Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Am J Bot ; 109(6): 874-886, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35608083

RESUMO

PREMISE: For vascular epiphytes, secure attachment to their hosts is vital for survival. Yet studies detailing the adhesion mechanism of epiphytes to their substrate are scarce. Examination of the root hair-substrate interface is essential to understand the attachment mechanism of epiphytes to their substrate. This study also investigated how substrate microroughness relates to the root-substrate attachment strength and the underlying mechanism(s). METHODS: Seeds of Anthurium obtusum were germinated, and seedlings were transferred onto substrates made of epoxy resin with different defined roughness. After 2 months of growth, roots that adhered to the resin tiles were subjected to anchorage tests, and root hair morphology at different roughness levels was analyzed using light and cryo scanning electron microscopy. RESULTS: The highest maximum peeling force was recorded on the smooth surface (glass replica, 0 µm). Maximum peeling force was significantly higher on fine roughness (0, 0.3, 12 µm) than on coarse (162 µm). Root hair morphology varied according to the roughness of the substrate. On smoother surfaces, root hairs were flattened to achieve large surface contact with the substrate. Attachment was mainly by adhesion with the presence of a glue-like substance. On coarser surfaces, root hairs were tubular and conformed to spaces between the asperities on the surface. Attachment was mainly via mechanical interlocking of root hairs and substrate. CONCLUSIONS: This study demonstrates for the first time that the attachment mechanism of epiphytes varies depending on substrate microtopography, which is important for understanding epiphyte attachment on natural substrates varying in roughness.


Assuntos
Araceae , Plântula , Microscopia Eletrônica de Varredura
2.
J Exp Biol ; 224(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34581416

RESUMO

Many insects can climb smooth surfaces using hairy adhesive pads on their legs, mediated by tarsal fluid secretions. It was previously shown that a terrestrial beetle can even adhere and walk underwater. The naturally hydrophobic hairs trap an air bubble around the pads, allowing the hairs to make contact with the substrate as in air. However, it remained unclear to what extent such an air bubble is necessary for underwater adhesion. To investigate the role of the bubble, we measured the adhesive forces in individual legs of live but constrained ladybird beetles underwater in the presence and absence of a trapped bubble and compared these with its adhesion in air. Our experiments revealed that on a hydrophobic substrate, even without a bubble, the pads show adhesion comparable to that in air. On a hydrophilic substrate, underwater adhesion is significantly reduced, with or without a trapped bubble. We modelled the adhesion of a hairy pad using capillary forces. Coherent with our experiments, the model demonstrates that the wetting properties of the tarsal fluid alone can determine the ladybird beetles' adhesion to smooth surfaces in both air and underwater conditions and that an air bubble is not a prerequisite for their underwater adhesion. This study highlights how such a mediating fluid can serve as a potential strategy to achieve underwater adhesion via capillary forces, which could inspire artificial adhesives for underwater applications.


Assuntos
Adesivos , Besouros , Adesividade , Animais , Interações Hidrofóbicas e Hidrofílicas , Insetos , Molhabilidade
3.
Naturwissenschaften ; 107(4): 31, 2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32686051

RESUMO

It has been suggested that physical interactions between biological and environmental surfaces may constrain ecological niche spaces. However, the mechanistic understanding of niche formation is frequently limited by the lack of information on the function and variation of these interactions. Here, we hypothesised that two closely related species of orb-web spiders have evolved different adhesion performance of web attachment (i.e. piriform silk) facilitating the occupation of contrasting microhabitats: plants versus rocks. Contrary to our prediction, we found that piriform silk adhesion was equally affected by surface chemistry in both species, with maximal adhesion on surfaces with high surface polarity and an average adhesion loss of 70-75% on low polar surfaces. Spiders did not respond to adhesion losses by increasing the anchor size, despite the repeated failure to attach their web to low polar surfaces. In a natural setting, poor adhesion on low polar surfaces may be mitigated by behavioural means, like the preference to place anchors on corrugated surface features such as leaf edges, or the spinning of multiple anchorages and formation of a bundled anchor line. Thus, microhabitat choice for web-building spiders may be governed by structural properties rather than surface chemistry. These results suggest that the repeatedly demonstrated effects of surface chemistry on bio-adhesion may be ecologically less important than assumed and that the role of behaviour in the evolution of bio-adhesion performance has been underestimated.


Assuntos
Ecossistema , Seda/química , Seda/metabolismo , Aranhas/química , Animais , Evolução Biológica , Especificidade da Espécie , Aranhas/classificação , Aranhas/fisiologia , Propriedades de Superfície
4.
Adv Funct Mater ; 25(36): 5840-5847, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-28670243

RESUMO

Mussel adhesion to mineral surfaces is widely attributed to 3,4-dihydroxyphenylalanine (Dopa) functionalities in the mussel foot proteins (mfps). Several mfps, however, show a broad range (30-100%) of Tyrosine (Tyr) to Dopa conversion suggesting that Dopa is not the only desirable outcome for adhesion. Here, we used a partial recombinant construct of mussel foot protein-1 (rmfp-1) and short decapeptide dimers with and without Dopa and assessed both their cohesive and adhesive properties on mica using a surface forces apparatus (SFA). Our results demonstrate that at low pH, both the unmodified and Dopa-containing rmfp-1s show similar energies for adhesion to mica and self-self interaction. Cohesion between two Dopa-containing rmfp-1 surfaces can be doubled by Fe3+ chelation, but remains unchanged with unmodified rmfp-1. At the same low pH, the Dopa modified short decapeptide dimer did not show any change in cohesive interactions even with Fe3+. Our results suggest that the most probable intermolecular interactions are those arising from electrostatic (i.e., cation-π) and hydrophobic interactions. We also show that Dopa in a peptide sequence does not by itself mediate Fe3+ bridging interactions between peptide films: peptide length is a crucial enabling factor.

5.
Materials (Basel) ; 17(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124335

RESUMO

Bioabsorbable materials have a wide range of applications, such as scaffolds for regenerative medicine and cell transplantation therapy and carriers for drug delivery systems. Therefore, although many researchers are conducting their research and development, few of them have been used in clinical practice. In addition, existing bioabsorbable materials cannot bind to the body's tissues. If bioabsorbable materials with an adhesive ability to biological tissues can be made, they can ensure the mixture remains fixed to the affected area when mixed with artificial bone or other materials. In addition, if the filling material in the bone defect is soft and uncured, resorption is rapid, which is advantageous for bone regeneration. In this paper, the development and process of a new bioabsorbable material "Phosphorylated pullulan" and its capability as a bone replacement material were demonstrated. Phosphorylated pullulan, which was developed based on the tooth adhesion theory, is the only bioabsorbable material able to adhere to bone and teeth. The phosphorylated pullulan and ß-TCP mixture is a non-hardening putty. It is useful as a new resorbable bone replacement material with an adhesive ability for bone defects around implants.

6.
Biomater Adv ; 152: 213481, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37307771

RESUMO

Polysaccharides are naturally occurring polymers with exceptional biodegradable and biocompatible qualities that are used as hemostatic agents. In this study, photoinduced CC bond network and dynamic bond network binding was used to give polysaccharide-based hydrogels the requisite mechanical strength and tissue adhesion. The designed hydrogel was composed of modified carboxymethyl chitosan (CMCS-MA) and oxidized dextran (OD), and introduced hydrogen bond network through tannic acid (TA) doping. Halloysite nanotubes (HNTs) were also added, and the effects of various doping amount on the performance of the hydrogel were examined, in order to enhance the hemostatic property of hydrogel. Experiments on vitro degradation and swelling demonstrated the strong structural stability of hydrogels. The hydrogel has improved tissue adhesion strength, with a maximum adhesion strength of 157.9 kPa, and demonstrated improved compressive strength, with a maximum compressive strength of 80.9 kPa. Meanwhile, the hydrogel had a low hemolysis rate and had no inhibition on cell proliferation. The created hydrogel exhibited a significant aggregation effect on platelets and a reduced blood clotting index (BCI). Importantly, the hydrogel can quickly adhere to seal the wound and has good hemostatic effect in vivo. Our work successfully prepared a polysaccharide-based bio-adhesive hydrogel dressing with stable structure, appropriate mechanical strength, and good hemostatic properties.


Assuntos
Hemostáticos , Compostos Inorgânicos , Humanos , Adesivos/farmacologia , Aderências Teciduais , Hidrogéis/farmacologia , Hemostasia , Hemostáticos/farmacologia , Hemostáticos/química , Polissacarídeos/farmacologia , Compostos Inorgânicos/farmacologia
7.
Asian J Pharm Sci ; 18(2): 100795, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37008734

RESUMO

The weak adhesion between nanocarriers and the intestinal mucosa was one of the main reasons caused the failure in oral delivery. Inspired by the "antiskid tires" with complex chiral patterns, mesoporous silica nanoparticles AT-R@CMSN exhibiting geometrical chiral structure were designed to improve the surface/interface roughness in nanoscale, and employed as the hosting system for insoluble drugs nimesulide (NMS) and ibuprofen (IBU). Once performing the delivery tasks, AT-R@CMSN with rigid skeleton protected the loaded drug and reduced the irritation of drug on gastrointestinal tract (GIT), while their porous structure deprived drug crystal and improved drug release. More importantly, AT-R@CMSN functioned as "antiskid tire" to produce higher friction on intestinal mucosa and substantively influenced multiple biological processes, including "contact", "adhesion", "retention", "permeation" and "uptake", compared to the achiral S@MSN, thereby improving the oral adsorption effectiveness of such drug delivery systems. By engineering AT-R@CMSN to overcome the stability, solubility and permeability bottlenecks of drugs, orally administered NMS or IBU loaded AT-R@CMSN could achieve higher relative bioavailability (705.95% and 444.42%, respectively) and stronger anti-inflammation effect. In addition, AT-R@CMSN displayed favorable biocompatibility and biodegradability. Undoubtedly, the present finding helped to understand the oral adsorption process of nanocarriers, and provided novel insights into the rational design of nanocarriers.

8.
Mar Biotechnol (NY) ; 24(6): 1148-1157, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36319917

RESUMO

Barnacle cement proteins are multi-protein complexes composed of a series of functionally related synergistic proteins that enable barnacles to adhere strongly and consistently to various underwater substrates. There is no post-translational modification of barnacle cement proteins, which provides a possibility for the synthesis of similar adhesive materials. Balcp-20 k has four repetitive sequences with multiple conserved cysteine groups. Whether these repeats are separate functional units and the role of cysteine in adhesion is not clear. In order to investigate the adhesion properties of Balcp-20 k, we amplified and expressed R4 (DHLACNAKHPCWHKHCDCFC)4, which is a quadruple repeat of Balcp-20 k's fourth repetitive sequence, and S0R4 (DHLASNAKHPSWHKHSDSFS)4, all cysteine of R4 replaced by serine. Analysis showed that R4 had a similar structure to Balcp-20 k, and the amyloid fibrils structure formed by self-assembly of R4 played an important role in improving the adhesion strength. The absence of disulfide bonds in S0R4 prevents self-assembly, and the failure of self-assembly after the reduction of disulfide bonds of R4 by DTT indicates that disulfide bonds play an important role in self-assembly. With adhesion and coating analysis, it was found that R4 has good adhesion on different materials surfaces, which is better than Balcp-20 k, while S0R4 has weak adhesion, which is only better than BSA.


Assuntos
Thoracica , Animais , Thoracica/genética , Cisteína/metabolismo , Proteínas/química , Sequências Repetitivas de Ácido Nucleico , Dissulfetos/metabolismo
9.
Nanomaterials (Basel) ; 12(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35808037

RESUMO

Digital microfluidics (DMF) is a versatile platform for conducting a variety of biological and chemical assays. The most commonly used set-up for the actuation of microliter droplets is electrowetting on dielectric (EWOD), where the liquid is moved by an electrostatic force on a dielectric layer. Superhydrophobic materials are promising materials for dielectric layers, especially since the minimum contact between droplet and surface is key for low adhesion of biomolecules, as it causes droplet pinning and cross contamination. However, superhydrophobic surfaces show limitations, such as full wetting transition between Cassie and Wenzel under applied voltage, expensive and complex fabrication and difficult integration into already existing devices. Here we present Fluoropor, a superhydrophobic fluorinated polymer foam with pores on the micro/nanoscale as a dielectric layer in DMF. Fluoropor shows stable wetting properties with no significant changes in the wetting behavior, or full wetting transition, until potentials of 400 V. Furthermore, Fluoropor shows low attachment of biomolecules to the surface upon droplet movement. Due to its simple fabrication process, its resistance to adhesion of biomolecules and the fact it is capable of being integrated and exchanged as thin films into commercial DMF devices, Fluoropor is a promising material for wide application in DMF.

10.
Bioact Mater ; 16: 388-402, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35415284

RESUMO

Bio-adhesive polysaccharide-based hydrogels have attracted much attention in first-aid hemostasis and wound healing for excellent biocompatibility, antibacterial property and pro-healing bioactivity. Yet, the inadequate mechanical properties and bio-adhesion limit their applications. Herein, based on dynamic covalent bonds, photo-triggered covalent bonds and hydrogen bonds, multifunctional bio-adhesive hydrogels comprising modified carboxymethyl chitosan, modified sodium alginate and tannic acid are developed. Multi-crosslinking strategy endows hydrogels with improved strength and flexibility simultaneously. Owing to cohesion enhancement strategy and self-healing ability, considerable bio-adhesion is presented by the hydrogel with a maximal adhesion strength of 162.6 kPa, 12.3-fold that of commercial fibrin glue. Based on bio-adhesion and pro-coagulant activity (e.g., the stimulative aggregation and adhesion of erythrocytes and platelets), the hydrogel reveals superior hemostatic performance in rabbit liver injury model with blood loss of 0.32 g, only 54.2% of that in fibrin glue. The healing efficiency of hydrogel for infected wounds is markedly better than commercial EGF Gel and Ag+ Gel due to the enhanced antibacterial and antioxidant properties. Through the multi-crosslinking strategy, the hydrogels show enhanced mechanical properties, fabulous bio-adhesion, superior hemostatic performance and promoting healing ability, thereby have an appealing application value for the first-aid hemostasis and infected wound healing.

11.
Regen Biomater ; 8(1): rbaa056, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33732501

RESUMO

Endoscopic submucosal dissection (ESD) is the standard treatment for early-stage gastric cancer, but the large post-operative ulcers caused by ESD often lead to serious side effects. Post-ESD mucosal repair materials provide a new option for the treatment of post-ESD ulcers. In this study, we developed a polyurethane/small intestinal submucosa (PU/SIS) hydrogel and investigated its efficacy for accelerating ESD-induced ulcer healing in a canine model. PU/SIS hydrogel possessed great biocompatibility and distinctive pH-sensitive swelling properties and protected GES-1 cells from acid attack through forming a dense film in acidic conditions in vitro. Besides, PU/SIS gels present a strong bio-adhesion to gastric tissues under acidic conditions, thus ensuring the retention time of PU/SIS gels in vivo. In a canine model, PU/SIS hydrogel was easily delivered via endoscopy and adhered to the ulcer sites. PU/SIS hydrogel accelerated gastric ulcer healing at an early stage with more epithelium regeneration and slight inflammation. Our findings reveal PU/SIS hydrogel is a promising and attractive candidate for ESD-induced ulcer repair.

12.
Open Biol ; 10(6): 200019, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32543352

RESUMO

Limpets (Patella vulgata L.) are renowned for their powerful attachments to rocks on wave-swept seashores. Unlike adult barnacles and mussels, limpets do not adhere permanently; instead, they repeatedly transition between long-term adhesion and locomotive adhesion depending on the tide. Recent studies on the adhesive secretions (bio-adhesives) of marine invertebrates have expanded our knowledge on the composition and function of temporary and permanent bio-adhesives. In comparison, our understanding of the limpets' transitory adhesion remains limited. In this study, we demonstrate that suction is not the primary attachment mechanism in P. vulgata; rather, they secrete specialized pedal mucus for glue-like adhesion. Through combined transcriptomics and proteomics, we identified 171 protein sequences from the pedal mucus. Several of these proteins contain conserved domains found in temporary bio-adhesives from sea stars, sea urchins, marine flatworms and sea anemones. Many of these proteins share homology with fibrous gel-forming glycoproteins, including fibrillin, hemolectin and SCO-spondin. Moreover, proteins with potential protein- and glycan-degrading domains could have an immune defence role or assist degrading adhesive mucus to facilitate the transition from stationary to locomotive states. We also discovered glycosylation patterns unique to the pedal mucus, indicating that specific sugars may be involved in transitory adhesion. Our findings elucidate the mechanisms underlying P. vulgata adhesion and provide opportunities for future studies on bio-adhesives that form strong attachments and resist degradation until necessary for locomotion.


Assuntos
Gastrópodes/fisiologia , Perfilação da Expressão Gênica/métodos , Muco/metabolismo , Proteômica/métodos , Animais , Comportamento Animal , Redes Reguladoras de Genes , Glicosilação , Locomoção , Espectrometria de Massas , Domínios Proteicos , Análise de Sequência de RNA
13.
Int J Nanomedicine ; 15: 601-618, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32099354

RESUMO

PURPOSE: The purpose of this research was to study the basic physicochemical and biological properties regarding the application of L-tartaric acid modified chiral mesoporous silica nanoparticle (CMSN) as a drug carrier, and to explore the structure-property relationship of silica-based materials. METHODS: CMSN with functions of carboxyl modification and chirality was successfully synthesized through co-condensation method, and the basic characteristics of CMSN, including morphology, structure, wettability, degradation, bio-adhesion and retention ability in gastrointestinal tract (GI tract) were estimated by comparing with non-functionalized mesoporous silica nanoparticles (MSN). Meanwhile, the biocompatibility and toxicity of L-tartaric modification were systematically evaluated both in vitro and in vivo through MTT cell viability assay, cell cycle and apoptosis assay, hemolysis assay, histopathology examination, hematology analysis, and clinical chemistry examination. RESULTS: CMSN and MSN were spherical nanoparticles with uniform mesoporous structure. CMSN with smaller pore size and carboxyl functional groups exhibited better wettability. Besides, CMSN and MSN could dissolve thoroughly in simulated physiological fluids during a degradation period of 1-12 weeks. Interestingly, the in vitro and in vivo behaviors of carriers, including degradation, bio-adhesion and retention ability in the GI tract were closely related to wettability. As expected, CMSN had faster degradation rate, higher mucosa-adhesion ability, and longer retention time. Particularly, CMSN improved the bio-adhesion property in both gastric mucosa and small intestinal mucosa, and prolonged the GI tract retention time to at least 12 h, which meant higher probability for absorption. The biocompatibility and toxicity examination indicated that CMSN was a kind of biocompatible bio-material with good blood compatibility and negligible toxicity, which is required for further applications in biological fields. CONCLUSION: CMSN with functions of carboxyl modification and chirality had superiority in terms of both physicochemical and biological properties. The in vitro and in vivo behaviors of carriers, including degradation, bio-adhesion, and retention were closely related to wettability.


Assuntos
Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Nanopartículas/química , Tartaratos/química , Animais , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis , Linhagem Celular , Sobrevivência Celular , Dicroísmo Circular , Suco Gástrico/efeitos dos fármacos , Suco Gástrico/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Teste de Materiais , Microscopia Eletrônica de Transmissão , Nanopartículas/metabolismo , Coelhos , Ratos Sprague-Dawley , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Molhabilidade
14.
Mar Environ Res ; 160: 105012, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907731

RESUMO

Seagrasses are marine flowering plants that developed several adaptive traits for living in submerged waters. Among this group, Posidonia oceanica (L.) Delile is the dominant species of the Mediterranean Sea, forming persistent meadows that provide valuable ecosystem services to human communities. P. oceanica seedlings can anchor to rocky substrates through adhesive root hairs. Here we investigate, for the first time, the bioadhesion process in seagrasses. Seedlings were grown on substrates provided with different roughness in order to identify mechanisms involved in the adhesion process. Root anchorage strength was measured through a peel test and hair morphology at different micro-roughness was analysed by electron and fluorescence microscopy. Maximum anchorage strength was recorded at roughness levels between 3 and 26 µm, while on finer (0.3) and coarser (52, 162 µm) roughness attachment was weaker. No attachment was obtained on smooth surfaces. Accordingly, root hair tip morphology strongly responded to the substrate. Morphological adaptation of the root hairs to surface topography and mechanical interlocking into the micro-roughness of the substrate appear the main mechanisms responsible for bioadhesion in the system under study. Substrate roughness at the scale of microns and tens of microns is pivotal for P. oceanica seedling attachment to take place. These findings contribute to identification of features of optimal microsite for P. oceanica seedling settlement and to the development of novel approaches to seagrass restoration that take advantage of species' key life history traits.


Assuntos
Alismatales , Plântula , Adesivos , Alismatales/crescimento & desenvolvimento , Ecossistema , Mar Mediterrâneo
15.
Evodevo ; 11: 5, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158530

RESUMO

Macrostomum lignano is a free-living flatworm that is emerging as an attractive experimental animal for research on a broad range of biological questions. One feature setting it apart from other flatworms is the successful establishment of transgenesis methods, facilitated by a steady supply of eggs in the form of single-cell zygotes that can be readily manipulated. This, in combination with the transparency of the animal and its small size, creates practical advantages for imaging and fluorescence-activated cell sorting in studies related to stem cell biology and regeneration. M. lignano can regenerate most of its body parts, including the germline, thanks to the neoblasts, which represent the flatworm stem cell system. Interestingly, neoblasts seem to have a high capacity of cellular maintenance, as M. lignano can survive up to 210 Gy of γ-irradiation, and partially offset the negative consequence of ageing. As a non-self-fertilizing simultaneous hermaphrodite that reproduces in a sexual manner, M. lignano is also used to study sexual selection and other evolutionary aspects of sexual reproduction. Work over the past several years has led to the development of molecular resources and tools, including high-quality genome and transcriptome assemblies, transcriptional profiling of the germline and somatic neoblasts, gene knockdown, and in situ hybridization. The increasingly detailed characterization of this animal has also resulted in novel research questions, such as bio-adhesion based on its adhesion-release glands and genome evolution due to its recent whole-genome duplication.

16.
J Oleo Sci ; 68(10): 967-975, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31511467

RESUMO

Titanium dioxide (TiO2) has been proven to be an excellent system for wettability patterning purposes because of its super hydrophilic ability and its oxidative/reductive degradation of substances when exposed to UV radiation. TiO2 substrates upon which was deposited a self-assembled monolayer (SAM) of n-octadecyltrimethoxysilane (ODS) shifts the surface to become super hydrophobic, which when subjected to UV irradiation causes the ODS compound to be degraded with the substrate turning back to be super hydrophilic. Such events allow wettability patterns to be easily created. The objective of this study was to reduce the time required to construct a wettability pattern. For this purpose, highly photoactive TiO2 nanoparticles were coated onto a titanium plate whose surface had been previously oxidized at high temperatures in an electric furnace. The subsequent TiO2/Ti system was microwaved and simultaneously irradiated with ultraviolet light (UV) to further accelerate its photocatalytic activity. Using a set of photomasks and both UV and microwave irradiation, the generation of a pattern was achieved 15 times faster (2 min versus 30 min) compared to an earlier result that used only UV radiation.


Assuntos
Micro-Ondas , Fármacos Fotossensibilizantes/química , Titânio/química , Raios Ultravioleta , Molhabilidade , Interações Hidrofóbicas e Hidrofílicas , Oxirredução
17.
J R Soc Interface ; 15(140)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29514985

RESUMO

Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current antifouling approaches entails the development of novel antifouling strategies with least environmental impact. Inspired by the superior antifouling performance of the leaves of mangrove tree Sonneratia apetala, here we propose to combat biofouling by using a surface with microscopic ridge-like morphology. Settlement tests with tubeworm larvae on polymeric replicas of S. apetala leaves confirm that the microscopic ridge-like surface morphology can effectively prevent biofouling. A contact mechanics-based model is then established to quantify the dependence of tubeworm settlement on the structural features of the microscopic ridge-like morphology, giving rise to theoretical guidelines to optimize the morphology for better antifouling performance. Under the direction of the obtained guidelines, a synthetic surface with microscopic ridge-like morphology is developed, exhibiting antifouling performance comparable to that of the S. apetala replica. Our results not only reveal the underlying mechanism accounting for the superior antifouling property of the S. apetala leaves, but also provide applicable guidance for the development of synthetic antifouling surfaces.


Assuntos
Incrustação Biológica/prevenção & controle , Materiais Biomiméticos/química , Myrtales , Folhas de Planta , Polímeros/química , Propriedades de Superfície
18.
Materials (Basel) ; 11(5)2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789488

RESUMO

Since ancient times humans observed animal and plants features and tried to adapt them according to their own needs. Biomimetics represents the foundation of many inventions from various fields: From transportation devices (helicopter, airplane, submarine) and flying techniques, to sports' wear industry (swimming suits, scuba diving gear, Velcro closure system), bullet proof vests made from Kevlar etc. It is true that nature provides numerous noteworthy models (shark skin, spider web, lotus leaves), referring both to the plant and animal kingdom. This review paper summarizes a few of "nature's interventions" in human evolution, regarding understanding of surface wettability and development of innovative special surfaces. Empirical models are described in order to reveal the science behind special wettable surfaces (superhydrophobic /superhydrophilic). Materials and methods used in order to artificially obtain special wettable surfaces are described in correlation with plants' and animals' unique features. Emphasis is placed on joining superhydrophobic and superhydrophilic surfaces, with important applications in cell culturing, microorganism isolation/separation and molecule screening techniques. Bio-inspired wettability is presented as a constitutive part of traditional devices/systems, intended to improve their characteristics and extend performances.

19.
Materials (Basel) ; 11(7)2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932127

RESUMO

From ship hulls to bandages, biological fouling is a ubiquitous problem that impacts a wide range of industries and requires complex engineered solutions. Eliciting materials to have antibacterial or antifouling properties describes two main approaches to delay biofouling by killing or repelling bacteria, respectively. In this review article, we discuss how electrospun nanofiber mats are blank canvases that can be tailored to have controlled interactions with biologics, which would improve the design of intelligent conformal coatings or freestanding meshes that deliver targeted antimicrobials or cause bacteria to slip off surfaces. Firstly, we will briefly discuss the established and emerging technologies for addressing biofouling through antibacterial and antifouling surface engineering, and then highlight the recent advances in incorporating these strategies into electrospun nanofibers. These strategies highlight the potential for engineering electrospun nanofibers to solicit specific microbial responses for human health and environmental applications.

20.
Int J Pharm ; 510(2): 508-15, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-26827919

RESUMO

Nanocapsules and nanoparticles play an essential role in the delivery of pharmaceutical agents in modern era, since they can be delivered in specific tissues and cells. Natural polymers, such as cellulose acetate, are becoming very important due to their availability, biocompatibility, absence of toxicity and biodegradability. In parallel, essential oils are having continuous growth in biomedical applications due to the inherent active compounds that they contain. A characteristic example is lemongrass oil that has exceptional antimicrobial properties. In this work, nanocapsules of cellulose acetate with lemongrass oil were developed with the solvent/anti-solvent method with resulting diameter tailored between 95 and 185nm. Various physico-chemical and surface analysis techniques were employed to investigate the formation of the nanocapsules. These all-natural nanocapsules found to well bioadhere to mucous membranes and to have very good antimicrobial properties at little concentrations against Escherichia coli and Staphylococcus aureus.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Celulose/análogos & derivados , Nanocápsulas/química , Óleos Voláteis/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Terpenos/química , Terpenos/farmacologia , Celulose/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Óleos Voláteis/farmacologia , Solventes/química , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA