Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Molecules ; 26(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800801

RESUMO

Diabetes remains one of the fastest growing chronic diseases and is a leading source of morbidity and accelerated mortality in the world. Loss of beta cell mass (BCM) and decreased sensitivity to insulin underlie diabetes pathogenesis. Yet, the ability to safely and directly assess BCM in individuals with diabetes does not exist. Measures such as blood glucose provide only a crude indirect picture of beta cell health. PET imaging could, in theory, allow for safe, direct, and precise characterization of BCM. However, identification of beta cell-specific radiolabeled tracers remains elusive. G-protein coupled receptor 44 (GPR44) is a transmembrane protein that was characterized in 2012 as highly beta cell-specific within the insulin-positive islets of Langerhans. Accordingly, radiolabeling of existing GPR44 antagonists could be a viable method to accelerate PET tracer development. The present study aims to evaluate and summarize published analogues of the GPR44 antagonist ramatroban to develop 18F-labeled PET tracers for BCM analysis. The 77 corresponding ramatroban analogues containing a fluorine nuclide were characterized for properties including binding affinity, selectivity, and pharmacokinetic and metabolic profile, and 32 compounds with favorable properties were identified. This review illustrates the potential of GPR44 analogues for the development of PET tracers.


Assuntos
Carbazóis/química , Radioisótopos de Flúor/metabolismo , Células Secretoras de Insulina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Traçadores Radioativos , Compostos Radiofarmacêuticos/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Sulfonamidas/química , Humanos , Células Secretoras de Insulina/química , Células Secretoras de Insulina/citologia , Inibidores da Agregação Plaquetária/química
2.
Diabetologia ; 63(4): 825-836, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31873789

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes is characterised by a progressive decline in beta cell mass. This is also observed following implantation of pancreatic islet allografts, but there is no reliable information regarding the time course of beta cell loss. This is due to the limited availability of non-invasive pancreatic islet imaging techniques. We have previously described that dipeptidyl peptidase 6 (DPP6) is an alpha and beta cell-specific biomarker, and developed a camelid antibody (nanobody '4hD29') against it. We demonstrated the possibility to detect DPP6-expressing cells by single-photon emission computed tomography (SPECT)/ computed tomography (CT), but the correlation between the number of cells grafted and the SPECT signal was not assessed. Here, we investigate whether the 4hD29 nanobody allows us to detect different amounts of human pancreatic islets implanted into immune-deficient mice. In addition, we also describe the adaptation of the probe for use with positron emission tomography (PET). METHODS: DPP6 expression was assessed in human samples using tissue arrays and immunohistochemistry. The effect of the 4hD29 nanobody on cell death and glucose-stimulated insulin secretion was measured in EndoC-ßH1 cells and in human islets using Hoechst/propidium iodide staining and an anti-insulin ELISA, respectively. We performed in vivo SPECT imaging on severe combined immunodeficient (SCID) mice transplanted with different amounts of EndoC-ßH1 cells (2 × 106, 5 × 106 and 10 × 106 cells), human islets (1000 and 3000) or pancreatic exocrine tissue using 99mTc-labelled 4hD29 nanobody. This DPP6 nanobody was also conjugated to N-chlorosuccinimide (NCS)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), radiolabelled with either 67Ga (SPECT) or 68Ga (PET) and used in a proof-of-principle experiment to detect DPP6-expressing cells (Kelly neuroblastoma) grafted in SCID mice. RESULTS: The DPP6 protein is mainly expressed in pancreatic islets. Importantly, the anti-DPP6 nanobody 4hD29 allows non-invasive detection of high amounts of EndoC-ßH1 cells or human islets grafted in immunodeficient mice. This suggests that the probe must be further improved to detect lower numbers of islet cells. The 4hD29 nanobody neither affected beta cell viability nor altered insulin secretion in EndoC-ßH1 cells and human islets. The conversion of 4hD29 nanobody into a PET probe was successful and did not alter its specificity. CONCLUSIONS/INTERPRETATION: These findings suggest that the anti-DPP6 4hD29 nanobody may become a useful tool for the quantification of human islet grafts in mice and, pending future development, islet mass in individuals with diabetes.


Assuntos
Rastreamento de Células/métodos , Dipeptidil Peptidases e Tripeptidil Peptidases/imunologia , Células Secretoras de Insulina/metabolismo , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/diagnóstico por imagem , Anticorpos de Domínio Único/farmacologia , Animais , Contagem de Células , Células Cultivadas , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Feminino , Radioisótopos de Gálio/análise , Radioisótopos de Gálio/farmacocinética , Xenoenxertos , Humanos , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Imagem Molecular/métodos , Compostos de Organotecnécio/química , Compostos de Organotecnécio/farmacocinética , Traçadores Radioativos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Anticorpos de Domínio Único/análise , Anticorpos de Domínio Único/química
3.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019671

RESUMO

There are presently no reliable ways to quantify human pancreatic beta cell mass (BCM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. Furthermore, the lack of beta cell imaging hampers the evaluation of the impact of new drugs aiming to prevent beta cell loss or to restore BCM in diabetes. We presently discuss the potential value of BCM determination as a cornerstone for individualized therapies in diabetes, describe the presently available probes for human BCM evaluation, and discuss our approach for the discovery of novel beta cell biomarkers, based on the determination of specific splice variants present in human beta cells. This has already led to the identification of DPP6 and FXYD2ga as two promising targets for human BCM imaging, and is followed by a discussion of potential safety issues, the role for radiochemistry in the improvement of BCM imaging, and concludes with an overview of the different steps from pre-clinical validation to a first-in-man trial for novel tracers.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Células Secretoras de Insulina/ultraestrutura , Transplante das Ilhotas Pancreáticas/diagnóstico por imagem , Compostos Radiofarmacêuticos/química , Anticorpos de Domínio Único/química , 5-Hidroxitriptofano/química , 5-Hidroxitriptofano/farmacocinética , Animais , Biomarcadores/análise , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Exenatida/química , Exenatida/farmacocinética , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/transplante , Imageamento por Ressonância Magnética/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Canais de Potássio/genética , Canais de Potássio/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Anticorpos de Domínio Único/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Tecnécio/química , Tecnécio/metabolismo , Tetrabenazina/análogos & derivados , Tetrabenazina/química , Tetrabenazina/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único/métodos
4.
Curr Diab Rep ; 19(8): 49, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31250117

RESUMO

PURPOSE OF REVIEW: Quantitative markers for beta-cell mass (BCM) in human pancreas are currently lacking. Medical imaging using positron emission tomography (PET) markers for beta-cell restricted targets may provide an accurate and non-invasive measurement of BCM, to assist diagnosis and treatment of metabolic disease. GPR44 was recently discovered as a putative marker for beta cells and this review summarizes the developments so far. RECENT FINDINGS: Several small molecule binders targeting GPR44 have been radiolabeled for PET imaging and evaluated in vitro and in small and large animal models. 11C-AZ12204657 and 11C-MK-7246 displayed a dose-dependent and GPR44-mediated binding to beta cells both in vitro and in vivo, with negligible uptake in exocrine pancreas. GPR44 represents an attractive target for visualization of BCM. Further progress in radioligand development including clinical testing is expected to clarify the role of GPR44 as a surrogate marker for BCM in humans.


Assuntos
Células Secretoras de Insulina , Animais , Biomarcadores , Humanos , Pâncreas , Tomografia por Emissão de Pósitrons
5.
Molecules ; 23(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134599

RESUMO

Non-invasive imaging and quantification of human beta cell mass remains a major challenge. We performed pre-clinical in vivo validation of a peptide previously discovered by our group, namely, P88 that targets a beta cell specific biomarker, FXYD2γa. We conjugated P88 with DOTA and then complexed it with GdCl3 to obtain the MRI (magnetic resonance imaging) contrast agent (CA) Gd-DOTA-P88. A scrambled peptide was used as a negative control CA, namely Gd-DOTA-Scramble. The CAs were injected in immunodeficient mice implanted with EndoC-ßH1 cells, a human beta cell line that expresses FXYD2γa similarly to primary human beta cells. The xenograft-bearing mice were analyzed by MRI. At the end, the mice were euthanized and the CA biodistribution was evaluated on the excised tissues by measuring the Gd concentration with inductively coupled plasma mass spectrometry (ICP-MS). The MRI and biodistribution studies indicated that Gd-DOTA-P88 accumulates in EndoC-ßH1 xenografts above the level observed in the background tissue, and that its uptake is significantly higher than that observed for Gd-DOTA-Scramble. In addition, the Gd-DOTA-P88 showed good xenograft-to-muscle and xenograft-to-liver uptake ratios, two potential sites of human islets transplantation. The CA shows good potential for future use to non-invasively image implanted human beta cells.


Assuntos
Meios de Contraste , Compostos Heterocíclicos , Células Secretoras de Insulina/metabolismo , Imageamento por Ressonância Magnética , Imagem Molecular , Compostos Organometálicos , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Biomarcadores , Células CHO , Meios de Contraste/química , Cricetulus , Expressão Gênica , Compostos Heterocíclicos/química , Xenoenxertos , Humanos , Células Secretoras de Insulina/transplante , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Imagem Molecular/métodos , Compostos Organometálicos/química , ATPase Trocadora de Sódio-Potássio/genética
6.
Diabetologia ; 59(7): 1340-1349, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27094935

RESUMO

Radiotracer imaging is characterised by high in vivo sensitivity, with a detection limit in the lower picomolar range. Therefore, radiotracers represent a valuable tool for imaging pancreatic beta cells. High demands are made of radiotracers for in vivo imaging of beta cells. Beta cells represent only a small fraction of the volume of the pancreas (usually 1-3%) and are scattered in the tiny islets of Langerhans throughout the organ. In order to be able to measure a beta cell-specific signal, one has to rely on highly specific tracer molecules because current in vivo imaging technologies do not allow the resolution of single islets in humans non-invasively. Currently, a considerable amount of preclinical data are available for several radiotracers and three are under clinical evaluation. We summarise the current status of the evaluation of these tracer molecules and put forward recommendations for their further evaluation.


Assuntos
Diagnóstico por Imagem/métodos , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Traçadores Radioativos , Animais , Humanos , Tomografia por Emissão de Pósitrons , Radioquímica
7.
J Labelled Comp Radiopharm ; 59(14): 604-610, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27282912

RESUMO

Diabetes affects an increasing number of patients worldwide and is responsible for a significant rise in healthcare expenses. Imaging of ß-cells in vivo is expected to contribute to an improved understanding of the underlying pathophysiology, improved diagnosis, and development of new treatment options for diabetes. Here, we describe the first radiosyntheses of [3 H]-TAK875 and [18 F]-TAK875 derivatives to be used as ß-cell imaging probes addressing the free fatty acid receptor 1 (FFAR1/GPR40). The fluorine-labeled derivative showed similar agonistic activity as TAK875 in a functional assay. The radiosynthesis of the 18 F-labelled tracer 2a was achieved with 16.7 ± 5.7% radiochemical yield in a total synthesis time of 60-70 min.


Assuntos
Benzofuranos/síntese química , Benzofuranos/metabolismo , Radioisótopos de Flúor , Células Secretoras de Insulina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores Acoplados a Proteínas G/metabolismo , Sulfonas/síntese química , Sulfonas/metabolismo , Trítio , Benzofuranos/química , Benzofuranos/farmacocinética , Técnicas de Química Sintética , Células HEK293 , Humanos , Sulfonas/química , Sulfonas/farmacocinética
8.
Front Endocrinol (Lausanne) ; 12: 613964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767668

RESUMO

Appropriate insulin secretion is essential for maintaining euglycemia, and impairment or loss of insulin release represents a causal event leading to diabetes. There have been extensive efforts of studying insulin secretion and its regulation using a variety of biological preparations, yet it remains challenging to monitor the dynamics of insulin secretion at the cellular level in the intact pancreas of living animals, where islet cells are supplied with physiological blood circulation and oxygenation, nerve innervation, and tissue support of surrounding exocrine cells. Herein we presented our pilot efforts of ZIMIR imaging in pancreatic islet cells in a living mouse. The imaging tracked insulin/Zn2+ release of individual islet ß-cells in the intact pancreas with high spatiotemporal resolution, revealing a rhythmic secretion activity that appeared to be synchronized among islet ß-cells. To facilitate probe delivery to islet cells, we also developed a chemogenetic approach by expressing the HaloTag protein on the cell surface. Finally, we demonstrated the application of a fluorescent granule zinc indicator, ZIGIR, as a selective and efficient islet cell marker in living animals through systemic delivery. We expect future optimization and integration of these approaches would enable longitudinal tracking of beta cell mass and function in vivo by optical imaging.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina , Ilhotas Pancreáticas/diagnóstico por imagem , Imagem Molecular/métodos , Zinco/metabolismo , Animais , Relógios Biológicos , Biomarcadores/análise , Biomarcadores/metabolismo , Grânulos Citoplasmáticos/metabolismo , Exocitose/fisiologia , Fluorescência , Células HEK293 , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Imagem Óptica/métodos , Coloração e Rotulagem/métodos , Zinco/análise
9.
Front Endocrinol (Lausanne) ; 12: 714348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248856

RESUMO

Pancreatic beta (ß)-cell dysfunction and reduced mass play a central role in the development and progression of diabetes mellitus. Conventional histological ß-cell mass (BCM) analysis is invasive and limited to cross-sectional observations in a restricted sampling area. However, the non-invasive evaluation of BCM remains elusive, and practical in vivo and clinical techniques for ß-cell-specific imaging are yet to be established. The lack of such techniques hampers a deeper understanding of the pathophysiological role of BCM in diabetes, the implementation of personalized BCM-based diabetes management, and the development of antidiabetic therapies targeting BCM preservation and restoration. Nuclear medical techniques have recently triggered a major leap in this field. In particular, radioisotope-labeled probes using exendin peptides that include glucagon-like peptide-1 receptor (GLP-1R) agonist and antagonist have been employed in positron emission tomography and single-photon emission computed tomography. These probes have demonstrated high specificity to ß cells and provide clear images accurately showing uptake in the pancreas and transplanted islets in preclinical in vivo and clinical studies. One of these probes, 111indium-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4), has captured the longitudinal changes in BCM during the development and progression of diabetes and under antidiabetic therapies in various mouse models of type 1 and type 2 diabetes mellitus. GLP-1R-targeted imaging is therefore a promising tool for non-invasive BCM evaluation. This review focuses on recent advances in non-invasive in vivo ß-cell imaging for BCM evaluation in the field of diabetes; in particular, the exendin-based GLP-1R-targeted nuclear medicine techniques.


Assuntos
Diabetes Mellitus/patologia , Células Secretoras de Insulina/patologia , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Diabetes Mellitus/diagnóstico por imagem , Diabetes Mellitus/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo
10.
EJNMMI Res ; 8(1): 113, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30588560

RESUMO

BACKGROUND: The G-protein-coupled receptor 44 (GPR44) is a beta cell-restricted target that may serve as a marker for beta cell mass (BCM) given the development of a suitable PET ligand. METHODS: The binding characteristics of the selected candidate, AZ12204657, at human GPR44 were determined using in vitro ligand binding assays. AZ12204657 was radiolabeled using 11C- or 3H-labeled methyl iodide ([11C/3H]CH3I) in one step, and the conversion of [11C/3H]CH3I to the radiolabeled product [11C/3H]AZ12204657 was quantitative. The specificity of radioligand binding to GPR44 and the selectivity for beta cells were evaluated by in vitro binding studies on pancreatic sections from human and non-human primates as well as on homogenates from endocrine and exocrine pancreatic compartments. RESULTS: The radiochemical purity of the resulting radioligand [11C]AZ12204657 was > 98%, with high molar activity (MA), 1351 ± 575 GBq/µmol (n = 18). The radiochemical purity of [3H]AZ12204657 was > 99% with MA of 2 GBq/µmol. Pancreatic binding of [11C/3H]AZ12204657 was co-localized with insulin-positive islets of Langerhans in non-diabetic individuals and individuals with type 2 diabetes (T2D). The binding of [11C]AZ12204657 to GPR44 was > 10 times higher in islet homogenates compared to exocrine homogenates. In human islets of Langerhans GPR44 was co-expressed with insulin, but not glucagon as assessed by co-staining and confocal microscopy. CONCLUSION: We radiolabeled [11C]AZ12204657, a potential PET radioligand for the beta cell-restricted protein GPR44. In vitro evaluation demonstrated that [3H]AZ12204657 and [11C]AZ12204657 selectively target pancreatic beta cells. [11C]AZ12204657 has promising properties as a marker for human BCM.

11.
Acta Diabetol ; 55(1): 49-57, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29064047

RESUMO

AIM: The zinc transporter 8 (ZnT8) has been suggested as a suitable target for non-invasive visualization of the functional pancreatic beta cell mass, due to both its pancreatic beta cell restricted expression and tight involvement in insulin secretion. METHODS: In order to examine the potential of ZnT8 as a surrogate target for beta cell mass, we performed mRNA transcription analysis in pancreatic compartments. A novel ZnT8 targeting antibody fragment Ab31 was radiolabeled with iodine-125, and evaluated by in vitro autoradiography in insulinoma and pancreas as well as by in vivo biodistribution. The evaluation was performed in a direct comparison with radio-iodinated Exendin-4. RESULTS: Transcription of the ZnT8 mRNA was higher in islets of Langerhans compared to exocrine tissue. Ab31 targeted ZnT8 in the cytosol and on the plasma membrane with 108 nM affinity. Ab31 was successfully radiolabeled with iodine-125 with high yield and > 95% purity. [125I]Ab31 binding to insulinoma and pancreas was higher than for [125I]Exendin-4, but could only by partially competed away by 200 nM Ab31 in excess. The in vivo uptake of [125I]Ab31 was higher than [125I]Exendin-4 in most tissues, mainly due to slower clearance from blood. CONCLUSIONS: We report a first-in-class ZnT8 imaging ligand for pancreatic imaging. Development with respect to ligand miniaturization and radionuclide selection is required for further progress. Transcription analysis indicates ZnT8 as a suitable target for visualization of the human endocrine pancreas.


Assuntos
Diagnóstico por Imagem/métodos , Fragmentos de Imunoglobulinas , Radioisótopos do Iodo , Ilhotas Pancreáticas/diagnóstico por imagem , Peptídeos , Peçonhas , Transportador 8 de Zinco/imunologia , Animais , Células Cultivadas , Exenatida , Imunoensaio/métodos , Fragmentos de Imunoglobulinas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Radioisótopos do Iodo/análise , Radioisótopos do Iodo/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Técnicas de Diagnóstico Molecular/métodos , Pâncreas/diagnóstico por imagem , Pâncreas/metabolismo , Peptídeos/análise , Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Peçonhas/análise , Peçonhas/metabolismo
12.
Acta Diabetol ; 54(7): 663-668, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28409274

RESUMO

AIMS: Molecular imaging of the free fatty acid receptor 1 (FFAR1) would be a valuable tool for drug development by enabling in vivo target engagement studies in human. It has also been suggested as a putative target for beta cell imaging, but the inherent lipophilicity of most FFAR1 binders produces high off-target binding, which has hampered progress in this area. The aim of this study was to generate a suitable lead compound for further PET labeling. METHODS: In order to identify a lead compound for future PET labeling for quantitative imaging of FFAR1 in human, we evaluated tritiated small molecule FFAR1 binding probes ([3H]AZ1, [3H]AZ2 and [3H]TAK-875) for their off-target binding, receptor density and affinity in human pancreatic tissue (islets and exocrine) and rodent insulinoma. RESULTS: [3H]AZ1 showed improved specificity to FFAR1, with decreased off-target binding compared to [3H]AZ2 and [3H]TAK-875, while retaining high affinity in the nanomolar range. FFAR1 density in human islets was approximately 50% higher than in exocrine tissue. CONCLUSIONS: AZ1 is a suitable lead compound for PET labeling for molecular imaging of FFAR1 in humans, due to high affinity and reduced off-target binding.


Assuntos
Células Secretoras de Insulina/metabolismo , Imagem Molecular/métodos , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/metabolismo , Animais , Benzofuranos/química , Benzofuranos/farmacocinética , Linhagem Celular Tumoral , Descoberta de Drogas/métodos , Células HEK293 , Humanos , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pâncreas/metabolismo , Ligação Proteica , Ratos , Sulfonas/química , Sulfonas/farmacocinética , Trítio/química , Trítio/farmacocinética
13.
Acta Diabetol ; 54(11): 1039-1045, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28891030

RESUMO

AIMS: Radiolabeled Exendin-4 has been proposed as suitable imaging marker for pancreatic beta cell mass quantification mediated by Glucagon-like peptide-1 receptor (GLP-1R). However, noticeable species variations in basal pancreatic uptake as well as uptake reduction degree due to selective beta cell ablation were observed. METHODS: In vitro and ex vivo autoradiography studies of pancreas were performed using [177Lu]Lu-DO3A-VS-Cys40-Exendin4, in order to investigate the mechanism of uptake as well as the islet uptake contrast in mouse, rat, pig, and non-human primate. The autoradiography results were compared to the in vivo pancreatic uptake as assessed by [68Ga]Ga-DO3A-VS-Cys40-Exendin4 Positron Emission Tomography (PET) in the same species. In vitro, ex vivo, and in vivo data formed the basis for calculating the theoretical in vivo contribution of each pancreatic compartment. RESULTS: [177Lu]Lu-DO3A-VS-Cys40-Exendin4 displayed the highest islet-to-exocrine pancreas ratio (IPR) in rat (IPR 45) followed by non-human primate and mouse at similar levels (IPR approximately 5) while pigs exhibited negligible IPR (1.1). In vivo pancreas uptake was mainly GLP-1R mediated in all species, but the magnitude of uptake under basal physiology varied significantly in decreasing order: non-human primate, mouse, pig, and rat. The theoretical calculation of islet contribution to the total pancreatic PET signal predicted the in vivo observation of differences in pancreatic uptake of [68Ga]Ga-DO3A-VS-Cys40-Exendin4. CONCLUSIONS: IPR as well as the exocrine GLP-1R density is the main determinants of the species variability in pancreatic uptake. Thus, the IPR in human is an important factor for assessing the potential of GLP-1R as an imaging biomarker for pancreatic beta cells.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Compostos Heterocíclicos com 1 Anel/farmacocinética , Células Secretoras de Insulina/metabolismo , Pâncreas/metabolismo , Peptídeos/farmacocinética , Peçonhas/farmacocinética , Compostos de Vinila/farmacocinética , Animais , Exenatida , Compostos Heterocíclicos com 1 Anel/química , Humanos , Lutécio/química , Lutécio/farmacocinética , Macaca fascicularis , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Imagem Molecular/métodos , Peptídeos/química , Tomografia por Emissão de Pósitrons , Ligação Proteica , Radioisótopos/química , Radioisótopos/farmacocinética , Ratos , Ratos Endogâmicos Lew , Especificidade da Espécie , Suínos , Peçonhas/química , Compostos de Vinila/química
14.
Acta Diabetol ; 53(3): 413-21, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26467464

RESUMO

AIMS: To address questions regarding onset and progression of types 1 and 2 diabetes (T1D/T2D), surrogate imaging biomarkers for beta cell function and mass are needed. Here, we assess the potential of GPR44 as a surrogate marker for beta cells, in a direct comparison with clinically used biomarker VMAT2. METHODS: GPR44 surface availability was assessed by flow cytometry of human beta cells. RNA transcription levels in different pancreas compartments were evaluated. The density of GPR44 receptor in endocrine and exocrine tissues was assessed by the radiolabeled GPR44 ligand [(3)H]AZD 3825. A direct comparison with the established beta cell marker VMAT2 was performed by radiolabeled [(3)H]DTBZ. RESULTS: GPR44 was available on the cell surface, and pancreatic RNA levels were restricted to the islets of Langerhans. [(3)H]AZD 3825 had nanomolar affinity for GPR44 in human islets and EndoC-ßH1 beta cells, and the specific binding to human beta cells was close to 50 times higher than in exocrine preparations. The endocrine-to-exocrine binding ratio was approximately 10 times higher for [(3)H]AZD 3825 than for [(3)H]DTBZ. CONCLUSION: GPR44 is a highly beta cell-specific target, which potentially offers improved imaging contrast between the human beta cell and the exocrine pancreas.


Assuntos
Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Especificidade de Órgãos , Ratos , Receptores Imunológicos/genética , Receptores de Prostaglandina/genética , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
15.
EJNMMI Phys ; 3(1): 29, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27928774

RESUMO

BACKGROUND: Quantitative single photon emission computed tomography (SPECT) is challenging, especially for pancreatic beta cell imaging with 111In-exendin due to high uptake in the kidneys versus much lower uptake in the nearby pancreas. Therefore, we designed a three-dimensionally (3D) printed phantom representing the pancreas and kidneys to mimic the human situation in beta cell imaging. The phantom was used to assess the effect of different reconstruction settings on the quantification of the pancreas uptake for two different, commercially available software packages. METHODS: 3D-printed, hollow pancreas and kidney compartments were inserted into the National Electrical Manufacturers Association (NEMA) NU2 image quality phantom casing. These organs and the background compartment were filled with activities simulating relatively high and low pancreatic 111In-exendin uptake for, respectively, healthy humans and type 1 diabetes patients. Images were reconstructed using Siemens Flash 3D and Hermes Hybrid Recon, with varying numbers of iterations and subsets and corrections. Images were visually assessed on homogeneity and artefacts, and quantitatively by the pancreas-to-kidney activity concentration ratio. RESULTS: Phantom images were similar to clinical images and showed comparable artefacts. All corrections were required to clearly visualize the pancreas. Increased numbers of subsets and iterations improved the quantitative performance but decreased homogeneity both in the pancreas and the background. Based on the phantom analyses, the Hybrid Recon reconstruction with 6 iterations and 16 subsets was found to be most suitable for clinical use. CONCLUSIONS: This work strongly contributed to quantification of pancreatic 111In-exendin uptake. It showed how clinical images of 111In-exendin can be interpreted and enabled selection of the most appropriate protocol for clinical use.

16.
Nucl Med Biol ; 42(4): 387-94, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25633247

RESUMO

INTRODUCTION: Glucokinase (GK) is potentially a target for imaging of islets of Langerhans. Here we report the radiosynthesis and preclinical evaluation of the GK activator, [(11)C]AZ12504948, for in vivo imaging of GK. METHODS: [(11)C]AZ12504948 was synthesized by O-methylation of the precursor, AZ125555620, using carbon-11 methyl iodide ([(11)C]CH3I). Preclinical evaluation was performed by autoradiography (ARG) of human tissues and PET/CT studies in pig and non-human primate. RESULT: [(11)C]AZ12504948 was produced in reproducible good radiochemical yield in 28-30 min. Radiochemical purity of the formulated product was >98% for up to 2 h with specific radioactivities 855 ± 209 GBq/µmol (n=8). The preclinical evaluation showed some specificity for GK in liver, but not in pancreas. CONCLUSION: [(11)C]AZ12504948 images GK in liver, but the low specificity impedes the visualization of GK in pancreas. Improved target specificity is required for further progress using PET probes based on this class of GK activators.


Assuntos
Azetidinas/síntese química , Benzamidas/síntese química , Ativadores de Enzimas/síntese química , Glucoquinase/metabolismo , Fígado/enzimologia , Imagem Molecular/métodos , Pâncreas/enzimologia , Animais , Azetidinas/química , Benzamidas/química , Técnicas de Química Sintética , Ativadores de Enzimas/química , Humanos , Fígado/diagnóstico por imagem , Macaca fascicularis , Masculino , Pâncreas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Traçadores Radioativos , Radioquímica , Suínos , Tomografia Computadorizada por Raios X
17.
Nucl Med Biol ; 42(10): 762-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26138288

RESUMO

INTRODUCTION: Functional imaging could be utilized for visualizing pancreatic islets of Langerhans. Therefore, we present a stepwise algorithm for screening of clinically available positron emission tomography (PET) tracers for their use in imaging of the neuroendocrine pancreas in the context of diabetes. METHODS: A stepwise procedure was developed for screening potential islet imaging agents. Suitable PET-tracer candidates were identified by their molecular mechanism of targeting. Clinical abdominal examinations were retrospectively analyzed for pancreatic uptake and retention. The target protein localization in the pancreas was assessed in silico by -omics approaches and the in vitro by binding assays to human pancreatic tissue. RESULTS: Six putative candidates were identified and screened by using the stepwise procedure. Among the tested PET tracers, only [(11)C]5-Hydroxy-tryptophan passed all steps. The remaining identified candidates were falsified as candidates and discarded following in silico and in vitro screening. CONCLUSIONS: Of the six clinically available PET tracers identified, [(11)C]5-HTP was found to be a promising candidate for beta cell imaging, based on intensity of in vivo pancreatic uptake in humans, and islet specificity as assessed on human pancreatic cell preparations. The flow scheme described herein constitutes a methodology for evaluating putative islet imaging biomarkers among clinically available PET tracers.


Assuntos
Simulação por Computador , Células Secretoras de Insulina/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Transporte Biológico , Biomarcadores/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Traçadores Radioativos
18.
J Nucl Med ; 55(3): 460-5, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24525204

RESUMO

UNLABELLED: Serotonergic biosynthesis in the endocrine pancreas, of which the islets of Langerhans is the major constituent, has been implicated in insulin release and ß cell proliferation. In this study, we investigated the feasibility of quantitative noninvasive imaging of the serotonergic metabolism in the pancreas using the PET tracer (11)C-5-hydroxy-l-tryptophan ((11)C-5-HTP). METHODS: Uptake of (11)C-5-HTP, and its specificity for key enzymes in the serotonergic metabolic pathway, was assessed in vitro (INS-1 and PANC1 cells and human islet and exocrine preparations) and in vivo (nonhuman primates and healthy and diabetic rats). RESULTS: In vitro tracer uptake in endocrine cells (INS-1 and human islets), but not PANC1 and exocrine cells, was mediated specifically by intracellular conversion into serotonin. Pancreatic uptake of (11)C-5-HTP in nonhuman primates was markedly decreased by inhibition of the enzyme dopa decarboxylase, which converts (11)C-5-HTP to (11)C-serotonin and increased after inhibition of monoamine oxidase-A, the main enzyme responsible for serotonin degradation. Uptake in the rat pancreas was similarly modulated by inhibition of monoamine oxidase-A and was reduced in animals with induced diabetes. CONCLUSION: The PET tracer (11)C-5-HTP can be used for quantitative imaging of the serotonergic system in the endocrine pancreas.


Assuntos
Ilhotas Pancreáticas/diagnóstico por imagem , Ilhotas Pancreáticas/metabolismo , Tomografia por Emissão de Pósitrons , Serotonina/biossíntese , Serotonina/metabolismo , 5-Hidroxitriptofano , Animais , Radioisótopos de Carbono , Linhagem Celular , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Monoaminoxidase/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA