Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2322944121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748586

RESUMO

While aqueous zinc-ion batteries exhibit great potential, their performance is impeded by zinc dendrites. Existing literature has proposed the use of hydrogel electrolytes to ameliorate this issue. Nevertheless, the mechanical attributes of hydrogel electrolytes, particularly their modulus, are suboptimal, primarily ascribed to the substantial water content. This drawback would severely restrict the dendrite-inhibiting efficacy, especially under large mass loadings of active materials. Inspired by the structural characteristics of wood, this study endeavors to fabricate the anisotropic carboxymethyl cellulose hydrogel electrolyte through directional freezing, salting-out effect, and compression reinforcement, aiming to maximize the modulus along the direction perpendicular to the electrode surface. The heightened modulus concurrently serves to suppress the vertical deposition of the intermediate product at the cathode. Meanwhile, the oriented channels with low tortuosity enabled by the anisotropic structure are beneficial to the ionic transport between the anode and cathode. Comparative analysis with an isotropic hydrogel sample reveals a marked enhancement in both modulus and ionic conductivity in the anisotropic hydrogel. This enhancement contributes to significantly improved zinc stripping/plating reversibility and mitigated electrochemical polarization. Additionally, a durable quasi-solid-state Zn//MnO2 battery with noteworthy volumetric energy density is realized. This study offers unique perspectives for designing hydrogel electrolytes and augmenting battery performance.

2.
Biotechnol Bioeng ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300684

RESUMO

The development of bone implants through bioinspired immobilization of growth factors remains a key issue in the generation of biological interfaces, especially in enhancing osteodifferentiation ability. In this study, we developed a strategy for surface functionalization of poly(lactide-glycolide) (PLGA) and hydroxyapatite (HA) composite substrates through site-specific conjugation of bone morphogenetic protein 2 containing 3,4-hydroxyphenalyalanine (DOPA-BMP2) mediated by tyrosinase and sortase A (SrtA). Firstly, the growth factor BMP2-LPETG containing LPETG motif was successfully expressed in Escherichia coli through recombinant DNA technology. The excellent binding affinity of binding growth factor (DOPA-BMP2) was achieved by converting the tyrosine residue (Y) of YKYKY-GGG peptide into DOPA (X) by tyrosinase, which bound to the substrates. Then its GGG motif was specifically bound to the end of BMP2-LPETG mediated by SrtA. Therefore, the generated bioactive DOPA-BMP2/PLGA/HA substrates significantly promoted the osteogenic differentiation of MC3T3-E1 cells. Thanks to this microbial-assisted engineering approach, our work presents a facile and highly site-specific strategy to engineer biomimetic materials for orthopedics and dentistry by effectively delivering growth factors, peptides, and other biomacromolecules.

3.
Arterioscler Thromb Vasc Biol ; 43(6): 797-812, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078288

RESUMO

Medical devices form a critical component of health care systems for treating and maintaining patient health. However, devices exposed to blood are prone to blood clotting (thrombosis) and bleeding complications leading to device occlusion, device failure, embolism and stroke, and increased morbidity and mortality. Over the years, developments in innovative material design strategies have been made to help reduce the occurrence of thrombotic events on medical devices, but complications persist. Here, we review material and surface coating technologies that have taken bioinspiration from the endothelium to reduce medical device thrombosis, either by mimicking aspects of the glycocalyx to prevent adhesion of proteins and cells to the material surface or mimicking the bioactive function of the endothelium through immobilized or released bioactive molecules to actively inhibit thrombosis. We highlight newer strategies that take inspiration from multiple aspects of the endothelium or are stimuli responsive, only releasing antithrombotic biomolecules when thrombosis is triggered. Emerging areas of innovation target inflammation to decrease thrombosis without increasing bleeding, and interesting results are coming from underexplored aspects of material properties, such as material interfacial mobility and stiffness, which show that increased mobility and decreased stiffness are less thrombogenic. These exciting new strategies require further research and development before clinical translation, including consideration of longevity, cost, and sterilization, but show capacity for the development of more sophisticated antithrombotic medical device materials.


Assuntos
Fibrinolíticos , Trombose , Humanos , Fibrinolíticos/efeitos adversos , Coagulação Sanguínea , Trombose/etiologia , Trombose/prevenção & controle
4.
Biofouling ; : 1-23, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39422280

RESUMO

Marine fouling is a global problem that harms the ocean's ecosystem and the marine industrial sector. Traditional antifouling methods use harmful agents that damage the environment. As a result, recent research has focused on developing environmentally friendly, long-lasting, and sustainable antifouling solutions. Scientists have turned to nature for inspiration, particularly the water-repellent properties found in the microstructures of plants, insects and animals like the lotus leaf, butterfly, and shark. This review summarizes the current trends in developing superhydrophobic materials and fabrication techniques for bionic antifouling strategies. These strategies mimic the surface microstructures of various biological species, including the lotus leaf, coral tentacles, and the skins of sharks, whales, and dolphins. The review also discusses the technological applications of these biomimetic materials and the challenges associated with implementing them in the marine sector. Overall, the goal is to harness the superhydrophobicity of natural surfaces to create effective antifouling solutions.

5.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542235

RESUMO

Currently, several types of inhalable liposomes have been developed. Among them, liposomal pressurized metered-dose inhalers (pMDIs) have gained much attention due to their cost-effectiveness, patient compliance, and accurate dosages. However, the clinical application of liposomal pMDIs has been hindered by the low stability, i.e., the tendency of the aggregation of the liposome lipid bilayer in hydrophobic propellant medium and brittleness under high mechanical forces. Biomineralization is an evolutionary mechanism that organisms use to resist harsh external environments in nature, providing mechanical support and protection effects. Inspired by such a concept, this paper proposes a shell stabilization strategy (SSS) to solve the problem of the low stability of liposomal pMDIs. Depending on the shell material used, the SSS can be classified into biomineralization (biomineralized using calcium, silicon, manganese, titanium, gadolinium, etc.) biomineralization-like (composite with protein), and layer-by-layer (LbL) assembly (multiple shells structured with diverse materials). This work evaluated the potential of this strategy by reviewing studies on the formation of shells deposited on liposomes or similar structures. It also covered useful synthesis strategies and active molecules/functional groups for modification. We aimed to put forward new insights to promote the stability of liposomal pMDIs and shed some light on the clinical translation of relevant products.


Assuntos
Biomineralização , Lipossomos , Humanos , Inaladores Dosimetrados , Administração por Inalação
6.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39201249

RESUMO

The periodontium is a complex hierarchical structure composed of alveolar bone, periodontal ligament, cementum, and gingiva. Periodontitis is an inflammatory disease that damages and destroys the periodontal tissues supporting the tooth. Periodontal therapies aim to regenerate the lost tissues, yet current treatments lack the integration of multiple structural/biochemical instructive cues to induce a coordinated regeneration, which leads to limited clinical outcomes. Hierarchical biomaterial scaffolds offer the opportunity to recreate the organization and architecture of the periodontium with distinct compartments, providing structural biomimicry that facilitates periodontal regeneration. Various scaffolds have been fabricated and tested preclinically, showing positive regenerative results. This review provides an overview of the recent research on hierarchical scaffolds for periodontal tissue engineering (TE). First, the hierarchical structure of the periodontium is described, covering the limitations of the current treatments used for periodontal regeneration and presenting alternative therapeutic strategies, including scaffolds and biochemical factors. Recent research regarding hierarchical scaffolds is highlighted and discussed, in particular, the scaffold composition, fabrication methods, and results from in vitro/in vivo studies are summarized. Finally, current challenges associated with the application of hierarchical scaffolds for periodontal TE are debated and future research directions are proposed.


Assuntos
Materiais Biocompatíveis , Periodonto , Engenharia Tecidual , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Animais , Regeneração , Ligamento Periodontal/citologia , Periodontite/terapia
7.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731897

RESUMO

Inspired by nature's remarkable ability to form intricate minerals, researchers have unlocked transformative strategies for creating next-generation biosensors with exceptional sensitivity, selectivity, and biocompatibility. By mimicking how organisms orchestrate mineral growth, biomimetic and bioinspired materials are significantly impacting biosensor design. Engineered bioinspired materials offer distinct advantages over their natural counterparts, boasting superior tunability, precise controllability, and the ability to integrate specific functionalities for enhanced sensing capabilities. This remarkable versatility enables the construction of various biosensing platforms, including optical sensors, electrochemical sensors, magnetic biosensors, and nucleic acid detection platforms, for diverse applications. Additionally, bioinspired materials facilitate the development of smartphone-assisted biosensing platforms, offering user-friendly and portable diagnostic tools for point-of-care applications. This review comprehensively explores the utilization of naturally occurring and engineered biominerals and materials for diverse biosensing applications. We highlight the fabrication and design strategies that tailor their functionalities to address specific biosensing needs. This in-depth exploration underscores the transformative potential of biominerals and materials in revolutionizing biosensing, paving the way for advancements in healthcare, environmental monitoring, and other critical fields.


Assuntos
Materiais Biomiméticos , Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Materiais Biomiméticos/química , Humanos , Minerais/química , Minerais/análise , Animais , Biomimética/métodos
8.
World J Microbiol Biotechnol ; 40(2): 71, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38225445

RESUMO

Because of the hydrophobic nature of the membrane lipid bilayer, the majority of the hydrophilic solutes require special transportation mechanisms for passing through the cell membrane. Integral membrane transport proteins (MTPs), which belong to the Major Intrinsic Protein Family, facilitate the transport of these solutes across cell membranes. MTPs including aquaporins and carrier proteins are transmembrane proteins spanning across the cell membrane. The easy handling of microorganisms enabled the discovery of a remarkable number of transport proteins specific to different substances. It has been realized that these transporters have very important roles in the survival of microorganisms, their pathogenesis, and antimicrobial resistance. Astonishing features related to the solute specificity of these proteins have led to the acceleration of the research on the discovery of their properties and the development of innovative products in which these unique properties are used or imitated. Studies on microbial MTPs range from the discovery and characterization of a novel transporter protein to the mining and screening of them in a large transporter library for particular functions, from simulations and modeling of specific transporters to the preparation of biomimetic synthetic materials for different purposes such as biosensors or filtration membranes. This review presents recent discoveries on microbial membrane transport proteins and focuses especially on formate nitrite transport proteins and aquaporins, and advances in their biotechnological applications.


Assuntos
Aquaporinas , Proteínas de Membrana Transportadoras , Proteínas de Membrana Transportadoras/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo , Transporte Biológico
9.
Angew Chem Int Ed Engl ; : e202418095, 2024 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-39503436

RESUMO

Electrocatalytic nitrogen (N2) reduction reaction (eNRR) is a promising route for sustainable ammonia (NH3) generation, but the eNRR efficiency is dramatically impeded by the sluggish reaction kinetics. Herein, inspired by the dynamic extension-contraction of sea anemone tentacles in response to environmental changes, we propose a biomimetic elastic Mo single-atom protrusion on vanadium oxide support (pSA Mo/VOH) electrocatalyst featuring a symmetry-breaking Mo site and an elastic Mo-O4 pyramid for efficient eNRR. In-situ spectroscopy and theoretical calculations reveal that the protruding Mo-induced symmetry-breaking structure optimizes the d electron filling of Mo, enhancing the back-donation to the π* antibonding orbital, effectively polarizing the N≡N bond and reducing the barrier from *N2 to *N2H. Notably, the elastic Mo-O4 pyramidal structure of pSA Mo provides a dynamic Mo-O microenvironment during continuous eNRR processes. This optimizes the electronic structure of the Mo sites based on different reaction intermediates, enhancing the adsorption of various N intermediates and maintaining low barriers throughout the six-step hydrogenation process. Consequently, the elastic pSA Mo/VOH exhibits an excellent NH3 yield rate of 50.71 ± 1.12 µg h-1 mg-1 and a Faradaic efficiency of 35.38 ± 1.03%, outperforming most electrocatalysts.

10.
Small ; 19(50): e2302756, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37603007

RESUMO

Cancer vaccines generally are limited by insufficient tumor-specific cellular immunogenicity. Herein, a potent "ABC" ternary membrane-derived vaccine system blended from antigen-presenting mature dendritic cell membranes ("A"), bacterial E. coli cytoplasmic membranes ("B"), and cancer cell membranes ("C") is developed using a block-copolymer micelle-enabled approach. The respective ABC membrane components provide for a source of cellular immune communication/activation and enhanced accumulation in lymph nodes (A), immunological adjuvant (B), and tumor antigens (C). The introduction of dendritic cell (DC) membranes enables multiple cell-to-cell communication and powerful immune activation. ABC activates dendritic cells and promotes T-cell activation and proliferation in vitro. In vivo, ABC is 14- and 304-fold more immunogenic than binary (BC) and single (C) membrane vaccines, and immunization with ABC enhances the frequency of tumor-specific cytotoxic T lymphocytes, leading to an 80% cure rate in tumor-bearing mice. In a surgical resection and recurrence model, ABC prevents recurrence with vaccination from autologous cancer membranes, and therapeutic effects are observed in a lung metastasis model even with heterologous cancer cell membranes. ABCs formed from human cancer patient-derived tumor cells activate human monocyte-derived dendritic cells (moDC). Taken together, the ternary ABC membrane system provides the needed functional components for personalized cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Animais , Camundongos , Escherichia coli , Células Dendríticas , Neoplasias/tratamento farmacológico , Linfócitos T Citotóxicos , Antígenos de Neoplasias , Imunoterapia
11.
Proc Natl Acad Sci U S A ; 117(5): 2282-2287, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964812

RESUMO

Biomimetic superhydrophobic surfaces display many excellent underwater functionalities, which attribute to the slippery air mattress trapped in the structures on the surface. However, the air mattress is easy to collapse due to various disturbances, leading to the fully wetted Wenzel state, while the water filling the microstructures is difficult to be repelled to completely recover the air mattress even on superhydrophobic surfaces like lotus leaves. Beyond superhydrophobicity, here we find that the floating fern, Salvinia molesta, has the superrepellent capability to efficiently replace the water in the microstructures with air and robustly recover the continuous air mattress. The hierarchical structures on the leaf surface are demonstrated to be crucial to the recovery. The interconnected wedge-shaped grooves between epidermal cells are key to the spontaneous spreading of air over the entire leaf governed by a gas wicking effect to form a thin air film, which provides a base for the later growth of the air mattress in thickness synchronously along the hairy structures. Inspired by nature, biomimetic artificial Salvinia surfaces are fabricated using 3D printing technology, which successfully achieves a complete recovery of a continuous air mattress to exactly imitate the superrepellent capability of Salvinia leaves. This finding will benefit the design principles of water-repellent materials and expand their underwater applications, especially in extreme environments.


Assuntos
Gleiquênias/química , Gleiquênias/ultraestrutura , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Gleiquênias/anatomia & histologia , Interações Hidrofóbicas e Hidrofílicas , Nelumbo/química , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/ultraestrutura , Impressão Tridimensional , Propriedades de Superfície
12.
Nano Lett ; 22(14): 5898-5908, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35839459

RESUMO

The development of platinum(Pt)-drugs for cancer therapy has stalled, as no new Pt-drugs have been approved in over a decade. Packaging small molecule drugs into nanoparticles is a way to enhance their therapeutic efficacy. To date, there has been no direct comparison of relative merits of the choice of Pt oxidation state in the same nanoparticle system that would allow its optimal design. To address this lacuna, we designed a recombinant asymmetric triblock polypeptide (ATBP) that self-assembles into rod-shaped micelles and chelates Pt(II) or enables covalent conjugation of Pt(IV) with similar morphology and stability. Both ATBP-Pt(II) and ATBP-Pt(IV) nanoparticles enhanced the half-life of Pt by ∼45-fold, but ATBP-Pt(IV) had superior tumor regression efficacy compared to ATBP-Pt(II) and cisplatin. These results suggest loading Pt(IV) into genetically engineered nanoparticles may yield a new generation of more effective platinum-drug nanoformulations.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Pró-Fármacos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/química , Cisplatino/uso terapêutico , Camundongos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Peptídeos/uso terapêutico , Platina/química , Pró-Fármacos/química
13.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108321

RESUMO

Bone grafting is commonly used as a treatment to repair bone defects. However, its use is challenged by the presence of medical conditions that weaken the bone, like osteoporosis. Calcium phosphate cement (CPC) is used to restore bone defects, and it is commonly available as a bioabsorbable cement paste. However, its use in clinical settings is limited by inadequate mechanical strength, inferior anti-washout characteristics, and poor osteogenic activity. There have been attempts to overcome these shortcomings by adding various natural or synthetic materials as enhancers to CPC. This review summarises the current evidence on the physical, mechanical, and biological properties of CPC after doping with synthetic materials. The incorporation of CPC with polymers, biomimetic materials, chemical elements/compounds, and combination with two or more synthetic materials showed improvement in biocompatibility, bioactivity, anti-washout properties, and mechanical strength. However, the mechanical property of CPC doped with trimethyl chitosan or strontium was decreased. In conclusion, doping of synthetic materials enhances the osteogenic features of pure CPC. The positive findings from in vitro and in vivo studies await further validation on the efficacy of these reinforced CPC composites in clinical settings.


Assuntos
Osso e Ossos , Osteogênese , Teste de Materiais , Polímeros , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química
14.
Adv Funct Mater ; 32(23): 2200986, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-36505976

RESUMO

Spider silk is the toughest fiber found in nature, and bulk production of artificial spider silk that matches its mechanical properties remains elusive. Development of miniature spider silk proteins (mini-spidroins) has made large-scale fiber production economically feasible, but the fibers' mechanical properties are inferior to native silk. The spider silk fiber's tensile strength is conferred by poly-alanine stretches that are zipped together by tight side chain packing in ß-sheet crystals. Spidroins are secreted so they must be void of long stretches of hydrophobic residues, since such segments get inserted into the endoplasmic reticulum membrane. At the same time, hydrophobic residues have high ß-strand propensity and can mediate tight inter-ß-sheet interactions, features that are attractive for generation of strong artificial silks. Protein production in prokaryotes can circumvent biological laws that spiders, being eukaryotic organisms, must obey, and the authors thus design mini-spidroins that are predicted to more avidly form stronger ß-sheets than the wildtype protein. Biomimetic spinning of the engineered mini-spidroins indeed results in fibers with increased tensile strength and two fiber types display toughness equal to native dragline silks. Bioreactor expression and purification result in a protein yield of ≈9 g L-1 which is in line with requirements for economically feasible bulk scale production.

15.
Proc Natl Acad Sci U S A ; 116(48): 23909-23914, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31699816

RESUMO

Three-dimensional hierarchical morphologies widely exist in natural and biomimetic materials, which impart preferential functions including liquid and mass transport, energy conversion, and signal transmission for various applications. While notable progress has been made in the design and manufacturing of various hierarchical materials, the state-of-the-art approaches suffer from limited materials selection, high costs, as well as low processing throughput. Herein, by harnessing the configurable elastic crack engineering-controlled formation and configuration of cracks in elastic materials-an effect normally avoided in various industrial processes, we report the development of a facile and powerful technique that enables the faithful transfer of arbitrary hierarchical structures with broad material compatibility and structural and functional integrity. Our work paves the way for the cost-effective, large-scale production of a variety of flexible, inexpensive, and transparent 3D hierarchical and biomimetic materials.

16.
Mikrochim Acta ; 189(10): 378, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076043

RESUMO

A new nanozyme (Cu-NADH) is reported composed of Cu-coordinated nicotinamide adenine dinucleotide (NADH) exhibiting laccase-like activity. The Cu-NADH nanozyme had higher heat tolerance and catalytic efficiency than natural laccase, and its catalytic activity can be enhanced by high concentration of Cl ions and it is intensely inhibited by phosphate. Therefore, a colorimetric method based on Cu-NADH and indigo carmine was successfully developed to detect phosphate in water. This method showed an excellent selectivity for phosphate, and it had a linear relationship in the phosphate concentration range 2-50 µM with a detection limit of 0.37 µM. We believe that this example of coordination between metal ions and biomolecules to mimic natural enzymes can inspire more effective and alternative strategies in nanozyme design and expand their use in sensing and determination.


Assuntos
Colorimetria , Lacase , Catálise , Colorimetria/métodos , NAD , Fosfatos
17.
Molecules ; 27(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36500636

RESUMO

The undesirable side effects of conventional chemotherapy are one of the major problems associated with cancer treatment. Recently, with the development of novel nanomaterials, tumor-targeted therapies have been invented in order to achieve more specific cancer treatment with reduced unfavorable side effects of chemotherapic agents on human cells. However, the clinical application of nanomedicines has some shortages, such as the reduced ability to cross biological barriers and undesirable side effects in normal cells. In this order, bioinspired materials are developed to minimize the related side effects due to their excellent biocompatibility and higher accumulation therapies. As bioinspired and biomimetic materials are mainly composed of a nanometric functional agent and a biologic component, they can possess both the physicochemical properties of nanomaterials and the advantages of biologic agents, such as prolonged circulation time, enhanced biocompatibility, immune modulation, and specific targeting for cancerous cells. Among the nanomaterials, asymmetric nanomaterials have gained attention as they provide a larger surface area with more active functional sites compared to symmetric nanomaterials. Additionally, the asymmetric nanomaterials are able to function as two or more distinct components due to their asymmetric structure. The mentioned properties result in unique physiochemical properties of asymmetric nanomaterials, which makes them desirable materials for anti-cancer drug delivery systems or cancer bio-imaging systems. In this review, we discuss the use of bioinspired and biomimetic materials in the treatment of cancer, with a special focus on asymmetric nanoparticle anti-cancer agents.


Assuntos
Antineoplásicos , Materiais Biomiméticos , Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Materiais Biomiméticos/uso terapêutico , Materiais Biomiméticos/química , Nanomedicina/métodos , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Nanoestruturas/química , Antineoplásicos/uso terapêutico
18.
Angew Chem Int Ed Engl ; 61(20): e202201916, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35267236

RESUMO

Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI - and FeIII -containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.


Assuntos
Níquel , Óxido Nítrico , Cobre , Compostos Férricos , Metais , Oxirredução
19.
Chemistry ; 27(67): 16716-16721, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34622999

RESUMO

Ordered molecular self-assembly of glycoamphiphiles has been regarded as an attractive, practical and bottom-up approach to obtain stable, structurally well-defined, and functional mimics of natural polysaccharides. This study describes a versatile and rational design of carbohydrate-based hydrogelators through N,N'-substituted barbituric acid-mediated Knoevenagel condensation onto unprotected carbohydrates in water. Amphiphilic N-substituted ß-C-maltosylbarbiturates self-assembled into pH- and calcium-triggered alginate-like supramolecular hydrogel fibers with a multistimuli responsiveness to temperature, pH and competitive metal chelating agent. In addition, amphiphilic N,N'-disubstituted ß-C-maltosylbarbiturates formed vesicle gels in pure water that were scarcely observed for glyco-hydrogelators. Finally, barbituric acid worked as a multitasking group allowing chemoselective ligation onto reducing-end carbohydrates, structural diversity, stimuli-sensitiveness, and supramolecular interactions by hydrogen bonding.


Assuntos
Alginatos , Hidrogéis , Ligação de Hidrogênio , Temperatura , Água
20.
Cell Mol Biol Lett ; 26(1): 47, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34775969

RESUMO

Owing to an increase in the aging population, osteoporosis has become a severe public health concern, with a high prevalence among the elderly and postmenopausal adults. Osteoporosis-related fracture is a major cause of morbidity and mortality in elderly and postmenopausal adults, posing a considerable socioeconomic burden. However, existing treatments can only slow down the process of osteoporosis, reduce the risk of fractures, and repair fractures locally. Therefore, emerging methods for treating osteoporosis, such as mesenchymal stem cell transplantation, exosome-driving drug delivery systems, biomimetic materials, and 3D printing technology, have received increasing research attention, with significant progress. Mesenchymal stem cells (MSCs) are pluripotent stem cells that can differentiate into different types of functional cells. Exosomes play a key role in regulating cell microenvironments through paracrine mechanisms. Bionic materials and 3D printed scaffolds are beneficial for the reconstruction and repair of osteoporotic bones and osteoporosis-related fractures. Stem cells, exosomes, and biomimetic materials represent emerging technologies for osteoporosis treatment. This review summarizes the latest developments in these three aspects.


Assuntos
Materiais Biomiméticos/farmacologia , Exossomos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteoporose/terapia , Animais , Diferenciação Celular/fisiologia , Humanos , Osteogênese/fisiologia , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA