Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 96(4): e0200521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878889

RESUMO

Birnaviruses are members of the Birnaviridae family, responsible for major economic losses to poultry and aquaculture. The family is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome. Infectious bursal disease virus (IBDV), the prototypic family member, is the etiological agent of Gumboro disease, a highly contagious immunosuppressive disease in the poultry industry worldwide. We previously demonstrated that IBDV hijacks the endocytic pathway for establishing the viral replication complexes on endosomes associated with the Golgi complex (GC). Here, we report that IBDV reorganizes the GC to localize the endosome-associated replication complexes without affecting its secretory functionality. By analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b for viral replication. Rab1b comprises a key regulator of GC transport and we demonstrate that transfecting the negative mutant Rab1b N121I or knocking down Rab1b expression by RNA interference significantly reduces the yield of infectious viral progeny. Furthermore, we showed that the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), which activates the small GTPase ADP ribosylation factor 1 (ARF1), is required for IBDV replication, since inhibiting its activity by treatment with brefeldin A (BFA) or golgicide A (GCA) significantly reduces the yield of infectious viral progeny. Finally, we show that ARF1 dominant negative mutant T31N overexpression hampered IBDV infection. Taken together, these results demonstrate that IBDV requires the function of the Rab1b-GBF1-ARF1 axis to promote its replication, making a substantial contribution to the field of birnavirus-host cell interactions. IMPORTANCE Birnaviruses are unconventional members of the dsRNA viruses, with the lack of a transcriptionally active core being the main differential feature. This structural trait, among others that resemble those of the plus single-stranded (+ssRNA) viruses features, suggests that birnaviruses might follow a different replication program from that conducted by prototypical dsRNA members and the hypothesis that birnaviruses could be evolutionary links between +ssRNA and dsRNA viruses has been argued. Here, we present original data showing that IBDV-induced GC reorganization and the cross talk between IBDV and the Rab1b-GBF1-ARF1 mediate the intracellular trafficking pathway. The replication of several +ssRNA viruses depends on the cellular protein GBF1, but its role in the replication process is not clear. Thus, our findings make a substantial contribution to the field of birnavirus-host cell interactions and provide further evidence supporting the proposed evolutionary connection role of birnaviruses, an aspect which we consider especially relevant for researchers working in the virology field.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Vírus da Doença Infecciosa da Bursa/fisiologia , Via Secretória/fisiologia , Replicação Viral/fisiologia , Proteínas rab1 de Ligação ao GTP/metabolismo , Fator 1 de Ribosilação do ADP/genética , Animais , Brefeldina A/farmacologia , Linhagem Celular , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Piridinas/farmacologia , Quinolinas/farmacologia , Via Secretória/efeitos dos fármacos , Compartimentos de Replicação Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Proteínas rab1 de Ligação ao GTP/genética
2.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239817

RESUMO

The use of infectious bursal disease virus (IBDV) reverse genetics to engineer tagged reporter viruses has revealed that the virus factories (VFs) of the Birnaviridae family are biomolecular condensates that show properties consistent with liquid-liquid phase separation (LLPS). Although the VFs are not bound by membranes, it is currently thought that viral protein 3 (VP3) initially nucleates the formation of the VF on the cytoplasmic leaflet of early endosomal membranes, and likely drives LLPS. In addition to VP3, IBDV VFs contain VP1 (the viral polymerase) and the dsRNA genome, and they are the sites of de novo viral RNA synthesis. Cellular proteins are also recruited to the VFs, which are likely to provide an optimal environment for viral replication; the VFs grow due to the synthesis of the viral components, the recruitment of other proteins, and the coalescence of multiple VFs in the cytoplasm. Here, we review what is currently known about the formation, properties, composition, and processes of these structures. Many open questions remain regarding the biophysical nature of the VFs, as well as the roles they play in replication, translation, virion assembly, viral genome partitioning, and in modulating cellular processes.


Assuntos
Birnaviridae , Vírus da Doença Infecciosa da Bursa , Birnaviridae/metabolismo , Compartimentos de Replicação Viral , Linhagem Celular , Replicação Viral , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas Estruturais Virais/metabolismo
3.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33361427

RESUMO

Infectious bursal disease virus (IBDV) is the archetypal member of the family Birnaviridae and the etiological agent of Gumboro disease, a highly contagious immunosuppressive infection of concern to the global poultry sector for its adverse health effects in chicks. Unlike most double-stranded RNA (dsRNA) viruses, which enclose their genomes within specialized cores throughout their viral replication cycle, birnaviruses organize their bisegmented dsRNA genome in ribonucleoprotein (RNP) structures. Recently, we demonstrated that IBDV exploits endosomal membranes for replication. The establishment of IBDV replication machinery on the cytosolic leaflet of endosomal compartments is mediated by the viral protein VP3 and its intrinsic ability to target endosomes. In this study, we identified the early endosomal phosphatidylinositol 3-phosphate [PtdIns(3)P] as a key host factor of VP3 association with endosomal membranes and consequent establishment of IBDV replication complexes in early endosomes. Indeed, our data reveal a crucial role for PtdIns(3)P in IBDV replication. Overall, our findings provide new insights into the replicative strategy of birnaviruses and strongly suggest that it resembles those of positive-strand RNA (+ssRNA) viruses, which replicate in association with host membranes. Furthermore, our findings support the role of birnaviruses as evolutionary intermediaries between +ssRNA and dsRNA viruses and, importantly, demonstrate a novel role for PtdIns(3)P in the replication of a dsRNA virus.IMPORTANCEInfectious bursal disease virus (IBDV) infects chicks and is the causative agent of Gumboro disease. During IBDV outbreaks in recent decades, the emergence of very virulent variants and the lack of effective prevention/treatment strategies to fight this disease have had devastating consequences for the poultry industry. IBDV belongs to the peculiar family Birnaviridae Unlike most dsRNA viruses, birnaviruses organize their genomes in ribonucleoprotein complexes and replicate in a core-independent manner. We recently demonstrated that IBDV exploits host cell endosomes as platforms for viral replication, a process that depends on the VP3 viral protein. In this study, we delved deeper into the molecular characterization of IBDV-endosome association and investigated the role of host cell phosphatidylinositide lipids in VP3 protein localization and IBDV infection. Together, our findings demonstrate that PtdIns(3)P serves as a scaffold for the association of VP3 to endosomes and reveal its essential role for IBDV replication.


Assuntos
Endossomos/metabolismo , Vírus da Doença Infecciosa da Bursa/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Compartimentos de Replicação Viral/metabolismo , Animais , Linhagem Celular , Endossomos/virologia , Membranas Intracelulares/metabolismo , Codorniz , Proteínas Estruturais Virais/metabolismo , Replicação Viral
4.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321810

RESUMO

The Birnaviridae family, responsible for major economic losses to poultry and aquaculture, is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome that replicate in discrete cytoplasmic virus factories (VFs). Reassortment is common; however, the underlying mechanism remains unknown given that VFs may act as a barrier to genome mixing. In order to provide new information on VF trafficking during dsRNA virus coinfection, we rescued two recombinant infectious bursal disease viruses (IBDVs) of strain PBG98 containing either a split GFP11 or a tetracysteine (TC) tag fused to the VP1 polymerase (PBG98-VP1-GFP11 and PBG98-VP1-TC). DF-1 cells transfected with GFP1-10 prior to PBG98-VP1-GFP11 infection or stained with a biarsenical derivative of the red fluorophore resorufin (ReAsH) following PBG98-VP1-TC infection, had green or red foci in the cytoplasm, respectively, that colocalized with VP3 and dsRNA, consistent with VFs. The average number of VFs decreased from a mean of 60 to 5 per cell between 10 and 24 h postinfection (hpi) (P < 0.0001), while the average area increased from 1.24 to 45.01 µm2 (P < 0.0001), and live cell imaging revealed that the VFs were highly dynamic structures that coalesced in the cytoplasm. Small VFs moved faster than large (average 0.57 µm/s at 16 hpi compared to 0.22 µm/s at 22 hpi), and VF coalescence was dependent on an intact microtubule network and actin cytoskeleton. During coinfection with PBG98-VP1-GFP11 and PBG98-VP1-TC viruses, discrete VFs initially formed from each input virus that subsequently coalesced 10 to 16 hpi, and we speculate that Birnaviridae reassortment requires VF coalescence.IMPORTANCE Reassortment is common in viruses with segmented double-stranded RNA (dsRNA) genomes. However, these viruses typically replicate within discrete cytoplasmic virus factories (VFs) that may represent a barrier to genome mixing. We generated the first replication competent tagged reporter birnaviruses, infectious bursal disease viruses (IBDVs) containing a split GFP11 or tetracysteine (TC) tag and used the viruses to track the location and movement of IBDV VFs, in order to better understand the intracellular dynamics of VFs during a coinfection. Discrete VFs initially formed from each virus that subsequently coalesced from 10 h postinfection. We hypothesize that VF coalescence is required for the reassortment of the Birnaviridae This study provides new information that adds to our understanding of dsRNA virus VF trafficking.


Assuntos
Vírus da Doença Infecciosa da Bursa/genética , Vírus Reordenados/genética , Replicação Viral/genética , Animais , Linhagem Celular , Coinfecção/metabolismo , Citoplasma , Vírus de RNA/genética , Vírus Reordenados/metabolismo , Proteínas Estruturais Virais/genética
5.
Avian Pathol ; 49(1): 99-105, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31591909

RESUMO

Chicken proventricular necrosis virus (CPNV) is a recently described birnavirus, which has been proposed to be the cause of transmissible viral proventriculitis (TVP). The understanding of the epidemiology of both the virus and the disease is very limited. A retrospective investigation on TVP and CPNV in broiler chicken submissions from the UK from between 1994 and 2015 was performed with the aims of assessing the longitudinal temporal evolution of TVP and CPNV, and to review the histological proventricular lesions in the studied chickens. Ninety-nine of the 135 included submissions (73.3%) fulfilled the TVP-diagnostic criteria, while the remaining 36 submissions (26.7%) displayed only lymphocytic proventriculitis (LP). The first detection of CPNV by PCR dated from 2009. Results showed a rise in the number of both TVP and positive CPNV RT-PCR submissions from 2009 with a peak in 2013, suggesting that they may be an emerging or re-emerging disease and pathogen, respectively. Twenty-two out of the 99 submissions displaying TVP lesions (22%) and four out of the 36 (11%) submissions with LP gave positive CPNV RT-PCR results, further supporting the association between CPNV and TVP and confirming that CPNV is present in a low proportion of proventriculi that do not fulfil the TVP-diagnostic criteria. In addition, intranuclear inclusion bodies were observed in 22 of the submissions with TVP. The vast majority of these cases (21 of 22, 96%) gave negative CPNV RT-PCR results, raising the question of whether a virus other than CPNV is responsible for some of these TVP-affected cases.RESEARCH HIGHLIGHTSTVP and CPNV have been present in British broilers since at least 1994 and 2009, respectively.TVP and CPNV seem to be an emerging and re-emerging disease and pathogen, respectively.CPNV was detected in proventriculi with both TVP and LP-lesions.Viruses other than CPNV may be responsible for some TVP-affected cases.


Assuntos
Infecções por Birnaviridae/veterinária , Birnaviridae/isolamento & purificação , Galinhas , Doenças das Aves Domésticas/virologia , Proventrículo/virologia , Gastropatias/veterinária , Animais , Birnaviridae/classificação , Birnaviridae/genética , Infecções por Birnaviridae/patologia , Infecções por Birnaviridae/virologia , Filogenia , Doenças das Aves Domésticas/patologia , Proventrículo/patologia , RNA Viral/química , RNA Viral/isolamento & purificação , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Alinhamento de Sequência/veterinária , Análise de Sequência de RNA/veterinária , Gastropatias/patologia , Gastropatias/virologia
6.
Appl Microbiol Biotechnol ; 104(8): 3391-3402, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32088761

RESUMO

Birnaviridae is a family of viruses (birnaviruses) which consists of four genera, members of which cause diseases in fish, birds, mollusks, and insects. The genome of birnaviruses encodes the highly immunogenic VP2 capsid protein. In order to demonstrate that the VP2 protein can be exploited as a diagnostic antigen for birnaviruses, we developed a lateral flow assay based on the surface-exposed VP2 protrusion domain of a representative birnavirus, infectious bursal disease virus (IBDV) of serotype 1 which causes the highly devastating infectious bursal disease in chickens. The biophysical characterization of the purified domain reveals that the domain predominantly consists of ß-sheets, exists in a trimeric form, and remains folded at high temperatures, making it suitable for diagnostic purposes. Owing to its highly immunogenic nature and excellent biophysical properties, we employed the VP2 protrusion domain in a gold nanoparticle-based lateral flow assay for rapid detection of anti-IBDV antibodies in serum samples of infected chickens. Our results indicate that the domain binds anti-IBDV antibodies with high specificity during laboratory testing and on-site testing. The lateral flow assay reported here yields comparable results in a qualitative manner as obtained through a commercial enzyme-linked immunosorbent assay (ELISA). As VP2 is a common capsid protein of birnaviruses, the lateral flow assay can be generalized for other birnaviruses, and members of Tetraviridae and Nodaviridae families which contain homologous VP2 capsid proteins.


Assuntos
Antígenos Virais/imunologia , Infecções por Birnaviridae/diagnóstico , Infecções por Birnaviridae/veterinária , Birnaviridae/imunologia , Proteínas Estruturais Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Sítios de Ligação de Anticorpos , Birnaviridae/genética , Infecções por Birnaviridae/sangue , Galinhas/imunologia , Dicroísmo Circular , Ouro , Imunoensaio , Nanopartículas Metálicas/química , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/virologia , Domínios Proteicos , Espectroscopia de Infravermelho com Transformada de Fourier , Proteínas Estruturais Virais/genética
7.
J Fish Dis ; 43(1): 57-68, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31691318

RESUMO

Susceptibility of hard clams Meretrix lusoria to birnavirus (BV) infections caused by temperature variations, from a mechanistic perspective, has rarely been explored. We used a deterministic susceptible-infectious-mortality (SIM) model to derive temperature-dependent key epidemiologic parameters based on data sets of viral infections in hard clams subjected to acute temperature changes. To parameterize seasonal pattern dependence, we estimated monthly based cumulative mortality and basic reproduction numbers (R0 ) between 1997 and 2017 by way of statistical analysis. Two alternative disease control models were also proposed to assess status of controlled temperature-mediated BV infection by using, respectively, control reproduction number (RC )-control line criterion and removal strategy-based control measure. We showed that based on RC -control strategy, when temperatures ranged from 15 to 26.8°C, proportion of susceptible hard clams removed should be at least 0.22%. Based on removal-control strategy, we found that by limiting pond water temperature to 25-30°C, together with increased removal rates and periods to remove hard clams, it is better to remove hard clams from June and August to reduce both mortality rate and spread of BV. Our results can be used to monitor BV transmission potential in hard clams that will contribute to government control strategy to eradicate future BV epidemics.


Assuntos
Birnaviridae/fisiologia , Bivalves/virologia , Temperatura Baixa , Temperatura Alta , Animais , Aquicultura
8.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29540593

RESUMO

Birnaviruses are unconventional members of the group of double-stranded RNA (dsRNA) viruses that are characterized by the lack of a transcriptionally active inner core. Instead, the birnaviral particles organize their genome in ribonucleoprotein complexes (RNPs) composed by dsRNA segments, the dsRNA-binding VP3 protein, and the virally encoded RNA-dependent RNA polymerase (RdRp). This and other structural features suggest that birnaviruses may follow a completely different replication program from that followed by members of the Reoviridae family, supporting the hypothesis that birnaviruses are the evolutionary link between single-stranded positive RNA (+ssRNA) and dsRNA viruses. Here we demonstrate that infectious bursal disease virus (IBDV), a prototypical member of the Birnaviridae family, hijacks endosomal membranes of infected cells through the interaction of a viral protein, VP3, with the phospholipids on the cytosolic leaflet of these compartments for replication. Employing a mutagenesis approach, we demonstrated that VP3 domain PATCH 2 (P2) mediates the association of VP3 with the endosomal membranes. To determine the role of VP3 P2 in the context of the virus replication cycle, we used avian cells stably overexpressing VP3 P2 for IBDV infection. Importantly, the intra- and extracellular virus yields, as well as the intracellular levels of VP2 viral capsid protein, were significantly diminished in cells stably overexpressing VP3 P2. Together, our results indicate that the association of VP3 with endosomes has a relevant role in the IBDV replication cycle. This report provides direct experimental evidence for membranous compartments such as endosomes being required by a dsRNA virus for its replication. The results also support the previously proposed role of birnaviruses as an evolutionary link between +ssRNA and dsRNA viruses.IMPORTANCE Infectious bursal disease (IBD; also called Gumboro disease) is an acute, highly contagious immunosuppressive disease that affects young chickens and spreads worldwide. The etiological agent of IBD is infectious bursal disease virus (IBDV). This virus destroys the central immune organ (bursa of Fabricius), resulting in immunosuppression and reduced responses of chickens to vaccines, which increase their susceptibility to other pathogens. IBDV is a member of Birnaviridae family, which comprises unconventional members of dsRNA viruses, whose replication strategy has been scarcely studied. In this report we show that IBDV hijacks the endosomes of the infected cells for establishing viral replication complexes via the association of the ribonucleoprotein complex component VP3 with the phospholipids in the cytosolic leaflet of endosomal membranes. We show that this interaction is mediated by the VP3 PATCH 2 domain and demonstrate its relevant role in the context of viral infection.


Assuntos
Endossomos/virologia , Vírus da Doença Infecciosa da Bursa/fisiologia , Fosfolipídeos/metabolismo , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Animais , Linhagem Celular , Células HeLa , Humanos , Vírus da Doença Infecciosa da Bursa/patogenicidade , Mutagênese , Domínios Proteicos , Codorniz , Proteínas Estruturais Virais/química , Replicação Viral
9.
Virol J ; 16(1): 71, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138237

RESUMO

BACKGROUND: Lates calcarifer, known as seabass in Asia and barramundi in Australia, is a widely farmed species internationally and in Southeast Asia and any disease outbreak will have a great economic impact on the aquaculture industry. Through disease investigation of Asian seabass from a coastal fish farm in 2015 in Singapore, a novel birnavirus named Lates calcarifer Birnavirus (LCBV) was detected and we sought to isolate and characterize the virus through molecular and biochemical methods. METHODS: In order to propagate the novel birnavirus LCBV, the virus was inoculated into the Bluegill Fry (BF-2) cell line and similar clinical signs of disease were reproduced in an experimental fish challenge study using the virus isolate. Virus morphology was visualized using transmission electron microscopy (TEM). Biochemical analysis using chloroform and 5-Bromo-2'-deoxyuridine (BUDR) sensitivity assays were employed to characterize the virus. Next-Generation Sequencing (NGS) was also used to obtain the virus genome for genetic and phylogenetic analyses. RESULTS: The LCBV-infected BF-2 cell line showed cytopathic effects such as rounding and granulation of cells, localized cell death and detachment of cells observed at 3 to 5 days' post-infection. The propagated virus, when injected intra-peritoneally into naïve Asian seabass under experimental conditions, induced lesions similar to fish naturally infected with LCBV. Morphology of LCBV, visualized under TEM, revealed icosahedral particles around 50 nm in diameter. Chloroform and BUDR sensitivity assays confirmed the virus to be a non-enveloped RNA virus. Further genome analysis using NGS identified the virus to be a birnavirus with two genome segments. Phylogenetic analyses revealed that LCBV is more closely related to the Blosnavirus genus than to the Aquabirnavirus genus within the Birnaviridae family. CONCLUSIONS: These findings revealed the presence of a novel birnavirus that could be linked to the disease observed in the Asian seabass from the coastal fish farms in Singapore. This calls for more studies on disease transmission and enhanced surveillance programs to be carried out to understand pathogenicity and epidemiology of this novel virus. The gene sequences data obtained from the study can also pave way to the development of PCR-based diagnostic test methods that will enable quick and specific identification of the virus in future disease investigations.


Assuntos
Bass/virologia , Doenças dos Peixes/virologia , Genoma Viral , Vírus da Doença Infecciosa da Bursa/classificação , Vírus da Doença Infecciosa da Bursa/isolamento & purificação , Animais , Aquicultura , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Doença Infecciosa da Bursa/ultraestrutura , Microscopia Eletrônica de Transmissão , Filogenia , Reação em Cadeia da Polimerase , Singapura
10.
Virol J ; 14(1): 17, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143585

RESUMO

BACKGROUND: The infectious pancreatic necrosis virus (IPNV) causes significant economic losses in Chilean salmon farming. For effective sanitary management, the IPNV strains present in Chile need to be fully studied, characterized, and constantly updated at the molecular level. METHODS: In this study, 36 Chilean IPNV isolates collected over 6 years (2006-2011) from Salmo salar, Oncorhynchus mykiss, and Oncorhynchus kisutch were genotypically characterized. Salmonid samples were obtained from freshwater, estuary, and seawater sources from central, southern, and the extreme-south of Chile (35° to 53°S). RESULTS: Sequence analysis of the VP2 gene classified 10 IPNV isolates as genogroup 1 and 26 as genogroup 5. Analyses indicated a preferential, but not obligate, relationship between genogroup 5 isolates and S. salar infection. Fifteen genogroup 5 and nine genogroup 1 isolates presented VP2 gene residues associated with high virulence (i.e. Thr, Ala, and Thr at positions 217, 221, and 247, respectively). Four genogroup 5 isolates presented an oddly long VP5 deduced amino acid sequence (29.6 kDa). Analysis of the VP2 amino acid motifs associated with clinical and subclinical infections identified the clinical fingerprint in only genogroup 5 isolates; in contrast, the genogroup 1 isolates presented sequences predominantly associated with the subclinical fingerprint. Predictive analysis of VP5 showed an absence of transmembrane domains and plasma membrane tropism signals. WebLogo analysis of the VP5 BH domains revealed high identities with the marine birnavirus Y-6 and Japanese IPNV strain E1-S. Sequence analysis for putative 25 kDa proteins, coded by the ORF between VP2 and VP4, exhibited three putative nuclear localization sequences and signals of mitochondrial tropism in two isolates. CONCLUSIONS: This study provides important advances in updating the characterizations of IPNV strains present in Chile. The results from this study will help in identifying epidemiological links and generating specific biotechnological tools for controlling IPNV outbreaks in Chilean salmon farming.


Assuntos
Infecções por Birnaviridae/veterinária , Variação Genética , Vírus da Necrose Pancreática Infecciosa/genética , Vírus da Necrose Pancreática Infecciosa/isolamento & purificação , Oncorhynchus kisutch/virologia , Oncorhynchus mykiss/virologia , Salmo salar/virologia , Animais , Aquicultura , Infecções por Birnaviridae/virologia , Chile , Genótipo , Vírus da Necrose Pancreática Infecciosa/classificação , Análise de Sequência de DNA , Proteínas Estruturais Virais/genética
11.
Avian Pathol ; 46(1): 68-75, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27400318

RESUMO

Increasing evidence suggests that a new birnavirus, named chicken proventricular necrosis virus (CPNV), is the aetiological agent of transmissible viral proventriculitis (TVP). The present work aimed to explore the possible presence of both TVP and CPNV in the UK. Forty-four chickens showing TVP-compatible gross lesions were classified into three groups based on the histological lesions: (i) TVP-affected chickens: lymphocytic infiltration and glandular necrosis (n = 15); (ii) lymphocytic proventriculitis (LP)-affected chickens: lymphocytic infiltration without necrosis (n = 18); and (iii) without proventriculitis (WP): no lymphocytic infiltration or necrosis (n = 11). Nine proventriculi (seven out of 15 corresponding to TVP, and two out of 11 corresponding to LP) were positive for CPNV by reverse transcriptase polymerase chain reaction (RT-PCR). These results support the previously suggested idea of CPNV as causative agent of TVP. Moreover, these data show that CPNV can also be detected in a number of cases with LP, which do not fulfil the histological TVP criteria. Phylogenetic analysis of partial sequences of gene VP1 showed that British CPNV sequences were closer to other European CPNV sequences and might constitute a different lineage from the American CPNV. TVP cases with negative CPNV PCR results may be due to chronic stages of the disease or to the reduced PCR sensitivity on formalin-fixed paraffin-embedded tissues. However, involvement of other agents in some of the cases cannot totally be ruled out. As far as the authors are aware, this is the first peer-reviewed report of TVP as well as of CPNV in the UK, and the first exploratory CPNV phylogenetic study.


Assuntos
Infecções por Birnaviridae/veterinária , Birnaviridae/isolamento & purificação , Galinhas/virologia , Doenças das Aves Domésticas/virologia , Animais , Birnaviridae/classificação , Birnaviridae/genética , Infecções por Birnaviridae/diagnóstico , Infecções por Birnaviridae/patologia , Infecções por Birnaviridae/virologia , Necrose/veterinária , Filogenia , Doenças das Aves Domésticas/patologia , Estudos Prospectivos , Proventrículo/patologia , Proventrículo/virologia , Análise de Sequência de RNA/veterinária , Reino Unido/epidemiologia
12.
PeerJ ; 12: e17321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708355

RESUMO

The Akoya pearl oyster (Pinctada fucata (Gould)) is the most important species for pearl cultivation in Japan. Mass mortality of 0-year-old juvenile oysters and anomalies in adults, known as summer atrophy, have been observed in major pearl farming areas during the season when seawater temperatures exceed about 20 °C since 2019. In this study, we identified a novel birnavirus as the pathogen of summer atrophy and named it Pinctada birnavirus (PiBV). PiBV was first presumed to be the causative agent when it was detected specifically and frequently in the infected oysters in a comparative metatranscriptomics of experimentally infected and healthy pearl oysters. Subsequently, the symptoms of summer atrophy were reproduced by infection tests using purified PiBV. Infection of juvenile oysters with PiBV resulted in an increase in the PiBV genome followed by the atrophy of soft body and subsequent mortality. Immunostaining with a mouse antiserum against a recombinant PiBV protein showed that the virus antigen was localized mainly in the epithelial cells on the outer surface of the mantle. Although the phylogenetic analysis using maximum likelihood method placed PiBV at the root of the genus Entomobirnavirus, the identity of the bi-segmented, genomic RNA to that of known birnaviruses at the full-length amino acid level was low, suggesting that PiBV forms a new genus. The discovery of PiBV will be the basis for research to control this emerging disease.


Assuntos
Birnaviridae , Pinctada , Animais , Pinctada/virologia , Pinctada/genética , Birnaviridae/genética , Birnaviridae/isolamento & purificação , Filogenia , Japão , Estações do Ano , Genoma Viral/genética , Atrofia/virologia
13.
Vaccines (Basel) ; 11(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38140144

RESUMO

BACKGROUND: Largemouth bass birnavirus (LBBV) disease outbreaks in largemouth bass fingerlings lead to high mortality in China. Therefore, the development of immersion immunization strategies is paramount. METHODS: An avirulent LBBV strain was screened using a fish challenge assay. The proliferation dynamics of the avirulent strain were determined in vitro and in vivo. The efficacy of the avirulent vaccine was evaluated using immune gene expression, viral load, and a virus challenge, and the safety was also assessed using a reversion to virulence test. RESULTS: An avirulent virus strain, designated as largemouth bass birnavirus Guangdong Sanshui (LBBV-GDSS-20180701), was selected from five fish birnavirus isolates. The proliferation peak titer was 109.01 TCID50/mL at 24 hpi in CPB cells and the peak viral load was 2.5 × 104 copies/mg at 4 dpi in the head kidneys and spleens of largemouth bass. The largemouth bass that were immersed within an avirulent vaccine or injected with an inactivated vaccine were protected from the virulent LBBV challenge with a relative percent survival (RPS) of 75% or 42.9%, respectively. The expression levels of IL-12, MHCI, MHCII, CD8, CD4, and IgM in the avirulent group were significantly upregulated at a partial time point compared to the inactivated vaccine group. Moreover, the viral load in the avirulent vaccine group was significantly lower than those in the inactivated vaccine group and control group using real-time PCR. CONCLUSIONS: LBBV-GDSS-20180701 is a potential live vaccine candidate against LBBV disease.

14.
Viruses ; 14(10)2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36298766

RESUMO

Aquatic bird bornavirus 1 (ABBV-1) is a neurotropic virus that infects waterfowls, resulting in persistent infection. Experimental infection showed that both Muscovy ducks and chickens support persistent ABBV-1 infection in the central nervous system (CNS), up to 12 weeks post-infection (wpi), without the development of clinical disease. The aim of the present study was to describe the transcriptomic profiles in the brains of experimentally infected Muscovy ducks and chickens infected with ABBV-1 at 4 and 12 wpi. Transcribed RNA was sequenced by next-generation sequencing and analyzed by principal component analysis (PCA) and differential gene expression. The functional annotation of differentially expressed genes was evaluated by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The PCA showed that the infected ducks sampled at both 4 and 12 wpi clustered separately from the controls, while only the samples from the chickens at 12 wpi, but not at 4 wpi, formed a separate cluster. In the ducks, more genes were differentially expressed at 4 wpi than 12 wpi, and the majority of the highly differentially expressed genes (DEG) were upregulated. On the other hand, the infected chickens had fewer DEGs at 4 wpi than at 12 wpi, and the majority of those with high numbers of DEGs were downregulated at 4 wpi and upregulated at 12 wpi. The functional annotation showed that the most enriched GO terms were immune-associated in both species; however, the terms associated with the innate immune response were predominantly enriched in the ducks, whereas the chickens had enrichment of both the innate and adaptive immune response. Immune-associated pathways were also enriched according to the KEGG pathway analysis in both species. Overall, the transcriptomic analysis of the duck and chicken brains showed that the main biological responses to ABBV-1 infection were immune-associated and corresponded with the levels of inflammation in the CNS.


Assuntos
Bornaviridae , Vírus de RNA , Animais , Patos , Galinhas , Bornaviridae/genética , Perfilação da Expressão Gênica , Transcriptoma , Vírus de RNA/genética , Encéfalo , RNA/metabolismo
15.
Microbiol Spectr ; 10(2): e0171621, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35319246

RESUMO

Largemouth bass (Micropterus salmoides) is an important and fast-growing aquaculture species in China. In 2017, an epidemic associated with severe mortality occurred in fingerlings of largemouth bass in Guangdong, China. The causative pathogen was identified and named as largemouth bass Birnavirus (LBBV) by virome analysis, viral isolation, electron microscopy, genome sequencing, Western blot, indirect immunofluorescence, experimental challenge, and so on. Virome sequencing results showed that the relative abundance reads related to the family Birnaviridae were the highest, occupied ∼25% of the total viral reads. Electron microscopy revealed large numbers of nonenveloped virus particles in the spleen of diseased fish with a diameter of about 53 nm. LBBV was isolated and propagated in Chinese perch brain cells and induced a typical cytopathic effect. LBBV was stable to chloroform, heat, and 5-bromo-2'-deoxyuridine, but sensitive to acid (pH 3.0). The complete genome of LBBV was comprised of segment A with a size 3525 bp and segment B with a size 2737 bp. Phylogenetic analysis basing on RdRp and VP2 protein sequences revealed that LBBV were clustered into one clade with Lates calcarifer Birnavirus (LCBV), sharing 98.7% or 91.9% sequence identity with LCBV, respectively, but only sharing 59.7% and 52.7% sequence identity with Blosnavirus, suggesting that LBBV and LCBV probably belonged to a new genus. Challenge experiments results indicated that clinical disease symptoms similar to those observed naturally were replicated and the cumulative mortality reached 100% at 3 dpi by i.p. injection. The investigation of prevalence of LBBV infection showed that 41.5% (17/41) sample pools collected from diseased ponds was positive during 2017-2020, indicating that an emerging outbreak of this disease may be spreading within the largemouth bass in China. Above results confirmed that LBBV is a novel Birnavirus associated with massive mortality for fingerlings of largemouth bass. This provides a basis for prevention and control of this emerging viral disease. IMPORTANCE Pathogen isolation and identification are vital for emerging infectious outbreaks. Here we report the isolation, determination and characterization of a novel largemouth bass Birnavirus (LBBV) associated with massive mortality in largemouth bass. And genome of LBBV is determined and analyzed. Based on phylogenetic and alignment analysis of genome, we suggest LBBV belongs to a new genus (designated as Perbirnavirus genus) in Birnaviridae family. Our findings will provide a basis for the further study on prevention and control of this emerging viral disease.


Assuntos
Bass , Doenças dos Peixes , Vírus de RNA , Animais , Aquicultura , Bass/genética , Doenças dos Peixes/epidemiologia , Filogenia , Análise de Sequência de DNA
16.
Virus Evol ; 7(2): veab084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659797

RESUMO

Currently, the Birnaviridae family contains four genera with all members identified from birds, fishes, and insects only. The present study reports a novel birnavirus unexpectedly identified from classical swine fever virus-infected pigs by viral metagenomic analysis, which is, therefore, named as porcine birnavirus (PBRV). Follow-up reverse transcription-polymerase chain reaction (RT-PCR) screening of archived tissues of diseased pigs identified 16 PBRV strains from nine provinces/autonomous regions in China spanning 21 years (1998-2019), and the viral loads of PBRV in clinical samples were 105.08-107.95 genome copies per 0.1 g tissue, showing the replication of PBRVs in the pigs. Genome-based sequence comparison showed that PBRVs are genetically distant from existing members within the Birnaviridae family with 45.8-61.6 per cent and 46.2-63.2 per cent nucleotide sequence similarities in segments A and B, respectively, and the relatively closed viruses are avibirnavirus strains. In addition, indels of 57, 5, and 18 amino acid residues occurred in 16, 2, and 7 locations of the PBRV polyprotein and VP5 and VP1 proteins, respectively, as compared to the reference avibirnaviruses. Phylogenetic analysis showed that PBRVs formed an independent genotype separated from four other genera, which could be classified into two or three subgenotypes (PBRV-A1-2 and PBRV-B1-3) based on the nucleotide sequences of full preVP2 and VP1 genes, respectively. All results showed that PBRV represents a novel porcine virus species, which constitutes the first mammalian birnavirus taxon, thereby naming as Mambirnavirus genus is proposed.

17.
J Vet Diagn Invest ; 33(3): 605-610, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33769146

RESUMO

We investigated the occurrence and pathologic findings of transmissible viral proventriculitis (TVP) associated with the chicken proventricular necrosis virus (CPNV) in commercial broiler chickens in southeastern Brazil. Seventy-three broilers, 25-36 d old, with a history of reduced growth, were referred to our veterinary pathology services from 2013 to 2017. Broilers were clinically examined, weighed, and euthanized for postmortem examination. Broilers of different ages with proventricular histologic lesions were positive for CPNV by RT-PCR; however, the intensity of histologic lesions was higher among 33-d-old animals, and viral RNA detection was more frequent among those that were 28 d old. In the proventriculi of 35 of 73 (48%) broilers, lesions were characterized by glandular epithelial necrosis, lymphoplasmacytic and histiocytic infiltrates, and metaplasia of glandular epithelium to ductal epithelium. In 24 of 73 (36%) broilers with histologic TVP-compatible lesions, CPNV was detected by RT-PCR for the viral protein 1 (VP1) gene. Broilers with histologic lesions were lighter than expected compared to the Cobb 500 standard weight. TVP has not been reported previously in broiler chickens in Brazil, to our knowledge.


Assuntos
Infecções por Birnaviridae/veterinária , Birnaviridae/isolamento & purificação , Doenças das Aves Domésticas/diagnóstico , Proventrículo/virologia , Gastropatias/veterinária , Animais , Infecções por Birnaviridae/diagnóstico , Infecções por Birnaviridae/transmissão , Brasil , Doenças das Aves Domésticas/transmissão , Estudos Prospectivos , Proventrículo/patologia , Estudos Retrospectivos , Gastropatias/diagnóstico
18.
Avian Dis ; 64(4): 525-531, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33570104

RESUMO

Transmissible viral proventriculitis (TVP) is a disease of chickens, mostly in broilers of 2-8 wk of age. Chicken proventricular necrosis virus (CPNV), a birnavirus, is the etiologic agent. Characteristic gross lesions are enlargement, atony, and pallor of the proventriculus. Cases diagnosed in California between 2000 and 2018 (n = 477), originating from 93 different farms representing all major companies in the region, were analyzed. Frequency of cases varied widely between years, with no recognizable seasonality. The flocks were between 6 and 61 days of age; the average age was 34.0 days, and the median age was 35 days. In 166 cases, between 6.3% and 100% of the submitted birds had gross lesions in the proventriculus. The most common findings were enlarged or dilated proventriculi, thickened walls, and pale or mottled serosal appearance. Histopathologically, inflammation of the glands was the most frequent finding. Other lesions included necrosis, hyperplasia, or both conditions of the glandular epithelium; dilated glands; and occasionally fibrin deposition, fibrosis, and hemorrhages. Twenty-three proventriculi from six cases were tested by immunohistochemistry for the presence of CPNV antigen; 21 stained positive. In 209 cases, birds also had lesions in the bursa fabricii attributed to infectious bursal disease, but with no significant difference in the mean percentage of birds with gross lesions in the proventriculus between cases with or without lesions in the bursa fabricii. The results show that TVP is a common disease of broiler flocks in California and confirms that CPNV is the likely causative agent.


Assuntos
Infecções por Birnaviridae/veterinária , Birnaviridae/isolamento & purificação , Galinhas , Doenças das Aves Domésticas/epidemiologia , Animais , Infecções por Birnaviridae/epidemiologia , Infecções por Birnaviridae/virologia , California/epidemiologia , Incidência , Doenças das Aves Domésticas/virologia , Proventrículo/virologia , Estudos Retrospectivos
19.
Viruses ; 12(9)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971986

RESUMO

The family Birnaviridae are a group of non-enveloped double-stranded RNA viruses which infect poultry, aquatic animals and insects. This family includes agriculturally important pathogens of poultry and fish. Recently, next-generation sequencing technologies have identified closely related birnaviruses in Culex, Aedes and Anopheles mosquitoes. Using a broad-spectrum system based on detection of long double-stranded RNA, we have discovered and isolated a birnavirus from Aedes notoscriptus mosquitoes collected in northern New South Wales, Australia. Phylogenetic analysis of Aedes birnavirus (ABV) showed that it is related to Rotifer birnavirus, a pathogen of microscopic aquatic animals. In vitro cell infection assays revealed that while ABV can replicate in Aedes-derived cell lines, the virus does not replicate in vertebrate cells and displays only limited replication in Culex- and Anopheles-derived cells. A combination of SDS-PAGE and mass spectrometry analysis suggested that the ABV capsid precursor protein (pVP2) is larger than that of other birnaviruses and is partially resistant to trypsin digestion. Reactivity patterns of ABV-specific polyclonal and monoclonal antibodies indicate that the neutralizing epitopes of ABV are SDS sensitive. Our characterization shows that ABV displays a number of properties making it a unique member of the Birnaviridae and represents the first birnavirus to be isolated from Australian mosquitoes.


Assuntos
Aedes/virologia , Birnaviridae/classificação , Birnaviridae/isolamento & purificação , Filogenia , Rotíferos/virologia , Animais , Anopheles , Anticorpos Monoclonais , Austrália , Birnaviridae/genética , Proteínas do Capsídeo/genética , Linhagem Celular , Culex , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro , New South Wales , Proteínas Virais , Vírion
20.
F1000Res ; 6: 1968, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29333244

RESUMO

Background: Some fish viruses, such as piscine orthoreovirus and infectious salmon anemia virus, target red blood cells (RBCs), highly replicate inside them and induce an immune response. However, the implications of RBCs in the context of birnavirus infection (i.e, infectious pancreatic necrosis virus (IPNV)) have not yet been studied. Methods:Ex vivo trout RBCs were obtained from peripheral blood, ficoll purified and exposed to IPNV in order to analyze infectivity and induced immune response using RT-qPCR, immune fluorescence imaging, flow cytometry and western-blotting techniques. Results: IPNV could not infect RBCs; however, IPNV-exposed RBCs increased the expression of the INF1-related genes ifn-1, pkr and mx genes. Moreover, conditioned media from IPNV-exposed RBCs conferred protection against IPNV infection in CHSE-214 fish cell line. Conclusions: Trout RBCs could trigger an antiviral immune response against IPNV infection despite not being infected. Fish RBCs could be considered mediators of the antiviral response and therefore targets of novel DNA vaccines and new strategies against fish viral infections. Further research is ongoing to completely understand the molecular mechanism that triggers this immune response in trout RBCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA