Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Physiol Endocrinol Metab ; 312(1): E72-E87, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27923808

RESUMO

Cidea is a gene highly expressed in thermogenesis-competent (UCP1-containing) adipose cells, both brown and brite/beige. Here, we initially demonstrate a remarkable adipose-depot specific regulation of Cidea expression. In classical brown fat, Cidea mRNA is expressed continuously and invariably, irrespective of tissue recruitment. However, Cidea protein levels are regulated posttranscriptionally, being conspicuously induced in the thermogenically recruited state. In contrast, in brite fat, Cidea protein levels are regulated at the transcriptional level, and Cidea mRNA and protein levels are proportional to tissue "briteness." Although routinely followed as a thermogenic molecular marker, Cidea function is not clarified. Here, we employed a gain-of-function approach to examine a possible role of Cidea in the regulation of thermogenesis. We utilized transgenic aP2-hCidea mice that overexpress human Cidea in all adipose tissues. We demonstrate that UCP1 activity is markedly suppressed in brown-fat mitochondria isolated from aP2-hCidea mice. However, mitochondrial UCP1 protein levels were identical in wild-type and transgenic mice. This implies a regulatory effect of Cidea on UCP1 activity, but as we demonstrate that Cidea itself is not localized to mitochondria, we propose an indirect inhibitory effect. The Cidea-induced inhibition of UCP1 activity (observed in isolated mitochondria) is physiologically relevant since the mice, through an appropriate homeostatic compensatory mechanism, increased the total amount of UCP1 in the tissue to exactly match the diminished thermogenic capacity of the UCP1 protein and retain unaltered nonshivering thermogenic capacity. Thus, we verified Cidea as being a marker of thermogenesis-competent adipose tissues, but we conclude that Cidea, unexpectedly, functions molecularly as an indirect inhibitor of thermogenesis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas Reguladoras de Apoptose/genética , Mitocôndrias/metabolismo , RNA Mensageiro/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Western Blotting , Calorimetria Indireta , Temperatura Baixa , Humanos , Camundongos , Camundongos Transgênicos , Consumo de Oxigênio , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Desacopladora 1/metabolismo
2.
J Pineal Res ; 55(4): 416-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24007241

RESUMO

Melatonin limits obesity in rodents without affecting food intake and activity, suggesting a thermogenic effect. Identification of brown fat (beige/brite) in white adipose tissue (WAT) prompted us to investigate whether melatonin is a brown-fat inducer. We used Zücker diabetic fatty (ZDF) rats, a model of obesity-related type 2 diabetes and a strain in which melatonin reduces obesity and improves their metabolic profiles. At 5 wk of age, ZDF rats and lean littermates (ZL) were subdivided into two groups, each composed of four rats: control and those treated with oral melatonin in the drinking water (10 mg/kg/day) for 6 wk. Melatonin induced browning of inguinal WAT in both ZDF and ZL rats. Hematoxylin-eosin staining showed patches of brown-like adipocytes in inguinal WAT in ZDF rats and also increased the amounts in ZL animals. Inguinal skin temperature was similar in untreated lean and obese rats. Melatonin increased inguinal temperature by 1.36 ± 0.02°C in ZL and by 0.55 ± 0.04°C in ZDF rats and sensitized the thermogenic effect of acute cold exposure in both groups. Melatonin increased the amounts of thermogenic proteins, uncoupling protein 1 (UCP1) (by ~2-fold, P < 0.01) and PGC-1α (by 25%, P < 0.05) in extracts from beige inguinal areas in ZL rats. Melatonin also induced measurable amounts of UCP1 and stimulated by ~2-fold the levels of PGC-1α in ZDF animals. Locomotor activity and circulating irisin levels were not affected by melatonin. These results demonstrate that chronic oral melatonin drives WAT into a brown-fat-like function in ZDF rats. This may contribute to melatonin's control of body weight and its metabolic benefits.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Melatonina/farmacologia , Tecido Adiposo Marrom/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Zucker , Fatores de Transcrição/metabolismo
3.
Methods Mol Biol ; 1566: 25-36, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28244038

RESUMO

Aside from mature adipocytes, adipose tissue harbors several distinct cell populations including immune cells, endothelial cells, and adipogenic progenitor cells (AdPCs). AdPCs represent the reservoir of regenerative cells that replenishes adipocytes during normal cellular turnover and during times of increased demand for triglyceride-storage capacity. The worldwide increase in pathologies associated with the metabolic syndrome, such as obesity and type-2 diabetes, has heightened public and scientific interest in adipose tissues and the cell biological processes of adipose tissue formation and function. Two distinct types of fat cells are known: White and brown adipocytes. Especially brown adipose tissue (BAT) has received considerable attention due to its unique capacity for thermogenic energy expenditure and potential role in the treatment of adiposity. Accordingly, the cold-induced conversion of white into brown-like adipocytes has become a feasible approach in humans and a study-subject in rodents to better understand the underlying molecular processes. Fluorescence-activated cell sorting (FACS) provides a method to isolate AdPCs and other cell populations from adipose tissue by using antibodies detecting unique surface markers. We here describe an approach to isolate cells committed to the adipogenic lineage and summarize established protocols to differentiate FACS-purified primary AdPCs into UCP1-expressing brown adipocytes under in vitro conditions.


Assuntos
Adipócitos Bege/citologia , Adipócitos Marrons/citologia , Diferenciação Celular , Separação Celular , Citometria de Fluxo , Células-Tronco/citologia , Células-Tronco/metabolismo , Adipogenia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Antígenos de Diferenciação/metabolismo , Técnicas de Cultura de Células , Separação Celular/métodos , Citometria de Fluxo/métodos , Imunofenotipagem , Camundongos
4.
Heart Metab ; 69: 9-14, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27524955

RESUMO

Brown adipose tissue (BAT) has evolved as a unique thermogenic organ that allows placental mammals to withstand cold environmental temperatures through the dissipation of metabolic energy in the form of heat. Although traditionally believed to be lost shortly after birth, metabolically active BAT depots have recently been identified in a large percentage of human adults. Besides classical brown cells, a distinct type of thermogenic adipocytes named beige or brite (brown in white) cells are recruited in white adipose tissue depots under specific stimuli. Given the well-known energy-dissipating properties of thermogenic adipose tissue and its function of metabolic sink for glucose and lipids, this tissue has attracted considerable research interest as a possible target for treating obesity and metabolic disease. The complex network of interorgan connections that regulate BAT and brite tissue mass and function is a major hurdle for the development of therapeutic strategies against metabolic disorders. This review provides an overview of the current knowledge on the regulation of BAT and brite adipose tissue function. The possibility of targeting these tissues to treat obesity and other metabolic disorders is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA