Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(26): 8179-8188, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885447

RESUMO

The unique "Iron Addiction" feature of cancer stem cells (CSCs) with tumorigenicity and plasticity generally contributes to the tumor recurrence and metastasis after a lumpectomy. Herein, a novel "Ferroptosis Amplification" strategy is developed based on integrating gallic acid-modified FeOOH (GFP) and gallocyanine into Pluronic F-127 (F127) and carboxylated chitosan (CC)-based hydrogel for CSCs eradication. This "Ferroptosis Amplifier" hydrogel is thermally sensitive and achieves rapid gelation at the postsurgical wound in a breast tumor model. Specifically, gallocyanine, as the Dickkopf-1 (DKK1) inhibitor, can decrease the expression of SLC7A11 and GPX4 and synergistically induce ferroptosis of CSCs with GFP. Encouragingly, it is found that this combination suppresses the migratory and invasive capability of cancer cells via the downregulation of matrix metalloproteinase 7 (MMP7). The in vivo results further confirm that this "Ferroptosis Amplification" strategy is efficient in preventing tumor relapse and lung metastasis, manifesting an effective and promising postsurgical treatment for breast cancer.


Assuntos
Neoplasias da Mama , Ferroptose , Hidrogéis , Células-Tronco Neoplásicas , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Hidrogéis/química , Humanos , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Camundongos , Ferroptose/efeitos dos fármacos , Linhagem Celular Tumoral , Poloxâmero/química , Poloxâmero/farmacologia , Quitosana/química , Quitosana/farmacologia , Quitosana/análogos & derivados , Ácido Gálico/farmacologia , Ácido Gálico/química , Ácido Gálico/uso terapêutico
2.
J Biol Chem ; 299(11): 105351, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838174

RESUMO

Breast cancer stem cells are mainly responsible for poor prognosis, especially in triple-negative breast cancer (TNBC). In a previous study, we demonstrated that ε-Sarcoglycan (SGCE), a type Ⅰ single-transmembrane protein, is a potential oncogene that promotes TNBC stemness by stabilizing EGFR. Here, we further found that SGCE depletion reduces breast cancer stem cells, partially through inhibiting the transcription of FGF-BP1, a secreted oncoprotein. Mechanistically, we demonstrate that SGCE could interact with the specific protein 1 transcription factor and translocate into the nucleus, which leads to an increase in the transcription of FGF-BP1, and the secreted FBF-BP1 activates FGF-FGFR signaling to promote cancer cell stemness. The novel SGCE-Sp1-FGF-BP1 axis provides novel potential candidate diagnostic markers and therapeutic targets for TNBC.


Assuntos
Células-Tronco Neoplásicas , Sarcoglicanas , Fator de Transcrição Sp1 , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Células-Tronco Neoplásicas/metabolismo , Sarcoglicanas/metabolismo , Transdução de Sinais , Fator de Transcrição Sp1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
3.
Breast Cancer Res ; 26(1): 106, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943151

RESUMO

BACKGROUND: The cell cycle of mammary stem cells must be tightly regulated to ensure normal homeostasis of the mammary gland to prevent abnormal proliferation and susceptibility to tumorigenesis. The atypical cell cycle regulator, Spy1 can override cell cycle checkpoints, including those activated by the tumour suppressor p53 which mediates mammary stem cell homeostasis. Spy1 has also been shown to promote expansion of select stem cell populations in other developmental systems. Spy1 protein is elevated during proliferative stages of mammary gland development, is found at higher levels in human breast cancers, and promotes susceptibility to mammary tumourigenesis when combined with loss of p53. We hypothesized that Spy1 cooperates with loss of p53 to increase susceptibility to tumour initiation due to changes in susceptible mammary stem cell populations during development and drives the formation of more aggressive stem like tumours. METHODS: Using a transgenic mouse model driving expression of Spy1 within the mammary gland, mammary development and stemness were assessed. These mice were intercrossed with p53 null mice to study the tumourigenic properties of Spy1 driven p53 null tumours, as well as global changes in signaling via RNA sequencing analysis. RESULTS: We show that elevated levels of Spy1 leads to expansion of mammary stem cells, even in the presence of p53, and an increase in mammary tumour formation. Spy1-driven tumours have an increased cancer stem cell population, decreased checkpoint signaling, and demonstrate an increase in therapy resistance. Loss of Spy1 decreases tumor onset and reduces the cancer stem cell population. CONCLUSIONS: This data demonstrates the potential of Spy1 to expand mammary stem cell populations and contribute to the initiation and progression of aggressive, breast cancers with increased cancer stem cell populations.


Assuntos
Glândulas Mamárias Animais , Camundongos Transgênicos , Proteína Supressora de Tumor p53 , Animais , Feminino , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Carcinogênese/genética , Proliferação de Células , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células-Tronco/metabolismo , Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica
4.
Cell Mol Life Sci ; 80(5): 132, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185776

RESUMO

We sought to investigate the utility of ebastine (EBA), a second-generation antihistamine with potent anti-metastatic properties, in the context of breast cancer stem cell (BCSC)-suppression in triple-negative breast cancer (TNBC). EBA binds to the tyrosine kinase domain of focal adhesion kinase (FAK), blocking phosphorylation at the Y397 and Y576/577 residues. FAK-mediated JAK2/STAT3 and MEK/ERK signaling was attenuated after EBA challenge in vitro and in vivo. EBA treatment induced apoptosis and a sharp decline in the expression of the BCSC markers ALDH1, CD44 and CD49f, suggesting that EBA targets BCSC-like cell populations while reducing tumor bulk. EBA administration significantly impeded BCSC-enriched tumor burden, angiogenesis and distant metastasis while reducing MMP-2/-9 levels in circulating blood in vivo. Our findings suggest that EBA may represent an effective therapeutic for the simultaneous targeting of JAK2/STAT3 and MEK/ERK for the treatment of molecularly heterogeneous TNBC with divergent profiles. Further investigation of EBA as an anti-metastatic agent for the treatment of TNBC is warranted.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Proteína-Tirosina Quinases de Adesão Focal , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Quinases de Proteína Quinase Ativadas por Mitógeno , Proliferação de Células
5.
Drug Resist Updat ; 66: 100903, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463808

RESUMO

Breast cancer stem-like cells (BCSCs) have been suggested as the underlying cause of tumor recurrence, metastasis and drug resistance in triple-negative breast cancer (TNBC). Here, we report the discovery and biological evaluation of a highly potent small-molecule antagonist of exportin-1, LFS-1107. We ascertained that exportin-1 (also named as CRM1) is a main cellular target of LFS-1107 by nuclear export functional assay, bio-layer interferometry binding assay and C528S mutant cell line. We found that LFS-1107 significantly inhibited TNBC tumor cells at low-range nanomolar concentration and LFS-1107 can selectively eliminate CD44+CD24- enriched BCSCs. We demonstrated that LFS-1107 can induce the nuclear retention of Survivin and consequent strong suppression of STAT3 transactivation abilities and the expression of downstream stemness regulators. Administration of LFS-1107 can strongly inhibit tumor growth in mouse xenograft model and eradicate BCSCs in residual tumor tissues. Moreover, LFS-1107 can significantly ablate the patient-derived tumor organoids (PDTOs) of TNBC as compared to a few approved cancer drugs. Lastly, we revealed that LFS-1107 can enhance the killing effects of chemotherapy drugs and downregulate multidrug resistance related protein targets. These new findings provide preclinical evidence of defining LFS-1107 as a promising therapeutic agent to deplete BCSCs for the treatment of TNBC.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Carioferinas/farmacologia , Células-Tronco Neoplásicas , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/uso terapêutico , Antígeno CD24/genética , Antígeno CD24/metabolismo , Antígeno CD24/uso terapêutico
6.
J Liposome Res ; 34(3): 489-506, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38269490

RESUMO

Breast cancer stem cells (BCSCs) play a key role in therapeutic resistance in breast cancer treatments and disease recurrence. This study aimed to develop a combination therapy loaded with pH-sensitive liposomes to kill both BCSCs and the okbulk cancer cells using trastuzumab-sensitive and resistant human epidermal growth factor receptor 2 positive (HER2+) breast cancer cell models. The anti-BCSCs effect and cytotoxicity of all-trans retinoic acid, salinomycin, and bufalin alone or in combination with doxorubicin were compared in HER2+ cell line BT-474 and a validated trastuzumab-resistant cell line, BT-474R. The most potent anti-BCSC agent was selected and loaded into a pH-sensitive liposome system. The effects of the liposomal combination on BCSCs and bulk cancer cells were assessed. Compared with BT-474, the aldehyde dehydrogenase positive BCSC population was elevated in BT-474R (3.9 vs. 23.1%). Bufalin was the most potent agent and suppressed tumorigenesis of BCSCs by ∼50%, and showed strong synergism with doxorubicin in both BT-474 and BT-474R cell lines. The liposomal combination of bufalin and doxorubicin significantly reduced the BCSC population size by 85%, and inhibited both tumorigenesis and self-renewal, although it had little effect on the migration and invasiveness. The cytotoxicity against the bulk cancer cells was also enhanced by the liposomal combination than either formulation alone in both cell lines (p < 0.001). The liposomal bufalin and doxorubicin combination therapy may effectively target both BCSCs and bulk cancer cells for a better outcome in trastuzumab-resistant HER2+ breast cancer.


Assuntos
Neoplasias da Mama , Bufanolídeos , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Lipossomos , Células-Tronco Neoplásicas , Trastuzumab , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Bufanolídeos/farmacologia , Bufanolídeos/administração & dosagem , Bufanolídeos/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Lipossomos/química , Feminino , Trastuzumab/farmacologia , Trastuzumab/administração & dosagem , Linhagem Celular Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptor ErbB-2/metabolismo , Sobrevivência Celular/efeitos dos fármacos
7.
Semin Cancer Biol ; 82: 11-25, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33737107

RESUMO

Tumors consist of heterogeneous cell populations, and tumor heterogeneity plays key roles in regulating tumorigenesis, metastasis, recurrence and resistance to anti-tumor therapies. More and more studies suggest that cancer stem cells (CSCs) promote tumorigenesis, metastasis, recurrence and drug resistance as well as are the major source for heterogeneity of cancer cells. CD24-CD44+ and ALDH+ are the most common markers for breast cancer stem cells (BCSCs). Previous studies showed that different BCSC markers label different BCSC populations, indicating the heterogeneity of BCSCs. Therefore, defining the regulation mechanisms of heterogeneous BCSCs is essential for precisely targeting BCSCs and treating breast cancer. In this review, we summarized the novel regulators existed in BCSCs and their niches for BCSC heterogeneity which has been discovered in recent years, and discussed their regulation mechanisms and the latest corresponding cancer treatments, which will extend our understanding on BCSC heterogeneity and plasticity, and provide better prognosis prediction and more efficient novel therapeutic strategies for breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/patologia , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Feminino , Humanos , Células-Tronco Neoplásicas/patologia , Prognóstico
8.
Semin Cancer Biol ; 86(Pt 3): 84-106, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995341

RESUMO

Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.


Assuntos
Neoplasias da Mama , Segunda Neoplasia Primária , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Carcinogênese
9.
Cell Commun Signal ; 21(1): 81, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081542

RESUMO

BACKGROUND: Both IGF-1R/PI3K/AKT/mTOR and Hippo pathways are crucial for breast cancer stem cells (BCSCs). However, their interplay remains unclear. METHODS: Four triple negative breast cancer cell lines derived from CSC of two patient-derived xenografts (PDXs), AS-B145, AS-B145-1R, AS-B244, and AS-B244-1R, were used to elucidate the role of YAP in BCSCs. YAP silenced BCSCs were analyzed by cell proliferation, aldehyde dehydrogenase (ALDH) activity, mammosphere formation, and tumorigenesis. The effects of modulating IGF-1R and IGF-1 on YAP expression and localization were evaluated. The clinical correlation of YAP and IGF-1R signaling with the overall survival (OS) of 7830 breast cancer patients was analyzed by KM plotter. RESULTS: Knockdown of YAP abates the viability and stemness of BCSCs in vitro and tumorigenicity in vivo. Depletion of IGF-1R by shRNA or specific inhibitor decreases YAP expression. In contrast, IGF-1 addition upregulates YAP and enhances its nuclear localization. YAP overexpression increased the mRNA level of IGF-1, but not IGF-1R. Data mining of clinical breast cancer specimens revealed that basal-like breast cancer patients with higher level of IGF-1 and YAP exhibit significantly shorter OS. CONCLUSIONS: YAP contributes to stemness features of breast cancer in vitro and in vivo. The expression and localization of YAP was regulated by IGF-1R and YAP expression in turns upregulates IGF-1, but not IGF-1R. Clinically, higher level of YAP and IGF-1 significantly correlated with shorter OS in basal-like breast cancer. Taken together, these findings suggest the clinical relevance of interplay between YAP and IGF-1/IGF-1R pathway in sustaining the properties of BCSCs. Video Abstract.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Via de Sinalização Hippo , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo
10.
Cell Biol Int ; 47(4): 742-753, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36573403

RESUMO

Breast cancer (BC) remains one of the deadliest and frequently diagnosed metastatic cancers worldwide. Cancer stem cells (CSCs) are the cell population within the tumor niche, having an epithelial to mesenchymal (EMT) transition phenotype, high self-renewal, vigorous metastatic capacity, drug resistance, and tumor relapse. Identification of targets for induction of apoptosis is essential to provide novel therapeutic approaches in BC. Our earlier studies showed that Vitamin C induces apoptotic cell death by losing redox balance in TNBC CSCs. In this study, we have attempted to identify previously unrecognized CSC survival factors that can be used as druggable targets for bCSCs apoptosis regulators isolated from the TNBC line, MDA MB 468. After a thorough literature review, Oct-4 was identified as the most promising marker for its unique abundance in cancer and absence in normal cells and the contribution of Oct-4 to the sustenance of cancer cells. We then validated a very high expression of Oct-4 in the MDA MB 468 bCSCs population using flow-cytometry. The loss of Oct-4 was carried out using small interfering RNA (siRNA)-mediated knockdown in the bCSCs, followed by assessing for cellular apoptosis. Our results indicated that Oct-4 knockdown induced cell death, changes in cellular morphology, inhibited mammosphere formation, and positive for Annexin-V expression, thereby indicating the role of Oct-4 in bCSC survival. Moreover, our findings also suggest the direct interaction between Oct-4 and Vitamin C using in silico docking. This data, hence, contributes towards novel information about Oct-4 highlighting this molecule as a novel survival factor in bCSCs.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Transição Epitelial-Mesenquimal , Vitaminas , Células-Tronco Neoplásicas/metabolismo , Ácido Ascórbico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Receptores de Hialuronatos/metabolismo
11.
Mol Divers ; 27(6): 2431-2440, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36376717

RESUMO

Breast cancer is recognized globally as one of the leading causes of malignant morbidity. It is a heterogeneous disease that accounts for 30 percent of all women diagnosed with cancer. To bring an anti-cancer drug from the bench to the bedside is an expensive and time-consuming process. The drug repurposing approach targets new enemies (new diseases) with old weapons (known drugs). The present study identified an FDA-approved drug targeting the γ-secretase complex involved in the Notch signaling pathway in breast cancer stem cells (BCSCs). A literature survey and in-silico study identified Venetoclax as a γ-secretase inhibitor (GSI) from 1615 FDA-approved drug compounds. In-silico docking potential of Venetoclax was better than the standard γ-secretase inhibitor RO4929097. Also, the molecular dynamics simulations of 200 ns confirmed the stability of the Venetoclax-γ-secretase complex. These findings suggest that the use of Venetoclax represents a potential γ-secretase inhibitor in breast cancer stem cells. Eventually, the in vitro and clinical evaluation will be needed to confirm the potential chemopreventive and treatment effects of Venetoclax against breast cancer and breast cancer stem cells. Venetoclax appeared as the most promising drug of the 1615 FDA-approved drugs. Our in-silico findings suggest that Venetoclax may act as a γ-secretase inhibitor against the Notch signaling pathway in breast cancer stem cells.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/metabolismo , Receptores Notch/metabolismo , Secretases da Proteína Precursora do Amiloide , Reposicionamento de Medicamentos , Transdução de Sinais , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
12.
Ecotoxicol Environ Saf ; 252: 114605, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753971

RESUMO

BACKGROUND: The omnipresence of human phthalate (PAE) exposure is linked to various adverse health issues, including breast cancer. However, the effects of low-dose PAE exposure on breast cancer stem cells (BCSCs) and the underlying mechanism remain unexplored. METHODS: BCSCs from breast cancer cell lines (MDA-MB-231 and MCF-7) were enriched using a tumorsphere formation assay. Gene and protein expression was detected by measurement of quantitative real-time reverse transcription PCR, western blot, and immunofluorescence assays. Transient transfection assays were used to evaluate the involvement of Gli1, a signaling pathway molecule and ΔNp63α, an oncogene in influencing the PAE-induced characteristics of BCSCs. RESULTS: PAE (butylbenzyl phthalate, BBP; di-butyl phthalate, DBP; di-2-ethylhexyl phthalate, DEHP) exposure of 10-9 M significantly promoted the tumorsphere formation ability in BCSCs. Breast cancer spheroids with a 10-9 M PAE exposure had higher levels of BCSC marker mRNA and protein expression, activated sonic hedgehog (SHH) pathway, and increased mRNA and protein levels of an oncogene, ΔNp63α. Furthermore, suppression of the SHH pathway attenuated the effects of PAEs on BCSCs. And the overexpression of ΔNp63α enhanced PAE-induced characteristics of BCSCs, while low expression of ΔNp63α inhibited the promotion effects of PAEs on BCSCs and the SHH pathway. CONCLUSION: Low-dose PAE exposure promoted the stem cell properties of BCSCs in a ΔNp63α- and SHH-dependent manner. The influence of low-dose exposure of PAEs and its relevance for the lowest observed effect concentrations requires further investigation, and the precise underlying mechanism needs to be further explored.


Assuntos
Neoplasias da Mama , Proteínas Hedgehog , Humanos , Feminino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transdução de Sinais , Oncogenes , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
13.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958993

RESUMO

Breast cancer (BC) is the most diagnosed cancer in women and the second most common cancer globally. Significant advances in BC research have led to improved early detection and effective therapies. One of the key challenges in BC is the presence of BC stem cells (BCSCs). This small subpopulation within the tumor possesses unique characteristics, including tumor-initiating capabilities, contributes to treatment resistance, and plays a role in cancer recurrence and metastasis. In recent years, microRNAs (miRNAs) have emerged as potential regulators of BCSCs, which can modulate gene expression and influence cellular processes like BCSCs' self-renewal, differentiation, and tumor-promoting pathways. Understanding the miRNA signatures of BCSCs holds great promise for improving BC diagnosis and prognosis. By targeting BCSCs and their associated miRNAs, researchers aim to develop more effective and personalized treatment strategies that may offer better outcomes for BC patients, minimizing tumor recurrence and metastasis. In conclusion, the investigation of miRNAs as regulators of BCSCs opens new directions for advancing BC research through the use of bioinformatics and the development of innovative therapeutic approaches. This review summarizes the most recent and innovative studies and clinical trials on the role of BCSCs miRNAs as potential tools for early diagnosis, prognosis, and resistance.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transdução de Sinais , Células-Tronco Neoplásicas/metabolismo , Diferenciação Celular
14.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768848

RESUMO

Breast cancer stem cells (BCSCs) are responsible for tumour recurrence and therapy resistance. We have established primary BCSC cultures from human tumours of triple-negative breast cancer (TNBC), a subgroup of breast cancer likely driven by BCSCs. Primary BCSCs produce xenografts that phenocopy the tumours of origin, making them an ideal model for studying breast cancer treatment options. In the TNBC cell line MDA-MB-468, we previously screened kinases whose depletion elicited a differentiation response, among which IRAK2 was identified. Because primary BCSCs are enriched in IRAK2, we wondered whether IRAK2 downregulation might affect cellular growth. IRAK2 was downregulated in primary BCSCs and MDA-MB-468 by lentiviral delivery of shRNA, causing a decrease in cellular proliferation and sphere-forming capacity. When orthotopically transplanted into immunocompromised mice, IRAK2 knockdown cells produced smaller xenografts than control cells. At the molecular level, IRAK2 downregulation reduced NF-κB and ERK phosphorylation, IL-6 and cyclin D1 expression, ERN1 signalling and autophagy in a cell line-dependent way. Overall, IRAK2 downregulation decreased cellular aggressive growth and pathways often exploited by cancer cells to endure stress; therefore, IRAK2 may be considered an interesting target to compromise TNBC progression.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Regulação para Baixo , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
15.
Biochem Biophys Res Commun ; 597: 102-108, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35134607

RESUMO

Breast cancer stem cells (BCSCs) are slow cycling cells that escape the traditional chemo-radio-therapy, thereby contributing in resistance and recurrence. Although several markers have been identified, it is still challenging to develop strategies targeting them. In this study, we have isolated BCSCs from MCF-7 cell line using markers CD44+/CD24-/low, which showed higher percentage of mammospheres in CSC population. Moreover, in vivo tumorigenic potential of BCSCs showed as low as 10,000 cells had the ability to develop tumors when transplanted into NOD-SCID mice. We observed an increased level of EMT markers in CSC population. Overexpression of secretory phospholipase sPLA2-IIA was found in CSCs. Further, we have uncovered the upregulation of sPLA2-IIA mediated through JNK signaling in breast cancer cells whereas knockdown of sPLA2-IIA reduces JNK signaling, cell proliferation, EMT and in vivo tumorigenic potential in breast cancer cells. Our study reveals overexpression of sPLA2-IIA in two different breast cancer cells such as MCF7 (ER+,PR+) and a triple negative, MDA-MB-231 (ER-PR-HER2-). Further, the novel role of sPLA2-IIA was discerned by unraveling the molecular mechanism, which regulates the cell proliferation and metastasis in breast cancer cells.

16.
Toxicol Appl Pharmacol ; 437: 115887, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063459

RESUMO

Chemoresistance is an imminent therapeutic challenge for breast cancer. Previous evidence suggests that breast cancer stem cells (BCSC) develop resistance through upregulation of stemness and chemo-evasion markers viz. SOX2, OCT4, NANOG, MDR1 and CD44, following anticancer chemotherapeutic treatments. Early studies suggest an inhibitory role of Kaempferol in BCSC propagation through downregulation of epithelial to mesenchymal transition. We hypothesized that the pathway involved in chemoresistance could be effectively addressed through Kaempferol (K), alone or in combination with Verapamil (V), which is an inhibitor of MDR1. We used K in combination with V, in multiple assays to determine if there was an inhibitory effect on BCSC. Both K and KV attenuated pH-dependent mammosphere formation in primary BCSC and MDA-MB-231 cells. RNA and protein (immunocytochemistry, western blot) expression of candidate markers viz. SOX2, OCT4, NANOG, MDR1 and CD44 were carried out in the presence or absence of candidate drugs in ex-vivo grown primary BCSC and MDA-MB-231 cell line. Immunoprecipitation assay, cell cycle analysis was carried out in MDA-MB-231. Our candidate drugs were not only anti-proliferative, but also downregulated candidate genes expression at RNA and protein level in both settings, with more robust efficacy in KV treatment than K; induced G2/M dependent cell cycle arrest, and interrupted physical association of CD44 with NANOG as well as MDR1 in MDA-MB-231. In primary tumor explant but not in adjacent normal tissue, our candidate drugs K and KV induced robust γH2AX expression. Thus, our candidate drugs are effective in attenuating BCSC survival.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptores de Hialuronatos/metabolismo , Quempferóis/farmacologia , Proteína Homeobox Nanog/metabolismo , Verapamil/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/genética , Quempferóis/administração & dosagem , Proteína Homeobox Nanog/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Verapamil/administração & dosagem , Gencitabina
17.
Mol Biol Rep ; 49(1): 487-495, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34755264

RESUMO

BACKGROUND: Biological treatment of many cancers currently targets membrane bound receptors located on a cell surface. We are in a great to need identify novel membrane proteins associated with migration and metastasis of breast cancer cells. CD271, a single transmembrane protein belongs to tumor necrosis factor receptor family acts and play its role in proliferation of cancer cell. The purpose of this study is to investigate the role of CD271 in breast cancer. METHODS AND RESULTS: In this study we analyzed the mRNA expression of CD271 in breast tumor tissue, breast cancer cell line MCF7 and isolated cancer stem cells (MCF7-CSCs) by RT-qPCR. We also measured the protein levels through western blotting in MCF-7 cell line. CD271 was upregulated in breast cancer patients among all age groups. Within the promoter region of CD271, there is a binding site for NF-κB1 which overlaps a putative quadraplex forming sequence. While CD271 also activates NF-κB pathway, down regulation of CD271 through quadraplex targeting resulted in inhibition of NF-κB and its downstream targets Nanog and Sox2. CONCLUSION: In conclusion, our data shows that CD271 and NF-κB are regulated in interdependent manner. Upon CD271 inhibition, the NF-κB expression also reduces which in turn affects the cell proliferation and migration. These results suggest that CD271 is playing a crucial rule in cancer progression by regulating NF-κB and is a good candidate for the therapeutic targeting.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores de Fator de Crescimento Neural/genética , Transdução de Sinais , Transcriptoma , Biópsia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Ligantes , Modelos Biológicos , Ligação Proteica
18.
Lipids Health Dis ; 21(1): 67, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927653

RESUMO

BACKGROUND: Inflammatory breast cancer (IBC) represents a deadly aggressive phenotype of breast cancer (BC) with a unique clinicopathological presentation and low survival rate. In fact, obesity represents an important risk factor for BC. Although several studies have identified different cellular-derived and molecular factors involved in IBC progression, the role of adipocytes remains unclear. Cancer-associated adipose tissue (CAAT) expresses a variety of adipokines, which contribute to tumorigenesis and the regulation of cancer stem cell (CSC). This research investigated the potential effect of the secretome of CAAT explants from patients with BC on the progression and metastasis of the disease. METHODS: This study established an ex-vivo culture of CAAT excised from IBC (n = 13) vs. non-IBC (n = 31) patients with obesity and profiled their secretome using a cytokine antibody array. Furthermore, the quantitative PCR (qPCR) methodology was used to validate the levels of predominant cytokines at the transcript level after culture in a medium conditioned by CAAT. Moreover, the impact of the CAAT secretome on the expression of epithelial-mesenchymal transition (EMT) and cells with stem cell (CSC) markers was studied in the non-IBC MDA-MB-231 and the IBC SUM-149 cell lines. The statistical differences between variables were evaluated using the chi-squared test and unpaired a Student's t-test. RESULTS: The results of cytokine array profiling revealed an overall significantly higher level of a panel of 28 cytokines secreted by the CAAT ex-vivo culture from IBC patients with obesity compared to those with non-IBC. Of note, interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemo-attractant protein 1 (MCP-1) were the major adipokines secreted by the CAAT IBC patients with obesity. Moreover, the qPCR results indicated a significant upregulation of the IL-6, IL-8, and MCP-1 mRNAs in CAAT ex-vivo culture of patients with IBC vs. those with non-IBC. Intriguingly, a qPCR data analysis showed that the CAAT secretome secretions from patients with non-IBC downregulated the mRNA levels of the CD24 CSC marker and of the epithelial marker E-cadherin in the non-IBC cell line. By contrast, E-cadherin was upregulated in the SUM-149 cell. CONCLUSIONS: This study identified the overexpression of IL-6, IL-8, and MCP-1 as prognostic markers of CAAT from patients with IBC but not from those with non-IBC ; moreover, their upregulation might be associated with IBC aggressiveness via the regulation of CSC and EMT markers. This study proposed that targeting IL-6, IL-8, and MCP-1 may represent a therapeutic option that should be considered in the treatment of patients with IBC.


Assuntos
Neoplasias da Mama , Neoplasias Inflamatórias Mamárias , Adipocinas/genética , Tecido Adiposo/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas , Linhagem Celular Tumoral , Citocinas/genética , Feminino , Humanos , Neoplasias Inflamatórias Mamárias/genética , Neoplasias Inflamatórias Mamárias/metabolismo , Neoplasias Inflamatórias Mamárias/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8 , Obesidade/complicações , Obesidade/genética
19.
Proc Natl Acad Sci U S A ; 116(4): 1370-1377, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30622177

RESUMO

Breast cancers enduring treatment with chemotherapy may be enriched for cancer stem cells or tumor-initiating cells, which have an enhanced capacity for self-renewal, tumor initiation, and/or metastasis. Breast cancer cells that express the type I tyrosine kinaselike orphan receptor ROR1 also may have such features. Here we find that the expression of ROR1 increased in breast cancer cells following treatment with chemotherapy, which also enhanced expression of genes induced by the activation of Rho-GTPases, Hippo-YAP/TAZ, or B lymphoma Mo-MLV insertion region 1 homolog (BMI1). Expression of ROR1 also enhanced the capacity of breast cancer cells to invade Matrigel, form spheroids, engraft in Rag2-/-[Formula: see text] mice, or survive treatment with paclitaxel. Treatment of mice bearing breast cancer patient-derived xenografts (PDXs) with the humanized anti-ROR1 monoclonal antibody cirmtuzumab repressed expression of genes associated with breast cancer stemness, reduced activation of Rho-GTPases, Hippo-YAP/TAZ, or BMI1, and impaired the capacity of breast cancer PDXs to metastasize or reengraft Rag2-/-[Formula: see text] mice. Finally, treatment of PDX-bearing mice with cirmtuzumab and paclitaxel was more effective than treatment with either alone in eradicating breast cancer PDXs. These results indicate that targeting ROR1 may improve the response to chemotherapy of patients with breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Anticorpos Monoclonais , Mama/efeitos dos fármacos , Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Paclitaxel/farmacologia , Complexo Repressor Polycomb 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo
20.
Chem Biodivers ; 19(4): e202101001, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35254725

RESUMO

The biological activities of Zn(II) compounds have been extensively studied in recent years. In this study, the growth suppressive effect of Zn(II) 5,5-diethylbarbiturate complex on MCF-7 and MDA-MB-231 human breast cancer cells was determined by SRB and ATP viability assays and apoptosis-inducing effect by double staining method. Significant increase in cytokeratin 18 level, caspase 3/7 activity and annexin-V upregulation prove that Zn(II) complex has apoptotic effect in breast cancer cells. Intrinsic apoptosis pathway in MCF-7 cells and extrinsic apoptosis pathway in MDA-MB-231 cells was determined by Western blot (PARP, Cleave PARP, BAX, COX4, RIP, Caspase 8, Split Caspase 8, DR4 and B-Actin) and RT-PCR (PARP, Fas, Bcl-2, TNF10A, P53) analysis. No reduction of viability was found in MCF-710A healthy breast cells treated with Zn(II) complex. In breast cancer stem-like cells (MCF-7s), the Zn(II) complex was found to have a cytotoxic effect and to activate the apoptotic pathway. As a result, it was concluded that Zn(II) complex has anti-proliferative and apoptotic effects on breast cancer and breast cancer stem-like cells. Also this complex prevents the metastatic effect of cancer cells and does not effect to healthy cells so this complex has a specific effect on cancer cells. These findings might shed light on the discovery of new chemotherapeutic agents.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama/patologia , Caspase 8/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Zinco/metabolismo , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA