of the growth rate but concomitantly to control the intracellular level of free amino acids.


Assuntos
Aminoacilação , Bacillus licheniformis/crescimento & desenvolvimento , Bacillus licheniformis/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA de Transferência/metabolismo , Perfilação da Expressão Gênica , Análise em Microsséries , Riboswitch
13.
Cell Rep ; 20(13): 3113-3122, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28954228

RESUMO

Canonical translation initiation in bacteria entails the assembly of the 30S initiation complex (IC), which binds the 50S subunit to form a 70S IC. IF3, a key initiation factor, is recruited to the 30S subunit at an early stage and is displaced from its primary binding site upon subunit joining. We employed four different FRET pairs to monitor IF3 relocation after 50S joining. IF3 moves away from the 30S subunit, IF1 and IF2, but can remain bound to the mature 70S IC. The secondary binding site is located on the 50S subunit in the vicinity of ribosomal protein L33. The interaction between IF3 and the 50S subunit is largely electrostatic with very high rates of IF3 binding and dissociation. The existence of the non-canonical binding site may help explain how IF3 participates in alternative initiation modes performed directly by the 70S ribosomes, such as initiation on leaderless mRNAs or re-initiation.


Assuntos
Bactérias/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo
17.
J Biomol Screen ; 20(5): 627-33, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25586496

RESUMO

The bacterial translational apparatus is an ideal target for the search of new antibiotics. In fact, it performs an essential process carried out by a large number of potential subtargets for antibiotic action. Moreover, it is sufficiently different in several molecular details from the apparatus of Eukarya and Archaea to generally ensure specificity for the bacterial domain. This applies in particular to translation initiation, which is the most different step in the process. In bacteria, the 30S ribosomal subunit directly binds to the translation initiation region, a site within the messenger RNA (mRNA) 5'-untranslated region (5'-UTR). 30S binding is mediated by the interaction of both the 16S ribosomal RNA and the ribosomal protein S1 with specific regions of the mRNA 5'-UTR. An alternative, S1-independent pathway is enjoyed by leaderless mRNAs (i.e., transcripts devoid of a 5'-UTR). We have developed a simple fluorescence-based whole-cell assay in Escherichia coli to find inhibitors of the canonical S1-dependent translation initiation pathway. The assay has been set up both in a common E. coli laboratory strain and in a strain with an outer membrane permeability defect. Compared with other whole-cell assays for antibacterials, the major advantages of the screen described here are high sensitivity and specificity.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas/métodos , Testes de Sensibilidade Microbiana/métodos , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Expressão Gênica , Genes Reporter , Ensaios de Triagem em Larga Escala , Sensibilidade e Especificidade , Bibliotecas de Moléculas Pequenas
18.
Biochimie ; 114: 18-29, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25792421

RESUMO

To adapt their metabolism rapidly and constantly in response to environmental variations, bacteria often target the translation initiation process, during which the ribosome assembles on the mRNA. Here, we review different mechanisms of regulation mediated by cis-acting elements, sRNAs and proteins, showing, when possible, their intimate connection with the translational apparatus. Indeed the ribosome itself could play a direct role in several regulatory mechanisms. Different features of the regulatory signals (sequences, structures and their positions on the mRNA) are contributing to the large variety of regulatory mechanisms. Ribosome heterogeneity, variation of individual cells responses and the spatial and temporal organization of the translation process add more layers of complexity. This hampers to define manageable set of rules for bacterial translation initiation control.


Assuntos
Regulação Bacteriana da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Estabilidade de RNA , RNA Bacteriano/fisiologia , Ribossomos/fisiologia , Ativação Transcricional
19.
Translation (Austin) ; 2(1): e28387, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26779403

RESUMO

Translation generally initiates with the AUG codon. While initiation at GUG and UUG is permitted in prokaryotes (Archaea and Bacteria), cases of CUG initiation were recently reported in human cells. The varying stringency in translation initiation between eukaryotic and prokaryotic domains largely stems from a fundamental problem for the ribosome in recognizing a codon at the peptidyl-tRNA binding site. Initiation factors specific to each domain of life evolved to confer stringent initiation by the ribosome. The mechanistic basis for high accuracy in eukaryotic initiation is described based on recent findings concerning the role of the multifactor complex (MFC) in this process. Also discussed are whether non-AUG initiation plays any role in translational control and whether start codon accuracy is regulated in eukaryotes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA