Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 90: 31-55, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153217

RESUMO

My graduate and postdoctoral training in metabolism and enzymology eventually led me to study the short- and long-term regulation of glucose and lipid metabolism. In the early phase of my career, my trainees and I identified, purified, and characterized a variety of phosphofructokinase enzymes from mammalian tissues. These studies led us to discover fructose 2,6-P2, the most potent activator of phosphofructokinase and glycolysis. The discovery of fructose 2,6-P2 led to the identification and characterization of the tissue-specific bifunctional enzyme 6-phosphofructo-2-kinase:fructose 2,6-bisphosphatase. We discovered a glucose signaling mechanism by which the liver maintains glucose homeostasis by regulating the activities of this bifunctional enzyme. With a rise in glucose, a signaling metabolite, xylulose 5-phosphate, triggers rapid activation of a specific protein phosphatase (PP2ABδC), which dephosphorylates the bifunctional enzyme, thereby increasing fructose 2,6-P2 levels and upregulating glycolysis. These endeavors paved the way for us to initiate the later phase of my career in which we discovered a new transcription factor termed the carbohydrate response element binding protein (ChREBP). Now ChREBP is recognized as the masterregulator controlling conversion of excess carbohydrates to storage of fat in the liver. ChREBP functions as a central metabolic coordinator that responds to nutrients independently of insulin. The ChREBP transcription factor facilitates metabolic adaptation to excess glucose, leading to obesity and its associated diseases.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Bioquímica/história , Frutosedifosfatos/metabolismo , Fosfofrutoquinase-2/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Gluconeogênese/fisiologia , Glucose/metabolismo , Glicólise , História do Século XX , História do Século XXI , Humanos , Masculino , Camundongos , Fosfofrutoquinase-2/química , Fosfofrutoquinases/química , Fosfofrutoquinases/metabolismo , Fosforilação , Estados Unidos
2.
J Biol Chem ; 299(4): 104603, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907437

RESUMO

Phytosphingosine (PHS) is a sphingolipid component present mainly in epithelial tissues, including the epidermis and those lining the digestive tract. DEGS2 is a bifunctional enzyme that produces ceramides (CERs) containing PHS (PHS-CERs) via hydroxylation and sphingosine-CERs via desaturation, using dihydrosphingosine-CERs as substrates. Until now, the role of DEGS2 in permeability barrier functioning, its contribution to PHS-CER production, and the mechanism that differentiates between these two activities have been unknown. Here, we analyzed the barrier functioning of the epidermis, esophagus, and anterior stomach of Degs2 KO mice and found that there were no differences between Degs2 KO and WT mice, indicating normal permeability barriers in the KO mice. In the epidermis, esophagus, and anterior stomach of Degs2 KO mice, PHS-CER levels were greatly reduced relative to WT mice, but PHS-CERs were still present. We obtained similar results for DEGS2 KO human keratinocytes. These results indicate that although DEGS2 plays a major role in PHS-CER production, another synthesis pathway exists as well. Next, we examined the fatty acid (FA) composition of PHS-CERs in various mouse tissues and found that PHS-CER species containing very-long-chain FAs (≥C21) were more abundant than those containing long-chain FAs (C11-C20). A cell-based assay system revealed that the desaturase and hydroxylase activities of DEGS2 toward substrates with different FA chain lengths differed and that its hydroxylase activity was higher toward substrates containing very-long-chain FAs. Collectively, our findings contribute to the elucidation of the molecular mechanism of PHS-CER production.


Assuntos
Ceramidas , Ácidos Graxos Dessaturases , Ácidos Graxos , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Ceramidas/metabolismo , Epiderme/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Queratinócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/genética
3.
Appl Environ Microbiol ; 90(7): e0088824, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-38940565

RESUMO

Although functional studies on carbohydrate-binding module (CBM) have been carried out extensively, the role of tandem CBMs in the enzyme containing multiple catalytic domains (CDs) is unclear. Here, we identified a multidomain enzyme (Lc25986) with a novel modular structure from lignocellulolytic bacterial consortium. It consists of a mannanase domain, two CBM65 domains (LcCBM65-1/LcCBM65-2), and an esterase domain. To investigate CBM function and domain interactions, full-length Lc25986 and its variants were constructed and used for enzymatic activity, binding, and bioinformatic analyses. The results showed that LcCBM65-1 and LcCBM65-2 both bind mannan and xyloglucan but not cellulose or ß-1,3-1,4-glucan, which differs from the ligand specificity of reported CBM65s. Compared to LcCBM65-2, LcCBM65-1 showed a stronger ligand affinity and a preference for acetylation sites. Both CBM65s stimulated the enzymatic activities of their respective neighboring CDs against acetylated mannan, but did not contribute to the activities of the distal CDs. The time course of mannan hydrolysis indicated that the full-length Lc25986 was more effective in the complete degradation of mixed acetyl/non-acetyl substrates than the mixture of single-CD mutants. When acting on complex substrates, LcCBM65-1 not only improved the enzymatic activity of the mannanase domain, but also directed the esterase domain to the acetylated polysaccharides. LcCBM65-2 adopted a low affinity to reduce interference with the catalysis of the mannanase domain. These results demonstrate the importance of CBMs for the synergism between the two CDs of a multidomain enzyme and suggest that they contribute to the adequate degradation of complex substrates such as plant cell walls. IMPORTANCE: Lignocellulolytic enzymes, particularly those of bacterial origin, often harbor multiple carbohydrate-binding modules (CBMs). However, the function of CBM multivalency remains poorly understood. This is especially true for enzymes that contain more than one catalytic domain (CD), as the interactions between CDs, CBMs, and CDs and CBMs can be complex. Our research demonstrates that homogeneous CBMs can have distinct functions in a multimodular enzyme. The tandem CBMs coordinate the CDs in catalytic conflict through their differences in binding affinity, ligand preference, and arrangement within the full-length enzyme. Additionally, although the synergism between mannanase and esterase is widely acknowledged, our study highlights the benefits of integrating the two enzymes into a single entity for the degradation of complex substrates. In summary, these findings enhance our understanding of the intra-synergism of a multimodular enzyme and emphasize the significance of multiple CBMs in this context.


Assuntos
Proteínas de Bactérias , Domínio Catalítico , Glucanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Glucanos/metabolismo , Xilanos/metabolismo , Mananas/metabolismo , Lignina/metabolismo , Bactérias/enzimologia , Bactérias/genética , Hidrólise , Especificidade por Substrato
4.
Biotechnol Bioeng ; 121(7): 2067-2078, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678481

RESUMO

Glycoside hydrolase (GH) 30 family xylanases are enzymes of biotechnological interest due to their capacity to degrade recalcitrant hemicelluloses, such as glucuronoxylan (GX). This study focuses on a subfamily 7 GH30, TtXyn30A from Thermothelomyces thermophilus, which acts on GX in an "endo" and "exo" mode, releasing methyl-glucuronic acid branched xylooligosaccharides (XOs) and xylobiose, respectively. The crystal structure of inactive TtXyn30A in complex with 23-(4-O-methyl-α-D-glucuronosyl)-xylotriose (UXX), along with biochemical analyses, corroborate the implication of E233, previously identified as alternative catalytic residue, in the hydrolysis of decorated xylan. At the -1 subsite, the xylose adopts a distorted conformation, indicative of the Michaelis complex of TtXyn30AEE with UXX trapped in the semi-functional active site. The most significant structural rearrangements upon substrate binding are observed at residues W127 and E233. The structures with neutral XOs, representing the "exo" function, clearly show the nonspecific binding at aglycon subsites, contrary to glycon sites, where the xylose molecules are accommodated via multiple interactions. Last, an unproductive ligand binding site is found at the interface between the catalytic and the secondary ß-domain which is present in all GH30 enzymes. These findings improve current understanding of the mechanism of bifunctional GH30s, with potential applications in the field of enzyme engineering.


Assuntos
Xilanos , Xilanos/metabolismo , Xilanos/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Sordariales/enzimologia , Sordariales/genética , Domínio Catalítico , Eurotiales/enzimologia , Especificidade por Substrato , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/genética
5.
J Math Biol ; 88(3): 36, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429564

RESUMO

Biochemical covalent modification networks exhibit a remarkable suite of steady state and dynamical properties such as multistationarity, oscillations, ultrasensitivity and absolute concentration robustness. This paper focuses on conditions required for a network of this type to have a species with absolute concentration robustness. We find that the robustness in a substrate is endowed by its interaction with a bifunctional enzyme, which is an enzyme that has different roles when isolated versus when bound as a substrate-enzyme complex. When isolated, the bifunctional enzyme promotes production of more molecules of the robust species while when bound, the same enzyme facilitates degradation of the robust species. These dual actions produce robustness in the large class of covalent modification networks. For each network of this type, we find the network conditions for the presence of robustness, the species that has robustness, and its robustness value. The unified approach of simultaneously analyzing a large class of networks for a single property, i.e. absolute concentration robustness, reveals the underlying mechanism of the action of bifunctional enzyme while simultaneously providing a precise mathematical description of bifunctionality.

6.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34475207

RESUMO

Cyclic dimeric guanosine monophosphate (c-di-GMP) serves as a second messenger that modulates bacterial cellular processes, including biofilm formation. While proteins containing both c-di-GMP synthesizing (GGDEF) and c-di-GMP hydrolyzing (EAL) domains are widely predicted in bacterial genomes, it is poorly understood how domains with opposing enzymatic activity are regulated within a single polypeptide. Herein, we report the characterization of a globin-coupled sensor protein (GCS) from Paenibacillus dendritiformis (DcpG) with bifunctional c-di-GMP enzymatic activity. DcpG contains a regulatory sensor globin domain linked to diguanylate cyclase (GGDEF) and phosphodiesterase (EAL) domains that are differentially regulated by gas binding to the heme; GGDEF domain activity is activated by the Fe(II)-NO state of the globin domain, while EAL domain activity is activated by the Fe(II)-O2 state. The in vitro activity of DcpG is mimicked in vivo by the biofilm formation of P. dendritiformis in response to gaseous environment, with nitric oxide conditions leading to the greatest amount of biofilm formation. The ability of DcpG to differentially control GGDEF and EAL domain activity in response to ligand binding is likely due to the unusual properties of the globin domain, including rapid ligand dissociation rates and high midpoint potentials. Using structural information from small-angle X-ray scattering and negative stain electron microscopy studies, we developed a structural model of DcpG, providing information about the regulatory mechanism. These studies provide information about full-length GCS protein architecture and insight into the mechanism by which a single regulatory domain can selectively control output domains with opposing enzymatic activities.


Assuntos
GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Paenibacillus/enzimologia , Fósforo-Oxigênio Liases/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Ligantes , Paenibacillus/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Domínios Proteicos/genética , Sistemas do Segundo Mensageiro/genética
7.
J Biol Chem ; 298(10): 102453, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063996

RESUMO

The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in fungal physiology to accelerate antifungal discovery efforts. Rational drug design was pioneered in de novo purine biosynthesis as the end products of the pathway, ATP and GTP, are essential for replication, transcription, and energy metabolism, and the same rationale applies when considering the pathway as an antifungal target. Here, we describe the identification and characterization of C. neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/5'-inosine monophosphate cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final two enzymatic steps in the formation of the first purine base inosine monophosphate. We demonstrate that mutants lacking the ATIC-encoding ADE16 gene are adenine and histidine auxotrophs that are unable to establish an infection in a murine model of virulence. In addition, our assays employing recombinantly expressed and purified C. neoformans ATIC enzyme revealed Km values for its substrates AICAR and 5-formyl-AICAR are 8-fold and 20-fold higher, respectively, than in the human ortholog. Subsequently, we performed crystallographic studies that enabled the determination of the first fungal ATIC protein structure, revealing a key serine-to-tyrosine substitution in the active site, which has the potential to assist the design of fungus-specific inhibitors. Overall, our results validate ATIC as a promising antifungal drug target.


Assuntos
Criptococose , Cryptococcus neoformans , Hidroximetil e Formil Transferases , Fosforribosilaminoimidazolcarboxamida Formiltransferase , Animais , Humanos , Camundongos , Antifúngicos , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Descoberta de Drogas , Inosina Monofosfato , Fosforribosilaminoimidazolcarboxamida Formiltransferase/química , Fosforribosilaminoimidazolcarboxamida Formiltransferase/genética , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Purinas , Criptococose/metabolismo
8.
Plant Cell Environ ; 46(5): 1596-1609, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36757089

RESUMO

Theanine is an important secondary metabolite endowing tea with umami taste and health effects. It is essential to explore the metabolic pathway and regulatory mechanism of theanine to improve tea quality. Here, we demonstrated that the expression patterns of CsGGT2 (γ-glutamyl-transpeptidase), participated in theanine synthesis in vitro in our previous research, are significantly different in the aboveground and underground tissues of tea plants and regulated by light. Light up-regulated the expression of CsHY5, directly binding to the promoter of CsGGT2 and acting as an activator of CsGGT2, with a negative correlation with theanine accumulation. The enzyme activity assays and transient expression in Nicotiana benthamiana showed that CsGGT2, acting as bifunctional protein, synthesize and degrade theanine in vitro and in planta. The results of enzyme kinetics, Surface plasmon resonance (SPR) assays and targeted gene-silencing assays showed that CsGGT2 had a higher substrate affinity of theanine than that of ethylamine, and performed a higher theanine degradation catalytic efficiency. Therefore, light mediates the degradation of theanine in different tissues by regulating the expression of the theanine hydrolase CsGGT2 in tea plants, and these results provide new insights into the degradation of theanine mediated by light in tea plants.


Assuntos
Camellia sinensis , Regulação da Expressão Gênica de Plantas , Luz , gama-Glutamiltransferase , Camellia sinensis/enzimologia , Camellia sinensis/genética , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteólise/efeitos da radiação
9.
Molecules ; 28(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005185

RESUMO

Glycosidases are essential for the industrial production of functional oligosaccharides and many biotech applications. A novel ß-galactosidase/α-L-arabinopyranosidase (PpBGal42A) of the glycoside hydrolase family 42 (GH42) from Paenibacillus polymyxa KF-1 was identified and functionally characterized. Using pNPG as a substrate, the recombinant PpBGal42A (77.16 kD) was shown to have an optimal temperature and pH of 30 °C and 6.0. Using pNPαArap as a substrate, the optimal temperature and pH were 40 °C and 7.0. PpBGal42A has good temperature and pH stability. Furthermore, Na+, K+, Li+, and Ca2+ (5 mmol/L) enhanced the enzymatic activity, whereas Mn2+, Cu2+, Zn2+, and Hg2+ significantly reduced the enzymatic activity. PpBGal42A hydrolyzed pNP-ß-D-galactoside and pNP-α-L-arabinopyranoside. PpBGal42A liberated galactose from ß-1,3/4/6-galactobiose and galactan. PpBGal42A hydrolyzed arabinopyranose at C20 of ginsenoside Rb2, but could not cleave arabinofuranose at C20 of ginsenoside Rc. Meanwhile, the molecular docking results revealed that PpBGal42A efficiently recognized and catalyzed lactose. PpBGal42A hydrolyzes lactose to galactose and glucose. PpBGal42A exhibits significant degradative activity towards citrus pectin when combined with pectinase. Our findings suggest that PpBGal42A is a novel bifunctional enzyme that is active as a ß-galactosidase and α-L-arabinopyranosidase. This study expands on the diversity of bifunctional enzymes and provides a potentially effective tool for the food industry.


Assuntos
Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/metabolismo , Lactose , Simulação de Acoplamento Molecular , Galactose , Glicosídeo Hidrolases/metabolismo , Clonagem Molecular , beta-Galactosidase/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Paenibacillus/genética , Paenibacillus/metabolismo
10.
J Biol Chem ; 297(3): 101038, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343567

RESUMO

Modular protein assembly has been widely reported as a mechanism for constructing allosteric machinery. Recently, a distinctive allosteric system has been identified in a bienzyme assembly comprising a 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS) and chorismate mutase (CM). These enzymes catalyze the first and branch point reactions of aromatic amino acid biosynthesis in the bacterium Prevotella nigrescens (PniDAH7PS), respectively. The interactions between these two distinct catalytic domains support functional interreliance within this bifunctional enzyme. The binding of prephenate, the product of CM-catalyzed reaction, to the CM domain is associated with a striking rearrangement of overall protein conformation that alters the interdomain interactions and allosterically inhibits the DAH7PS activity. Here, we have further investigated the complex allosteric communication demonstrated by this bifunctional enzyme. We observed allosteric activation of CM activity in the presence of all DAH7PS substrates. Using small-angle X-ray scattering (SAXS) experiments, we show that changes in overall protein conformations and dynamics are associated with the presence of different DAH7PS substrates and the allosteric inhibitor prephenate. Furthermore, we have identified an extended interhelix loop located in CM domain, loopC320-F333, as a crucial segment for the interdomain structural and catalytic communications. Our results suggest that the dual-function enzyme PniDAH7PS contains a reciprocal allosteric system between the two enzymatic moieties as a result of this bidirectional interdomain communication. This arrangement allows for a complex feedback and feedforward system for control of pathway flux by connecting the initiation and branch point of aromatic amino acid biosynthesis.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Aminoácidos Aromáticos/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Prevotella nigrescens/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Regulação Alostérica , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Vias Biossintéticas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Prevotella nigrescens/química , Prevotella nigrescens/enzimologia , Prevotella nigrescens/genética , Domínios Proteicos , Espalhamento a Baixo Ângulo , Alinhamento de Sequência
11.
Appl Microbiol Biotechnol ; 106(5-6): 1905-1917, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35218387

RESUMO

Glutathione (GSH) is a metabolite that plays an important role in the fields of pharmacy, food, and cosmetics. Thus, it is necessary to increase its production to meet the demands. In this study, ScGSH1, ScGSH2, and StGshF were heterologously expressed in Pichia pastoris GS115 to realize the dual-path synthesis of GSH in yeast. To explore the effects of ATP metabolism on the synthesis of GSH, enzymes (ScADK1, PpADK1, VsVHB) of the ATP-related metabolic pathway and the energy co-substrate sodium citrate were taken into account. We found that both ScADK1 and sodium citrate had a positive influence on the synthesis of GSH. Then, a fermentation experiment in Erlenmeyer flasks was performed using the G3-SF strain (containing ScGSH1, ScGSH2, StGshF, and ScADK1), with the highest GSH titer and yield of 999.33 ± 47.26 mg/L and 91.53 ± 4.70 mg/g, respectively. Finally, the fermentation was scaled up in a 5-L fermentor, and the highest titer and yield were improved to 5680 mg/L and 45.13 mg/g, respectively, by optimizing the addition conditions of amino acids (40 mM added after 40 h). Our work provides an alternative strategy by combining dual-path synthesis with energy metabolism regulation and precursor feeding to improve GSH production. Key Points • ScGSH1, ScGSH2, and StGshF were overexpressed to achieve dual-path synthesis of GSH in yeast. • ScADK1 was overexpressed, and sodium citrate was added to increase the energy supply for GSH synthesis. • The addition conditions of amino acids were optimized to realize the efficient synthesis of GSH.


Assuntos
Reatores Biológicos , Pichia , Fermentação , Glutationa , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales
12.
Angew Chem Int Ed Engl ; 61(26): e202201321, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35415958

RESUMO

The vicinal oxygen chelate (VOC) metalloenzyme superfamily catalyzes a highly diverse set of reactions with the mechanism characterized by the bidentate coordination of vicinal oxygen atoms to metal ion centers, but there remains a lack of a platform to steer the reaction trajectories, especially for o-quinone metabolizing pathways. Herein, we present the directed-evolution-enabled bifunctional turnover of ChaP, which is a homotetramer and represents an unprecedented VOC enzyme class. Unlike the ChaP catalysis of extradiol-like o-quinone cleavage and concomitant α-keto acid decarboxylation, a group of ChaP variants (CVs) catalyze intradiol-like o-quinone deconstruction and CO2 liberation from the resulting o-hydroxybenzoic acid scaffolds with high regioselectivity. Enzyme crystal structures, labeling experiments and computational simulations corroborated that the D49L mutation allows the metal ion to change its coordination with the tyrosine phenoxy atoms in different monomers, thereby altering the reaction trajectory with the regiospecificity further improved by the follow-up replacement of the Y92 residue with any of alanine, glycine, threonine, and serine. The study highlights the unpredicted catalytic versatility and enzymatic plasticity of VOC enzymes with biotechnological significance.


Assuntos
Dioxigenases , Metaloproteínas , Catálise , Dioxigenases/metabolismo , Metais , Oxigênio , Quinonas
13.
Plant Mol Biol ; 105(4-5): 497-511, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33415608

RESUMO

KEY MESSAGE: The study shows the biochemical and enzymatic divergence between the two aldehyde-alcohol dehydrogenases of the alga Polytomella sp., shedding light on novel aspects of the enzyme evolution amid unicellular eukaryotes. Aldehyde-alcohol dehydrogenases (ADHEs) are large metalloenzymes that typically perform the two-step reduction of acetyl-CoA into ethanol. These enzymes consist of an N-terminal acetylating aldehyde dehydrogenase domain (ALDH) and a C-terminal alcohol dehydrogenase (ADH) domain. ADHEs are present in various bacterial phyla as well as in some unicellular eukaryotes. Here we focus on ADHEs in microalgae, a diverse and polyphyletic group of plastid-bearing unicellular eukaryotes. Genome survey shows the uneven distribution of the ADHE gene among free-living algae, and the presence of two distinct genes in various species. We show that the non-photosynthetic Chlorophyte alga Polytomella sp. SAG 198.80 harbors two genes for ADHE-like enzymes with divergent C-terminal ADH domains. Immunoblots indicate that both ADHEs accumulate in Polytomella cells growing aerobically on acetate or ethanol. ADHE1 of ~ 105-kDa is found in particulate fractions, whereas ADHE2 of ~ 95-kDa is mostly soluble. The study of the recombinant enzymes revealed that ADHE1 has both the ALDH and ADH activities, while ADHE2 has only the ALDH activity. Phylogeny shows that the divergence occurred close to the root of the Polytomella genus within a clade formed by the majority of the Chlorophyte ADHE sequences, next to the cyanobacterial clade. The potential diversification of function in Polytomella spp. unveiled here likely took place after the loss of photosynthesis. Overall, our study provides a glimpse at the complex evolutionary history of the ADHE in microalgae which includes (i) acquisition via different gene donors, (ii) gene duplication and (iii) independent evolution of one of the two enzymatic domains.


Assuntos
Álcool Desidrogenase/genética , Aldeído Desidrogenase/genética , Clorófitas/genética , Variação Genética , Microalgas/genética , Filogenia , Álcool Desidrogenase/classificação , Álcool Desidrogenase/metabolismo , Aldeído Desidrogenase/classificação , Aldeído Desidrogenase/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Clorófitas/enzimologia , Espectrometria de Massas/métodos , Microalgas/enzimologia , Proteômica/métodos , Análise de Sequência de DNA/métodos , Homologia de Sequência de Aminoácidos
14.
Plant Cell Environ ; 44(1): 257-274, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32833225

RESUMO

Pine wood nematode (PWN; Bursaphelenchus xylophilus), a destructive pest of Pinus massoniana, is causing a severe epidemic of pine wilt disease in China. When invaded by PWN, resistant P. massoniana secretes an abundance of oleoresin terpenoids as a defensive strategy. However, regulatory mechanisms of this defence in resistant P. massoniana have yet to be elucidated. Here, we characterized two terpene synthase genes, α-pinene synthase (PmTPS4) and longifolene synthase (PmTPS21), identified in resistant P. massoniana and investigate the contribution of these genes to the oleoresin defence strategy in resistant masson pines. Up-regulation of these two genes in the stem supported their involvement in terpene biosynthesis as part of the defence against PWN. Recombinant protein expression revealed catalytic activity for the two PmTPSs, with PmTPS4 primarily producing α-pinene, while PmTPS21 produced α-pinene and longifolene simultaneously. The major enzymatic products of the two terpene synthases had inhibitory effects on PWN in vitro. We demonstrated that PmTPS4 and PmTPS21 played positive roles in terpene-defence mechanisms against PWN infestation. The major products of these terpene synthases could directly inhibit the survival rate of PWN in vitro. We revealed that PmTPS21 was a novel bifunctional enzyme capable of simultaneous production of both monoterpene and sesquiterpene.


Assuntos
Alquil e Aril Transferases/metabolismo , Nematoides , Pinus/metabolismo , Defesa das Plantas contra Herbivoria , Proteínas de Plantas/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/fisiologia , Animais , Deleção Clonal , Cromatografia Gasosa-Espectrometria de Massas , Filogenia , Pinus/genética , Pinus/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
15.
Anal Bioanal Chem ; 413(25): 6303-6312, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34396471

RESUMO

To improve the efficiency of aptasensors, a signal amplification strategy by coupling tyrosinase (Tyr)-triggered redox cycling with nanoscale porous carbon (NCZIF) has been proposed. The NCZIF was obtained by calcining ZIF-8 crystals in an inert atmosphere. It had high surface areas, great biocompatibility, and ease of functionalization, which was beneficial for immobilizing sufficient Tyr and aptamer covalently. When the target prostate-specific antigen (PSA) was present, the NCZIF functionalized with Tyr and an aptamer bound to the aptamer-modified Au electrode specifically through the sandwich structure. Then, Tyr acted to oxidize the electroinactive phenol, which led to low-background signal, in the substrate to electroactive catechol, and triggered the redox cycling under the action of NADH. The low detection limit of the proposed electrochemical aptasensor for PSA was 0.01 ng mL-1, and the wide detection range was from 0.01 to 50 ng mL-1. The use of ZIF-8 derived porous carbon and Tyr-triggered redox cycling system provided a promising solution for the development of simple, rapid, reliable, and low-background aptasensing methods, which had great potential in the field of disease diagnosis and biomedicine.


Assuntos
Carbono/química , Técnicas Eletroquímicas , Estruturas Metalorgânicas/química , Antígeno Prostático Específico/química , Catálise , Eletrodos , Enzimas , Enzimas Imobilizadas , Nanoestruturas , Sensibilidade e Especificidade
16.
Mar Drugs ; 19(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34822461

RESUMO

Alginate, a natural polysaccharide derived from brown seaweed, is finding multiple applications in biomedicine via its transformation through chemical, physical, and, increasingly, enzymatic processes. In this study a novel alginate lyase, AlyDS44, was purified and characterized from a marine actinobacterium, Streptomyces luridiscabiei, which was isolated from decomposing seaweed. The purified enzyme had a specific activity of 108.6 U/mg, with a molecular weight of 28.6 kDa, and was composed of 260 amino acid residues. AlyDS44 is a bifunctional alginate lyase, active on both polyguluronate and polymannuronate, though it preferentially degrades polyguluronate. The optimal pH of this enzyme is 8.5 and the optimal temperature is 45 °C. It is a salt-tolerant alginate lyase with an optimal activity at 0.6 M NaCl. Metal ions Mn2+, Co2+, and Fe2+ increased the alginate degrading activity, but it was inhibited in the presence of Zn2+ and Cu2+. The highly conserved regions of its amino acid sequences indicated that AlyDS44 belongs to the polysaccharide lyase family 7. The main breakdown products of the enzyme on alginate were disaccharides, trisaccharides, and tetrasaccharides, which demonstrated that this enzyme acted as an endo-type alginate lyase. AlyDS44 is a novel enzyme, with the potential for efficient production of alginate oligosaccharides with low degrees of polymerization.


Assuntos
Polissacarídeo-Liases/química , Alga Marinha , Streptomyces , Animais , Organismos Aquáticos , Estabilidade Enzimática , Humanos , Concentração de Íons de Hidrogênio , Polissacarídeos Bacterianos/química , Especificidade por Substrato , Temperatura
17.
Proc Natl Acad Sci U S A ; 115(12): 3006-3011, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507215

RESUMO

Most proteins comprise two or more domains from a limited suite of protein families. These domains are often rearranged in various combinations through gene fusion events to evolve new protein functions, including the acquisition of protein allostery through the incorporation of regulatory domains. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of aromatic amino acid biosynthesis and displays a diverse range of allosteric mechanisms. DAH7PSs adopt a common architecture with a shared (ß/α)8 catalytic domain which can be attached to an ACT-like or a chorismate mutase regulatory domain that operates via distinct mechanisms. These respective domains confer allosteric regulation by controlling DAH7PS function in response to ligand Tyr or prephenate. Starting with contemporary DAH7PS proteins, two protein chimeras were created, with interchanged regulatory domains. Both engineered proteins were catalytically active and delivered new functional allostery with switched ligand specificity and allosteric mechanisms delivered by their nonhomologous regulatory domains. This interchangeability of protein domains represents an efficient method not only to engineer allostery in multidomain proteins but to create a new bifunctional enzyme.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Thermotoga maritima/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Regulação Alostérica , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Domínios Proteicos , Thermotoga maritima/genética
18.
World J Microbiol Biotechnol ; 37(5): 83, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33855634

RESUMO

A novel chitosanase gene, designated as PbCsn8, was cloned from Paenibacillus barengoltzii. It shared the highest identity of 73% with the glycoside hydrolase (GH) family 8 chitosanase from Bacillus thuringiensis JAM-GG01. The gene was heterologously expressed in Bacillus subtilis as an extracellular protein, and the highest chitosanase yield of 1, 108 U/mL was obtained by high-cell density fermentation in a 5-L fermentor. The recombinant chitosanase (PbCsn8) was purified to homogeneity and biochemically characterized. PbCsn8 was most active at pH 5.5 and 70 °C, respectively. It was stable in a wide pH range of 5.0-11.0 and up to 55 °C. PbCsn8 was a bifunctional enzyme, exhibiting both chitosanase and glucanase activities, with the highest specificity towards chitosan (360 U/mg), followed by barley ß-glucan (72 U/mg) and lichenan (13 U/mg). It hydrolyzed chitosan to release mainly chitooligosaccharides (COSs) with degree of polymerization (DP) 2-3, while hydrolyzed barley ß-glucan to yield mainly glucooligosaccharides with DP > 5. PbCsn8 was further applied in COS production, and the highest COS yield of 79.3% (w/w) was obtained. This is the first report on a GH family 8 chitosanase from P. barengoltzii. The high yield and remarkable hydrolysis properties may make PbCsn8 a good candidate in industrial application.


Assuntos
Quitina/análogos & derivados , Glicosídeo Hidrolases/metabolismo , Paenibacillus/enzimologia , Paenibacillus/genética , Paenibacillus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quitina/biossíntese , Quitosana/metabolismo , Clonagem Molecular , Glucanos/metabolismo , Glicosídeo Hidrolases/genética , Hidrólise , Microbiologia Industrial , Oligossacarídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , beta-Glucanas/metabolismo
19.
J Biol Chem ; 294(13): 4828-4842, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30670586

RESUMO

Because of their special organization, multifunctional enzymes play crucial roles in improving the performance of metabolic pathways. For example, the bacterium Prevotella nigrescens contains a distinctive bifunctional protein comprising a 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS), catalyzing the first reaction of the biosynthetic pathway of aromatic amino acids, and a chorismate mutase (CM), functioning at a branch of this pathway leading to the synthesis of tyrosine and phenylalanine. In this study, we characterized this P. nigrescens enzyme and found that its two catalytic activities exhibit substantial hetero-interdependence and that the separation of its two distinct catalytic domains results in a dramatic loss of both DAH7PS and CM activities. The protein displayed a unique dimeric assembly, with dimerization solely via the CM domain. Small angle X-ray scattering (SAXS)-based structural analysis of this protein indicated a DAH7PS-CM hetero-interaction between the DAH7PS and CM domains, unlike the homo-association between DAH7PS domains normally observed for other DAH7PS proteins. This hetero-interaction provides a structural basis for the functional interdependence between the two domains observed here. Moreover, we observed that DAH7PS is allosterically inhibited by prephenate, the product of the CM-catalyzed reaction. This allostery was accompanied by a striking conformational change as observed by SAXS, implying that altering the hetero-domain interaction underpins the allosteric inhibition. We conclude that for this C-terminal CM-linked DAH7PS, catalytic function and allosteric regulation appear to be delivered by a common mechanism, revealing a distinct and efficient evolutionary strategy to utilize the functional advantages of a bifunctional enzyme.


Assuntos
Alquil e Aril Transferases/química , Aminoácidos Aromáticos/biossíntese , Proteínas de Bactérias/química , Prevotella nigrescens/enzimologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Regulação Alostérica , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Prevotella nigrescens/genética , Domínios Proteicos , Espalhamento a Baixo Ângulo , Difração de Raios X
20.
Plant Cell Physiol ; 61(3): 584-595, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834385

RESUMO

Arabidopsis (Arabidopsis thaliana) 12-oxophytodienoic acid reductase isoform 3 (OPR3) is involved in the synthesis of jasmonic acid (JA) by reducing the α,ß-unsaturated double bond of the cyclopentenone moiety in 12-oxophytodienoic acid (12-OPDA). Recent research revealed that JA synthesis is not strictly dependent on the peroxisomal OPR3. The ability of OPR3 to reduce trinitrotoluene suggests that the old yellow enzyme homolog OPR3 has additional functions. Here, we show that OPR3 catalyzes the reduction of a wide spectrum of electrophilic species that share a reactivity toward the major redox buffers glutathione (GSH) and ascorbate (ASC). Furthermore, we show that 12-OPDA reacts with ASC to form an ASC-12-OPDA adduct, but in addition OPR3 has the ability to regenerate ASC from monodehydroascorbate. The presented data characterize OPR3 as a bifunctional enzyme with NADPH-dependent α,ß-ketoalkene double-bond reductase and monodehydroascorbate reductase activities (MDHAR). opr3 mutants showed a slightly less-reduced ASC pool in leaves in line with the MDHAR activity of OPR3 in vitro. These functions link redox homeostasis as mediated by ASC and GSH with OPR3 activity and metabolism of reactive electrophilic species.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Ácidos Graxos Insaturados/metabolismo , NADH NADPH Oxirredutases/metabolismo , NADP/metabolismo , Oxirredutases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ácido Desidroascórbico/análogos & derivados , Regulação da Expressão Gênica de Plantas , Homeostase/fisiologia , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Estrutura Terciária de Proteína , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA