Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biotechnol Bioeng ; 120(11): 3357-3367, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37489799

RESUMO

As biomanufacturers consider the transition from batch to continuous processing, it will be necessary to re-examine the design and operating conditions for many downstream processes. For example, the integration of virus removal filtration in continuous biomanufacturing will likely require operation at low and constant filtrate flux instead of the high (constant) transmembrane pressures (TMPs) currently employed in traditional batch processing. The objective of this study was to examine the effect of low operating filtrate flux (5-100 L/m2 /h) on protein fouling during normal flow filtration of human serum Immunoglobulin G (hIgG) through the Viresolve® Pro membrane, including a direct comparison of the fouling behavior during constant-flux and constant-pressure operation. The filter capacity, defined as the volumetric throughput of hIgG solution at which the TMP increased to 30 psi, showed a distinct minimum at intermediate filtrate flux (around 20-30 L/m2 /h). The fouling data were well-described using a previously-developed mechanistic model based on sequential pore blockage and cake filtration, suitably modified for operation at constant flux. Simple analytical expressions for the pressure profiles were developed in the limits of very low and high filtrate flux, enabling rapid estimation of the filter performance and capacity. The model calculations highlight the importance of both the pressure-dependent rate of pore blockage and the compressibility of the protein cake to the fouling behavior. These results provide important insights into the overall impact of constant-flux operation on the protein fouling behavior and filter capacity during virus removal filtration using the Viresolve® Pro membrane.


Assuntos
Membranas Artificiais , Vírus , Humanos , Filtração/métodos , Imunoglobulina G , Alimentos
2.
Microsc Microanal ; : 1-11, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039098

RESUMO

In the present paper, as part of an interdisciplinary research project (Priority Programme SPP2045), we propose a possible way to design an open access archive for particle-discrete tomographic datasets: the PARROT database (https://parrot.tu-freiberg.de). This archive is the result of a pilot study in the field of particle technology and three use cases are presented for illustrative purposes. Instead of providing a detailed instruction manual, we focus on the methodologies of such an archive. The presented use cases stem from our working group and are intended to demonstrate the advantage of using such an archive with concise and consistent data for potential and ongoing studies. Data and metadata merely serve as examples and need to be adapted for disciplines not concerned here. Since all datasets within the PARROT database and its source code are freely accessible, this study represents a starting point for similar projects.

3.
Biotechnol Bioeng ; 116(10): 2621-2631, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31184371

RESUMO

A combined pore blockage and cake filtration model was applied to the virus filtration of an Fc-fusion protein using the three commercially available filters, F-1, F-2, and F-3 in a range of buffer conditions including sodium-phosphate and tris-acetate buffers with and without 200 mM NaCl at pH 7.5. The fouling behaviors of the three filters for the feed solutions spiked with minute virus of mice were described well by this combined model for all the solution conditions. This suggests that fouling of the virus filters is dominated by the pore blockage mechanism during the initial stage of the filtration and transformed to the cake filtration mechanism during the later stage of the filtration. Both flux and transmembrane resistance can be described well by this model. The pore blockage rate and the rate of increase of protein layer resistance over blocked pores are found to be affected by membrane properties as well as the solution conditions resulting from the modulation of interactions between virus, protein, and membrane by the solution conditions.


Assuntos
Filtração , Fragmentos Fc das Imunoglobulinas/química , Vírus Miúdo do Camundongo/isolamento & purificação , Animais , Soluções Tampão , Camundongos , Vírus Miúdo do Camundongo/química , Proteínas Recombinantes de Fusão/química
4.
Sep Purif Technol ; 163: 30-38, 2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32288608

RESUMO

Nanofibrous filter have been proven effective to remove nano-aerosols with size less than 100 nm. Cleaning is required after long-term use; however, very little has been published on the subject. An experimental investigation has been launched to determine backpulse, backblow and combined backpulse-backblow on cleaning of a loaded nanofiber filter. Nylon 6 nanofiber filters were loaded with polydispersed NaCl particles, 60% < 100 nm and 90% < 160 nm, generated from an aerosol generator. Air jets in form of backpulse, backblow and their combined mode were used to clean a loaded filter. During cleaning, the filter cake was removed first for which the pressure drop across the loaded filter decreased rapidly, followed by loosely attached aerosols in the filter being removed with finite pressure drop reduction at a reasonable rate, ending in the final stage for which much lesser aerosols were being removed. Ultimately, the filter reached a residual pressure drop which was higher than that of the initial clean filter indicating residual aerosols were trapped both in the cake heel and filter. Backpulse has been found to be more effective in removing the cake from the filter surface, whereas backblow provides an added advantage of removing by convection of the detached aerosols away from the filter preventing recapture. The synergistic combination of backpulse-backblow provides the best cleaning performance of a nanofibrous filter loaded with nano-aerosols.

5.
Membranes (Basel) ; 13(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37755223

RESUMO

In the field of liquid filtration, the realization of gas throughput-free cake filtration has been investigated for a long time. Cake filtration without gas throughput would lead to energy savings in general and would reduce the mechanically achievable residual moisture in filter cakes in particular. The reason why gas throughput-free filtration could not be realized with fabrics so far is that the achievable pore sizes are not small enough, and that the associated capillary pressure is too low for gas throughput-free filtration. Microporous membranes can prevent gas flow through open pores and cracks in the filter cake at a standard differential pressure for cake filtration of 0.8 bar due to their smaller pore size. Since large-scale implementation with membranes was not yet successful due to their inadequate mechanical strength, this work focuses on the development and testing of a novel composite material. It combines the advantages of gas throughput-free filtration using membranes with the mechanical stability of fabrics. For the production of the composites, a paste dot coating with adhesive, which is a common method in the textile industry, was used. Based on filtration experiments, delamination and tensile tests, as well as µCT analysis, it is shown that this method is suitable for the production of composite filter materials for gas throughput-free cake filtration.

6.
Membranes (Basel) ; 12(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35207078

RESUMO

Freshwater is a limited resource, which has driven the development of new purification and water-reuse technologies. One promising technology for water treatment is membrane distillation (MD). One of the main problems of MD, and of many desalination technologies, is membrane fouling, which reduces the performance of the membrane. This work presents a mathematical model that aims to predict distillate fluxes in direct-contact MD when fouling occurs as salts are deposited onto the membrane surface, forming an inorganic fouling layer. The mathematical model uses a heat- and mass-transfer formulation for prediction of the distillate flux under steady state conditions, and it is combined with the cake-filtration theory to represent the distillate fluxes after the onset of membrane fouling. Model results agree well with experimental observation of distillate fluxes, both before (~12-14 kg m-2 h-1) and after the onset of membrane fouling, with root-mean-square errors smaller than 1.4 kg m-2 h-1 in all the experiments. These results suggest that the cake-filtration theory can be used to represent water flux decline in MD membranes prone to inorganic fouling. From our experiments and from the modelling exercise, we found that the onset of membrane failure was relatively constant; the precipitation reaction constant is conditioned by the physicochemical interaction between the feed solution and the membrane; and the rate of flux decline after membrane fouling depends on flow conditions as well as on the precipitation compound. However, the proposed model has limitations that must be addressed in future investigations to validate it under a wider range of operating conditions, for membranes composed by other materials and with different feed solutions to address organic, biological, and/or colloidal fouling, which typically occur under real conditions.

7.
Chemosphere ; 275: 130033, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33676278

RESUMO

Cleaning-in-place (CIP) is a representative fouling management process from which the filtration performances of fouled membranes can be recovered. However, CIP can cause significant inefficiency in water production because frequent system restabilization is necessary for cleaning processes. This study applied a newly developed on-line cleaning agent (OCA, a feed water additive for fouling mitigation), to reduce the number of CIP by enhancing water productivity. Reverse osmosis filtration was performed to evaluate the effect of on-line cleaning on the mitigation of organic fouling originating from humic acid (HA) and bovine serum albumin. OCA increased the permeate flux in proportion to OCA concentration. In particular, OCA effectively reduced the fouling layer thickness by 22% when fouling was influenced by HA-Ca2+ complexation, increasing water production by 5%. It also had a minor influence on bovine serum albumin fouling, producing a 1.4% increase in permeate flux. Furthermore, the pore blockage-cake filtration model was used to evaluate OCA cleaning performance through the reduction in fouling layer resistance and the growth parameter. The results demonstrated the advantages of OCA utilization for mitigating cake layer development. These findings imply that OCA can be an effective cleaning additive, especially in seawater and groundwater treatment processes with a high proportion of HA and calcium ions.


Assuntos
Purificação da Água , Filtração , Substâncias Húmicas , Membranas Artificiais , Osmose
8.
Colloids Surf B Biointerfaces ; 185: 110626, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31735421

RESUMO

This study presents the investigation of deformability of various microbial cells in terms of filter cake compressibility during cake filtration using ultrafiltration membranes in dead-end mode. The examined microbial cells include mycoplasma, Gram-positive and Gram-negative bacteria, and Pseudomonas aeruginosa phage PP7. Polystyrene particles were used as an incompressible reference. The compressibility results were correlated to the deformability of a microbial cell, induced by its cell envelope. To determine the deformability of the different microbial cells under different process conditions, their cake resistance was measured under varying pressures from 10 to 250 kPa and temperatures from 2 to 35 °C. In addition, the influence of different culture media on the cell properties of Acholeplasma laidlawii and its behavior under different pressure and temperature was determined. The results of the pressure and temperature experiments revealed that Gram-positive S. epidermidis was found to be relatively stiff due to the thickness of the peptidoglycan layer, under different pressure and temperature conditions. No significant increase of the specific cake resistance of S. epidermidis could be determined. B. diminuta however showed a high deformation tendency when the pressure was increased indicating relatively soft cells. Mycoplasma A. laidlawii cells cultivated in three different media showed a different, but significant, effect of pressure and temperature.


Assuntos
Bactérias/citologia , Membranas Artificiais , Ultrafiltração , Bacteriófagos/fisiologia , Poliestirenos/química , Porosidade , Pressão , Temperatura
9.
Sci Total Environ ; 711: 134951, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812409

RESUMO

The major problem that limits the utilization of PES membranes in treatment of oily wastewater is the drastic irreversible membrane fouling due to the attachment of oil droplets onto the membrane surface. The goal of this study was to develop a novel, fast and facile post-functionalization of polydopamine (PDA) coated membranes using pre-synthesized nanoparticles for fabrication of novel organic-inorganic hybrid recoverable membranes with high hydrophilicity and underwater oleophobicity. Here, bio-inspired technique was studied because the membrane technology could separate small oil droplets (even <10 µm) with high performance if faced little fouling phenomena during the treatment process. The amino-functionalized multi-wall carbon nanotubes (N-MWCNTs) were anchored onto the PDA coated PES membranes. The membranes characteristics, with specific focus on surface morphology and wettability were investigated. The newly developed PES/PDA/N-MWCNTs membranes showed an enhanced flux (~1086%) compared to the unmodified PES membrane. This enhancement was attributed to the high hydrophilic and underwater oleophobic properties, which were found to alleviate the effect of fouling. The total fouling ratio (Rt) of the PES/PDA/N-MWCNTs membrane was 22.35%, which was far lower than that of the unmodified PES membrane (98.38%). Meanwhile, most of the fouling was reversible for the former with the remaining (irreversible fouling) of 18.08%. It was concluded that cake filtration is the dominant fouling mechanism of the PES/PDA/N-MWCNTs membranes due to their average pore diameter. The modified membranes showed high oil rejection (>99%) so that the obtained clean water with oil concentration lower than 5 ppm met the wastewater discharge standard recommendations. Also, evaluation of the PES/PDA/N-MWCNT membrane in cross-flow filtration showed its antifouling properties in the long-term application (16 h).

10.
J Microbiol Methods ; 159: 69-74, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30797892

RESUMO

Escherichia coli is an important fecal indicator bacterium that is used to evaluate the microbiological quality of water. The Colilert-18 (Quanti-Tray/2000) is a widely used, rapid, and simple quantitative method for detecting E. coli in drinking water, bathing water, and wastewater. However, Colilert-18 method is less reliable for seawater; false positives are often caused by halophilic bacteria such as Vibrio. While false positives can be avoided by diluting the sample by 10 times or more, the resulting decrease in detection limit makes it difficult to quantify E. coli in seawater. In this study, we combined cake filtration, using hydroxyapatite powder, with the Colilert-18 method to remove salinity without diluting the water sample. When quantifying E. coli in river water, the E. coli concentration obtained from the cake filtration/Colilert-18 method showed a high quantitative value of 90% or more, on average, compared to the concentration obtained with the original Colilert-18 method. The E. coli concentrations in seawater determined using the developed method were similar to those determined using the modified m-TEC method, with no false positives. Highly reliable quantitative values can be obtained using the proposed method because it is possible to measure 100 times as much sample compared to the dilution method. Thus, the developed method is expected to be a powerful tool that can eliminate the problem of false positives.


Assuntos
Escherichia coli/química , Filtração/métodos , Hidroxiapatitas/química , Água do Mar/química , Purificação da Água/métodos , Adsorção , Bactérias/química , Bactérias/isolamento & purificação , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Filtração/instrumentação , Água do Mar/microbiologia
11.
Chemosphere ; 184: 1286-1297, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28672727

RESUMO

The formation, composition and characteristics of soluble microbial products (SMPs) were investigated in a novel system which coupled a sequencing batch reactor with a cake filtration system. Both suspended solids (SS) and turbidity were significantly removed, resulting in effluent SS of 0.12 mg L-1 and turbidity of 0.72 NTU after cake filtration. The average concentrations of proteins and carbohydrates decreased respectively from 4.0 ± 0.4 and 7.1 ± 0.6 mg/L in the sequencing batch reactor (SBR) mixed liquor, to 0.85 ± 0.21 and 1.39 ± 0.29 mg/L in the cake filtration effluent. Analysis of the molecular weight (MW) distribution of SMPs revealed a substantial reduction in the intensity of high-MW peaks (503 and 22.71 kDa) after cake filtration, which implied the sludge cake layer and the underlying gel layer may play a role in the effectiveness of cake filtration beyond the physical phenomenon. Three-dimensional excitation emission matrix fluorescence spectroscopy indicated that polycarboxylate- and polyaromatic humic acids were the dominant compounds and a noticeable decrease in the fraction of these compounds was observed in the cake filtration effluent. Analysis with GC-MS set for detecting low-MW SMPs identified aromatics, alcohols, alkanes and esters as the dominant compounds. SMPs exhibited both biodegradable and recalcitrant characteristics. More SMPs (total number of 91) were accumulated during the SBR start-up stage. A noticeable increase in the aromatic fractions was seen in the SBR effluent accoutring for 39% of total compounds, compared to the SBR mixed liquor (28%). Fewer compounds (total number of 66) were identified in cake filtration effluent compared to the SBR effluent (total number of 75).


Assuntos
Eliminação de Resíduos Líquidos/métodos , Poluentes da Água/análise , Reatores Biológicos , Filtração/métodos , Substâncias Húmicas , Esgotos , Microbiologia da Água
12.
Artigo em Inglês | MEDLINE | ID: mdl-26742053

RESUMO

Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti's RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti's newly developed static (non-rotating) Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.


Assuntos
Incrustação Biológica/prevenção & controle , Reatores Biológicos/microbiologia , Filtros Microporos/microbiologia , Rotação , Águas Residuárias/microbiologia , Purificação da Água/métodos , Seguimentos , Modelos Teóricos
13.
Water Res ; 48: 420-9, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24156951

RESUMO

This study investigated the applicability of dynamic membrane technology in anaerobic membrane bioreactors for the treatment of high strength wastewaters. A monofilament woven fabric was used as support material for dynamic membrane formation. An anaerobic dynamic membrane bioreactor (AnDMBR) was operated under a variety of operational conditions, including different sludge retention times (SRTs) of 20 and 40 days in order to determine the effect of SRT on both biological performance and dynamic membrane filtration characteristics. High COD removal efficiencies exceeding 99% were achieved during the operation at both SRTs. Higher filtration resistances were measured during the operation at SRT of 40 days in comparison to SRT of 20 days, applying a stable flux of 2.6 L/m(2) h. The higher filtration resistances coincided with lower extracellular polymeric substances concentration in the bulk sludge at SRT of 40 days, likely resulting in a decreased particle flocculation. Results showed that dynamic membrane technology achieved a stable and high quality permeate and AnDMBRs can be used as a reliable and satisfactory technology for treatment of high strength wastewaters.


Assuntos
Reatores Biológicos , Membranas Artificiais , Anaerobiose , Filtração , Esgotos , Águas Residuárias , Purificação da Água/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA