Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(42): 16778-83, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082136

RESUMO

Protein methyltransferase (PMT)-mediated posttranslational modification of histone and nonhistone substrates modulates stability, localization, and interacting partners of target proteins in diverse cellular contexts. These events play critical roles in normal biological processes and are frequently deregulated in human diseases. In the course of identifying substrates of individual PMTs, bioorthogonal profiling of protein methylation (BPPM) has demonstrated its merits. In this approach, specific PMTs are engineered to process S-adenosyl-L-methionine (SAM) analogs as cofactor surrogates and label their substrates with distinct chemical modifications for target elucidation. Despite the proof-of-concept advancement of BPPM, few efforts have been made to explore its generality. With two cancer-relevant PMTs, EuHMT1 (GLP1/KMT1D) and EuHMT2 (G9a/KMT1C), as models, we defined the key structural features of engineered PMTs and matched SAM analogs that can render the orthogonal enzyme-cofactor pairs for efficient catalysis. Here we have demonstrated that the presence of sulfonium-ß-sp(2) carbon and flexible, medium-sized sulfonium-δ-substituents are crucial for SAM analogs as BPPM reagents. The bulky cofactors can be accommodated by tailoring the conserved Y1211/Y1154 residues and nearby hydrophobic cavities of EuHMT1/2. Profiling proteome-wide substrates with BPPM allowed identification of >500 targets of EuHMT1/2 with representative targets validated using native EuHMT1/2 and SAM. This finding indicates that EuHMT1/2 may regulate many cellular events previously unrecognized to be modulated by methylation. The present work, therefore, paves the way to a broader application of the BPPM technology to profile methylomes of diverse PMTs and elucidate their downstream functions.


Assuntos
Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Neoplasias , Neoplasias , Proteína-Arginina N-Metiltransferases , S-Adenosilmetionina , Células HEK293 , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metilação , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/química , Neoplasias/genética , Neoplasias/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/genética , S-Adenosilmetionina/metabolismo , Especificidade por Substrato
2.
Trends Pharmacol Sci ; 40(9): 696-710, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31400823

RESUMO

Neuronal communication involves a multitude of neurotransmitters and an outstanding diversity of receptors and ion channels. Linking the activity of cell surface receptors and ion channels in defined neural circuits to brain states and behaviors has been a key challenge in neuroscience, since cell targeting is not possible with traditional neuropharmacology. We review here recent technologies that enable the effect of drugs to be restricted to specific cell types, thereby allowing acute manipulation of the brain's own proteins with circuit specificity. We highlight the importance of developing cell-specific neuropharmacology strategies for decoding the nervous system with molecular and circuit precision, and for developing future therapeutics with reduced side effects.


Assuntos
Sistema Nervoso/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Humanos , Neurofarmacologia/métodos
3.
Cell Chem Biol ; 26(2): 269-277.e5, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30581135

RESUMO

Molecules capable of directing changes to nucleic acid sequences are powerful tools for molecular biology and promising candidates for the therapeutic correction of disease-causing mutations. However, unwanted reactions at off-target sites complicate their use. Here we report selective combinations of mutant editing enzyme and directing oligonucleotide. Mutations in human ADAR2 (adenosine deaminase acting on RNA 2) that introduce aromatic amino acids at position 488 reduce background RNA editing. This residue is juxtaposed to the nucleobase that pairs with the editing site adenine, suggesting a steric clash for the bulky mutants. Replacing this nucleobase with a hydrogen atom removes the clash and restores editing activity. A crystal structure of the E488Y mutant bound to abasic site-containing RNA shows the accommodation of the tyrosine side chain. Finally, we demonstrate directed RNA editing in vitro and in human cells using mutant ADAR2 proteins and modified guide RNAs with reduced off-target activity.


Assuntos
Edição de Genes/métodos , RNA/química , Adenosina/química , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Linhagem Celular , Cristalografia por Raios X , Humanos , Mutagênese Sítio-Dirigida , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Methods Mol Biol ; 1413: 349-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27193860

RESUMO

During mitosis, multiple protein kinases transform the cytoskeleton and chromosomes into new and highly dynamic structures that mediate the faithful transmission of genetic information and cell division. However, the large number and strong conservation of mammalian kinases in general pose significant obstacles to interrogating them with small molecules, due to the difficulty in identifying and validating those which are truly selective. To overcome this problem, a steric complementation strategy has been developed, in which a bulky "gatekeeper" residue within the active site of the kinase of interest is replaced with a smaller amino acid, such as glycine or alanine. The enlarged catalytic pocket can then be targeted in an allele-specific manner with bulky purine analogs. This strategy provides a general framework for dissecting kinase function with high selectivity, rapid kinetics, and reversibility. In this chapter we discuss the principles and techniques needed to implement this chemical genetic approach in mammalian cells.


Assuntos
Mitose , Fosfotransferases/genética , Fosfotransferases/metabolismo , Engenharia de Proteínas , Alelos , Animais , Linhagem Celular , Clonagem Molecular , Edição de Genes , Pontos de Checagem da Fase M do Ciclo Celular/genética , Mitose/genética , Mutagênese , Penetrância , Fosfotransferases/química , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA