Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(15): e2307473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009727

RESUMO

With the advent of wireless technology, magnetic-carbon composites with strong electromagnetic wave (EMW) absorption capability in low-/middle-frequency range are highly desirable. However, it remains challenging for rational construction of such absorbers bearing multiple magnetic components that show uniform distribution and favorable magnetic loss. Herein, a facile metal-oxo cluster (MOC) precursor strategy is presented to produce high-efficiency magnetic carbon composites. Nanosized MOC Fe15 shelled with organic ligands is employed as a novel magnetic precursor, thus allowing in situ formation and uniform deposition of multicomponent magnetic Fe/Fe3O4@Fe3C and Fe/Fe3O4 nanoparticles on graphene oxides (GOs) and carbon nanotubes (CNTs), respectively. Owing to the good dispersity and efficient magnetic-dielectric synergy, quaternary Fe/Fe3O4@Fe3C-GO exhibits strong low-frequency absorption with RLmin of -53.5 dB at C-band and absorption bandwidth covering 3.44 GHz, while ultrahigh RLmin of -73.2 dB is achieved at X-band for ternary Fe/Fe3O4-CNT. The high performance for quaternary and ternary composites is further supported by the optimal specific EMW absorption performance (-15.7 dB mm-1 and -31.8 dB mm-1) and radar cross-section reduction (21.72 dB m2 and 34.37 dB m2). This work provides a new avenue for developing lightweight low-/middle-frequency EMW absorbers, and will inspire the investigation of more advanced EMW absorbers with multiple magnetic components and regulated microstructures.

2.
J Synchrotron Radiat ; 31(Pt 5): 1179-1188, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39105531

RESUMO

The paper considers the possibility of using the diamond-silicon carbide composite Skeleton® with a technological coating of polycrystalline silicon as a substrate for X-ray mirrors used with powerful synchrotron radiation sources (third+ and fourth generation). Samples were studied after polishing to provide the following surface parameters: root-mean-square flatness ≃ 50 nm, micro-roughness on the frame 2 µm × 2 µm σ ≃ 0.15 nm. The heat capacity, thermal conductivity and coefficient of linear thermal expansion were investigated. For comparison, a monocrystalline silicon sample was studied under the same conditions using the same methods. The value of the coefficient of linear thermal expansion turned out to be higher than that of monocrystalline silicon and amounted to 4.3 × 10-6 K-1, and the values of thermal conductivity (5.0 W cm-1 K-1) and heat capacity (1.2 J K-1 g-1) also exceeded the values for Si. Thermally induced deformations of both Skeleton® and monocrystalline silicon samples under irradiation with a CO2 laser beam have also been experimentally studied. Taking into account the obtained thermophysical constants, the calculation of thermally induced deformation under irradiation with hard (20 keV) X-rays showed almost three times less deformation of the Skeleton® sample than of the monocrystalline silicon sample.

3.
Chemphyschem ; 25(4): e202300796, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38100512

RESUMO

A series of carbon composites were synthesised by carbonisation of resorcinol-formaldehyde resin mixtures with the addition of different amounts of sodium alginate (SA) and compared with a composite prepared using Na2 CO3 as a catalyst for the polymerisation reaction. The effect of operating parameters such as SA concentration and polycondensation time on the structural and morphological properties of resorcinol-formaldehyde resins (RFR) and carbon-derived composites was investigated for further use as adsorbents. The synthesised composites were characterised by FTIR, SEM, Raman spectroscopy and N2 adsorption/desorption techniques. It was found that the morphology, specific surface area (SBET ~347-559 m2 /g), volume and particle size distribution (~0.5-4 µm) and porosity (Vpor =0.178-0.348 cm3 /g) of the composites were influenced by the concentration of SA and the synthesis technique and determined the adsorption properties of the materials. It was found that the surface of the filled chars was found to have an affinity for heavy metals and has the ability to form chemical bonds with cadmium ions. The maximum sorption capacities for Cd(II), i. e. 13.28 mg/g, were observed for the sample synthesised with the highest SA content. This confirms the statement that as-synthesised materials are promising adsorbents for environmental applications.

4.
Small ; 19(38): e2302029, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37194986

RESUMO

Sodium-ion batteries (SIBs) have received increasing attention because of their appealing cell voltages and cost-effective features. However, the atom aggregation and electrode volume variation inevitably deteriorate the sodium storage kinetics. Here a new strategy is proposed to boost the lifetime of SIB by synthesizing sea urchin-like FeSe2 /nitrogen-doped carbon (FeSe2 /NC) composites. The robust FeN coordination hinders the Fe atom aggregation and accommodates the volume expansion, while the unique biomorphic morphology and high conductivity of FeSe2 /NC enhance the intercalation/deintercalation kinetics and shorten the ion/electron diffusion length. As expected, FeSe2 /NC electrodes deliver excellent half (387.6 mAh g-1 at 20.0 A g-1 after 56 000 cycles) and full (203.5 mAh g-1 at 1.0 A g-1 after 1200 cycles) cell performances. Impressively, an ultralong lifetime of SIB composed of FeSe2 /Fe3 Se4 /NC anode is uncovered with the cycle number exceeding 65 000. The sodium storage mechanism is clarified with the aid of density function theory calculations and in situ characterizations. This work hereby provides a new paradigm for enhancing the lifetime of SIB by constructing a unique coordination environment between active material and framework.

5.
Environ Res ; 217: 114912, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435498

RESUMO

Low-cost and concentrated industrial wastes have been recognized as a sustainable resource for preparation of new functional materials. Here, a new method was designed for the synthesis of porous composites containing high-purity Na-P1 zeolite and porous carbon from waste coal gasification fine slag (CGFS), which was treated first by acid leaching to controllably remove metal impurities and adjust Si/Al ratio, followed by NaOH fusion and hydrothermal treatment. By leaching with 1.0 mol/L HCl solution, the Si/Al ratio of the raw CGFS increased to 5.7, and the obtained CZ-1.0 consisted of high-purity Na-P1 zeolite with a typical cone-shaped flower cluster shape. The residue carbon in CGFS can be further activated to form porous carbon and graphite carbon layers interposed in the zeolite structure. The specific surface area and pore volume of CZ-1.0 reached 153.91 m2/g and 0.18 cm3/g, respectively. CZ-1.0 exhibited remarkable adsorption performance for methylene blue (MB) with the adsorption capacity reaching 137.5 mg/g for 100 mg/L MB solution. The adsorption process is mainly controlled by the chemisorption mechanism, and the adsorption of MB by CZ-1.0 may include ion exchange, hydrogen bond interaction, π-π bond interaction and van der Waals force. NaCl solution was successfully used as the desorption agent to regenerate the composite material, and the removal rate remained above 92% after five cycles. This work provides an effective strategy to synthesize a practically applicable adsorbent from the waste coal gasification fine slag for the purification of MB wastewater.


Assuntos
Carvão Mineral , Zeolitas , Zeolitas/química , Porosidade , Carbono , Águas Residuárias , Cinza de Carvão , Adsorção
6.
Mikrochim Acta ; 191(1): 20, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091124

RESUMO

Co-based coordination polymers (CoCP) based on 4,4'-bis(1H-benzo[d]imidazol-1-yl)-1,1'-biphenyl (BMB) ligand have been synthesized for the first time by the solvothermal method. The CoCP was carbonized at 700 °C under a nitrogen atmosphere to obtain carbide coordination polymer (C-CoCP) with a unique two-dimensional layered network structure. C-CoCP@GO was obtained by binding with GO and C-CoCP, its morphology and structure were investigated by XRD, SEM, EDS, FTIR, and TGA, which confirmed its two-dimensional stacked layered structure with high catalytic activity and large specific surface area. A highly sensitive electrochemical sensor was constructed for the simultaneous detection of hydroquinone and catechol based on the prepared carbon-based composite. Under optimized conditions, the working potentials (vs. Ag/AgCl) of HQ and CC are at 0.097 V and 0.213 V, respectively. The sensor exhibited an extremely wide linear range of 3-600 µM and 3-1750 µM for hydroquinone (HQ) and catechol (CC), respectively, with limits of detection (LOD) of 0.46 µM and 0.27 µM. The electrode material demonstrated stability over 14 days without significant attenuation of the response signal. Impressively, the sensor shows high stability, reproducibility, and selectivity due to the stable carbon skeleton structure of the C-CoCP material. In addition, it can be applied to the detection of hydroquinone in real samples with high interference immunity and high recovery. Hence, the C-CoCP@GO composite proved to be a great prospect and highly sensitive sensing platform for the detection of phenolic isomers.

7.
Molecules ; 28(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37959837

RESUMO

Biomass exploitation is a global trend due to the circular economy and the environmentally friendly spirit. Numerous applications are now based on the use of biomass-derived products. Hydrogen sulfide (H2S) is a highly toxic and environmentally hazardous gas which is emitted from various processes. Thus, the efficient removal of this toxic hazardous gas following cost-effective processes is an essential requirement. In this study, we present the synthesis and characterization of biomass-derived activated carbon/zinc oxide (ZnO@AC) composites from different biomass sources as potential candidates for H2S sorption. The synthesis involved a facile method for activated carbon production via pyrolysis and chemical activation of biomass precursors (spent coffee, Aloe-Vera waste leaves, and corncob). Activated carbon production was followed by the incorporation of zinc oxide nanoparticles into the porous carbon matrix using a simple melt impregnation method. The synthesized ZnO@AC composites were characterized using X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and nitrogen porosimetry. The H2S removal performance of the ZnO@AC composites was evaluated through sorption experiments using a handmade apparatus. Our findings demonstrate that the Aloe-Vera-, spent coffee-, and corncob-derived composites exhibit superior H2S sorption capacity up to 106 mgH2S/gads., 66 mgH2S/gads., and 47 mgH2S/gads., respectively.

8.
J Environ Sci Health B ; 57(12): 917-931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36433822

RESUMO

This work describes fabrication steps of the carbon composite based on molecular imprinted poly(methacrylic acid) (MIP-CC) as a new adsorbent for the selective removal of fenpiroxymate pesticide (Fen). The prepared composite was characterized using Brunauer-Emmett-Teller (BET), zeta sizer and Field Emission Scanning Electron Microscopy (FESEM) techniques. The influence of operational parameters such as solution pH, contact time, amount MIP for preparation of carbon composite and amount MIP- CC toward removal of Fen have been evaluated and optimized via central composite design (CCD) as an optimization tool of response surface method. The optimum removal (87%) was achieved at pH 6.5, 1.53 g/L carbon composite prepared with 3.4 wt % MIP at 70 min. The maximum adsorption of Fen by the fabricated MIP-CC was 254 mg/g. Compared with the corresponding non-imprinted polymer (NIP-CC), the MIP-CC exhibited higher adsorption capacity and outstanding selectivity toward Fen. Langmuir isotherm best fitted the adsorption equilibrium data of MIP-CC and the kinetics followed a pseudo-second-order model. The calculated thermodynamic parameters showed that adsorption of Fen pesticide was spontaneous and exothermic under the studied conditions.


Assuntos
Impressão Molecular , Impressão Molecular/métodos , Metacrilatos/química , Benzoatos , Adsorção
9.
Anal Biochem ; 634: 114393, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597616

RESUMO

The electrochemical performance of dual layer immunosensor has been studied by employing reduced Graphene oxide (rGO) and its nanocomposites with Carbon Nanofibers (CNFs) and Carbon Nanotubes (CNTs) as supporting matrix for the detection of CA125. The immunosensor determination was based on the formation of antibody - antigen immunocomplex, a decrement in the current response was observed in accordance with the concentration of antigen. Better performance exhibited by rGO/CNF in terms of linearity (99%) and sensitivity 0.65 µA (µg mL-1)-1 can be attributed to its conductivity and surface area. The nanocomposite are employed in the detection of CA125 with linear working range of 10-32 × 10-4 µg mL-1, the limit of detection is found to be 0.28 pg mL-1 rGO nanocomposite with CNT (rGO/CNT) is studied as transducer material. rGO/CNT exhibited better linearity when compared to rGO due to its good conductivity. Thus, graphene nanocomposite transducer materials have vital application in detection of oncomarkers.


Assuntos
Técnicas Biossensoriais/métodos , Antígeno Ca-125/análise , Grafite/química , Nanocompostos/química , Nanotubos de Carbono/química , Carbono/química , Condutividade Elétrica , Técnicas Eletroquímicas , Ouro/química , Humanos , Imunoensaio/métodos , Limite de Detecção , Nanopartículas Metálicas/química , Nanofibras/química , Espectroscopia Fotoeletrônica/métodos
10.
Molecules ; 26(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34771037

RESUMO

Currently, a serious threat for living organisms and human life in particular, is water contamination with persistent organic and inorganic pollutants. To date, several techniques have been adopted to remove/treat organics and toxic contaminants. Adsorption is one of the most effective and economical methods for this purpose. Generally, porous materials are considered as appropriate adsorbents for water purification. Conventional adsorbents such as activated carbons have a limited possibility of surface modification (texture and functionality), and their adsorption capacity is difficult to control. Therefore, despite the significant progress achieved in the development of the systems for water remediation, there is still a need for novel adsorptive materials with tunable functional characteristics. This review addresses the new trends in the development of new adsorbent materials. Herein, modern carbon-based materials, such as graphene, oxidized carbon, carbon nanotubes, biomass-derived carbonaceous matrices-biochars as well as their composites with metal-organic frameworks (MOFs) and MOF-derived highly-ordered carbons are considered as advanced adsorbents for removal of hazardous organics from drinking water, process water, and leachate. The review is focused on the preparation and modification of these next-generation carbon-based adsorbents and analysis of their adsorption performance including possible adsorption mechanisms. Simultaneously, some weak points of modern carbon-based adsorbents are analyzed as well as the routes to conquer them. For instance, for removal of large quantities of pollutants, the combination of adsorption and other methods, like sedimentation may be recommended. A number of efficient strategies for further enhancing the adsorption performance of the carbon-based adsorbents, in particular, integrating approaches and further rational functionalization, including composing these adsorbents (of two or even three types) can be recommended. The cost reduction and efficient regeneration must also be in the focus of future research endeavors. The targeted optimization of the discussed carbon-based adsorbents associated with detailed studies of the adsorption process, especially, for multicomponent adsorbate solution, will pave a bright avenue for efficient water remediation.

11.
Environ Res ; 183: 109156, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32000003

RESUMO

The selective degradation of recalcitrant antibiotics into byproducts with low toxicity and high biodegradability has been increasingly popular using peroxymonosulfate (PMS) based advanced oxidation processes (AOPs). In this paper, two Fe-based heterogeneous catalysts, bentonite supported Fe-Ni composite (BNF) and biochar-supported Fe composite (Fe/C), were tailored and comprehensively characterized for distinctive physicochemical properties, crystalline structures, and interfacial behaviors. Two widely used antibiotics, sulfapyridine (SPY) and oxytetracycline (OTCs) at their common concentrations in pharmaceutical wastewaters (250 and 10 mg L-1) were tested for degradation in three PMS-based oxidation processes, i.e., PMS, PMS-BNF, and PMS-Fe/C, respectively. Results demonstrated that a large amount of PMS (10 and 1 mM) could effectively remove SPY (0.385 min-1, 100% removal) and OTC (2.737 min-1, 100% removal) via1O2 derived from PMS self-decomposition and non-radical pathway, respectively. Additional Fe-based catalysts (0.5 g L-1 Fe/C and BNF) significantly reduced the PMS consumption (1 and 0.25 mM) and accelerated the reaction rate (1.08 and 5.05 min-1) of SPY and OTC removal. Moreover, the supplementary catalysts shifted the degradation route. The biochar matrix in Fe/C composite contributed to predominant interaction with PMS forming 1O2, which preferably attacked SPY via hydroxylation. In contrast, the redox-active Fe-Ni pairs induced SO4- formation, which could selectively degrade OTC through decarboxylation. Thus, these results are conducive to tailoring advanced yet low-cost heterogeneous catalysts for eco-friendly treatment of antibiotics-rich industrial wastewaters.


Assuntos
Antibacterianos , Bentonita , Carvão Vegetal , Águas Residuárias , Purificação da Água
12.
Mikrochim Acta ; 186(9): 639, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31440837

RESUMO

A metal-free catalyst is described that consists of a composite that can be prepared from mesoporous carbon spheres (MCS) and graphene oxide (GO) under mild aqueous synthetic conditions. The reduced graphene oxide (rGO) sheets tend to aggregate, but due to the insertion of MCS, the aggregation is prevented. This leads to a larger surface area and more adsorption sites for the cancer drug doxorubicin (DOX). The π-interaction between DOX and rGO is also beneficial for the adsorption of DOX. A glassy carbon electrode (GCE) was modified with the composite and used to detect low levels of DOX, typically at a peak potential near -0.45 V (vs. Ag/AgCl). The modified GCE has a wide linear response range (10 nM - 10 µM), a low limit of detection (1.5 nM; at S/N = 3), excellent selectivity, long-term storage stability and reproducibility. It was applied to the determination of DOX in spiked serum where it gave reliable results. Graphical abstract Schematic representation of the preparation of mesoporous carbon spheres/reduced graphene oxide (MCS/rGO) sample, and the CV scan of doxorubicin (DOX) on MCS/rGO based nanoprode.


Assuntos
Antibióticos Antineoplásicos/análise , Técnicas Biossensoriais , Doxorrubicina/análise , Técnicas Eletroquímicas , Nanocompostos/química , Carbono/química , Humanos , Nanosferas/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
13.
J Environ Sci (China) ; 75: 346-358, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30473300

RESUMO

The utilization of waste products as valuable materials was a technical imperative for waste management. In this study, the cost-effective attapulgite/carbon (APT/C) composite was developed for wastewater treatment using waste hot-pot oil as a carbon precursor through a facile one-step calcination process. The APT/C composite prepared at 300°C exhibited the excellent adsorption capacity and rapid equilibrium rate over a broad pH range for the removal of various pollutants. More importantly, the removal ratios of the composites toward Methyl Violet and tetracycline still remained 77.6% and 60.2% of the initial adsorption capacity after ten adsorption-regeneration cycles via a facile thermal regeneration strategy, respectively. Beyond all doubt, this research provided a feasible and economical way for the sustainable utilization of waste hot-pot oil in wastewater treatment, achieving the concept of disposal waste with waste and recycling.


Assuntos
Resíduos Industriais , Compostos de Magnésio , Compostos de Silício , Eliminação de Resíduos Líquidos/métodos , Adsorção , Carbono , Cinética , Resíduos , Águas Residuárias , Poluentes Químicos da Água
14.
Angew Chem Int Ed Engl ; 58(42): 14964-14968, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31389652

RESUMO

Transition-metal-carbon (CTM) composites show ample activity in many catalytic reactions. However, control of composition, distribution, and properties is challenging. Now, a straightforward path for the synthesis of transition-metal nanoparticles engulfed in crystalline carbon is presented with excellent control over the metal composition, amount, ratio, and catalytic properties. This approach uses molten monomers that coordinate metals ions at high temperature. At high temperatures, strong coordination bonds direct the growth of carbon material with homogeneous metals distribution and with negligible losses, owing to the liquid-like reaction compared to the traditional solid-state reaction. The strength of the approach is demonstrated by the synthesis of mono, binary, and trinary transition-metal-crystalline-carbon composites with tunable and precise elemental composition as well as good electrochemical properties as oxygen evolution reaction electrocatalysts.

15.
Small ; 14(39): e1801498, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30151984

RESUMO

Flexible supercapacitors have shown enormous potential for portable electronic devices. Herein, hierarchical 3D all-carbon electrode materials are prepared by assembling N-doped graphene quantum dots (N-GQDs) on carbonized MOF materials (cZIF-8) interweaved with carbon nanotubes (CNTs) for flexible all-solid-state supercapacitors. In this ternary electrode, cZIF-8 provides a large accessible surface area, CNTs act as the electrical conductive network, and N-GQDs serve as highly pseudocapactive materials. Due to the synergistic effect and hierarchical assembly of these components, N-GQD@cZIF-8/CNT electrodes exhibit a high specific capacitance of 540 F g-1 at 0.5 A g-1 in a 1 m H2 SO4 electrolyte and excellent cycle stability with 90.9% capacity retention over 8000 cycles. The assembled supercapacitor possesses an energy density of 18.75 Wh kg-1 with a power density of 108.7 W kg-1 . Meanwhile, three supercapacitors connected in series can power light-emitting diodes for 20 min. All-solid-state N-GQD@cZIF-8/CNT flexible supercapacitor exhibits an energy density of 14 Wh kg-1 with a power density of 89.3 W kg-1 , while the capacitance retention after 5000 cycles reaches 82%. This work provides an effective way to construct novel electrode materials with high energy storage density as well as good cycling performance and power density for high-performance energy storage devices via the rational design.

16.
Small ; 14(11): e1703279, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29356354

RESUMO

Shuttle effect of the dissolved intermediates is regarded as the primary cause that leads to fast capacity degradation of Li-S battery. Herein, a microporous carbon-coated sulfur composite with novel rambutan shape (R-S@MPC) is synthesized from microporous carbon-coated rambutan-like zinc sulfide (R-ZnS@MPC), via an in situ oxidation process. The R-ZnS is employed as both template and sulfur precursor. The carbon frame of R-S@MPC composite possesses three kinds of pores that are distinctly separated from each other in space and are endowed with the exclusive functions. The central macropore serves as buffer pool to accommodate the dissolved lithium polysulfides (LPSs) and volumetric variation during cycling. The marginal straight-through mesoporous, connected with the central macropore, takes the responsibility of sulfur storage. The micropores, evenly distributed in the outer carbon shell of the as-synthesized R-S@MPC, enable the blockage of LPSs. These pores are expected to perform their respective single function, and collaborate synergistically to suppress the sulfur loss. Therefore, it delivers an outstanding cycling stability, decay rate of 0.013% cycle-1 after 500 cycles at 1 C, when the sulfur loading is kept at 4 mg cm-2 .

17.
Small ; 13(12)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28151582

RESUMO

Oxygen electrocatalysis, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), plays an extremely important role in oxygen-based renewable-energy technologies such as rechargeable metal-air batteries, regenerative fuel cells and water splitting. Perovskite oxides have recently attracted increasing interest and hold great promise as efficient ORR and OER catalysts to replace noble-metal-based catalysts, owing to their high intrinsic catalytic activity, abundant variety, low cost, and rich resources. The introduction of perovskite-carbon interfaces by forming perovskite/carbon composites may bring a synergistic effect between the two phases, thus benefiting the oxygen electrocatalysis. This review provides a comprehensive overview of recent advances in perovskite/carbon composites for oxygen electrocatalysis in alkaline media, aiming to provide insights into the key parameters that influence the ORR/OER performance of the composites, including the physical/chemical properties and morphologies of the perovskites, the multiple roles of carbon, the synthetic method and the synergistic effect. A special emphasis is placed on the origin of the synergistic effect associated with the interfacial interaction between the perovskite and the carbon phases for enhanced ORR/OER performance. Finally, the existing challenges and the future directions for the synthesis and development of more efficient oxygen catalysts based on perovskite/carbon composites are proposed.

18.
Chemistry ; 23(61): 15283-15288, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28868759

RESUMO

Synergy between graphitic nanocarbon, obtainable from food waste through cracking of biomethane, and iron oxide nanoparticles provides access to efficient bifunctional electro catalysts. Dissolution of potassium-intercalated graphitic nanocarbons yields graphenide solutions with calibrated, small lateral size-reduced graphenes that are used subsequently as reducing agents of iron metal salts. This results in the strong binding of small size (2-5 nm) nanoparticles on the carbon framework homogeneously within the composite material, accessibility of the catalytic centers, and good conductivity provided by the underlying carbon framework. The iron oxide nanocarbon electrocatalyst performances are highlighted by the overall overpotential of approximately 1 V needed to reach the benchmark threshold of 10 mA cm-2 for the oxygen reduction reaction and the particular activity towards oxygen evolution reaction (η≈0.4 V at 10 mA cm-2 ), comparable to that of the precious RuO2 and IrO2 catalysts. This iron oxide/nanocarbon electrocatalyst is versatile, remarkably active, stable, and truly sustainable.

19.
Chemphyschem ; 18(3): 287-291, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-27860105

RESUMO

This study highlights that Fe additives offer better catalytic properties than carbon, Fe-C (iron carbide/carbon composites), and Fe-Mg (Mg2 FeH6 ) additives for the low-temperature dehydrogenation of magnesium hydride. The in situ X-ray diffraction measurements prove the formation of a Mg2 FeH6 phase in iron additive loaded MgH2 . Nonetheless, differential scanning calorimetry data suggest that this Mg2 FeH6 phase does not have any influence on dehydrogenation properties of MgH2 . On the other hand, the composite system Mg2 FeH6 /MgH2 shows significantly improved dehydrogenation properties even in absence of further additives. It is suggested that the improved system performance of Fe loaded MgH2 is attributed to restrictions on crystal growth of MgH2 and the catalytic behavior of Fe nanoparticles, rather than any intrinsic catalytic properties offered by the formed mixed metal phase Mg2 FeH6 .

20.
IEEE Trans Microw Theory Tech ; 64(11): 3807-3819, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28057959

RESUMO

We present a free-space measurement technique for non-destructive non-contact electrical and dielectric characterization of nano-carbon composites in the Q-band frequency range of 30 GHz to 50 GHz. The experimental system and error correction model accurately reconstruct the conductivity of composite materials that are either thicker than the wave penetration depth, and therefore exhibit negligible microwave transmission (less than -40 dB), or thinner than the wave penetration depth and, therefore, exhibit significant microwave transmission. This error correction model implements a fixed wave propagation distance between antennas and corrects the complex scattering parameters of the specimen from two references, an air slab having geometrical propagation length equal to that of the specimen under test, and a metallic conductor, such as an aluminum plate. Experimental results were validated by reconstructing the relative dielectric permittivity of known dielectric materials and then used to determine the conductivity of nano-carbon composite laminates. This error correction model can simplify routine characterization of thin conducting laminates to just one measurement of scattering parameters, making the method attractive for research, development, and for quality control in the manufacturing environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA