Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Pharmacol Rev ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866561

RESUMO

Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well-known modification intricately associated with the pathogenesis of CMDs This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies including multi-omics, intestinal microflora analysis, organoid and single-cell sequencing techniques are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assesse the current literatures to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. Significance Statement The comprehensive review covers recent developments in H2S biology and pharmacology in CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.

2.
Physiology (Bethesda) ; 39(2): 98-125, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051123

RESUMO

The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.


Assuntos
Diabetes Mellitus , Doenças Metabólicas , Humanos , Diabetes Mellitus/metabolismo , Tecido Adiposo/metabolismo , Homeostase , Doenças Metabólicas/metabolismo , Transdução de Sinais
3.
FASEB J ; 38(6): e23505, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38507255

RESUMO

Aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) are distinct disorders leading to left ventricular hypertrophy (LVH), but whether cardiac metabolism substantially differs between these in humans remains to be elucidated. We undertook an invasive (aortic root, coronary sinus) metabolic profiling in patients with severe AS and HCM in comparison with non-LVH controls to investigate cardiac fuel selection and metabolic remodeling. These patients were assessed under different physiological states (at rest, during stress induced by pacing). The identified changes in the metabolome were further validated by metabolomic and orthogonal transcriptomic analysis, in separately recruited patient cohorts. We identified a highly discriminant metabolomic signature in severe AS in all samples, regardless of sampling site, characterized by striking accumulation of long-chain acylcarnitines, intermediates of fatty acid transport across the inner mitochondrial membrane, and validated this in a separate cohort. Mechanistically, we identify a downregulation in the PPAR-α transcriptional network, including expression of genes regulating fatty acid oxidation (FAO). In silico modeling of ß-oxidation demonstrated that flux could be inhibited by both the accumulation of fatty acids as a substrate for mitochondria and the accumulation of medium-chain carnitines which induce competitive inhibition of the acyl-CoA dehydrogenases. We present a comprehensive analysis of changes in the metabolic pathways (transcriptome to metabolome) in severe AS, and its comparison to HCM. Our results demonstrate a progressive impairment of ß-oxidation from HCM to AS, particularly for FAO of long-chain fatty acids, and that the PPAR-α signaling network may be a specific metabolic therapeutic target in AS.


Assuntos
Estenose da Valva Aórtica , Cardiomiopatia Hipertrófica , Humanos , Receptores Ativados por Proliferador de Peroxissomo , Cardiomiopatia Hipertrófica/genética , Hipertrofia Ventricular Esquerda/genética , Estenose da Valva Aórtica/genética , Ácidos Graxos/metabolismo
4.
J Mol Cell Cardiol ; 189: 83-89, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484473

RESUMO

Diabetic heart disease morbidity and mortality is escalating. No specific therapeutics exist and mechanistic understanding of diabetic cardiomyopathy etiology is lacking. While lipid accumulation is a recognized cardiomyocyte phenotype of diabetes, less is known about glycolytic fuel handling and storage. Based on in vitro studies, we postulated the operation of an autophagy pathway in the myocardium specific for glycogen homeostasis - glycophagy. Here we visualize occurrence of cardiac glycophagy and show that the diabetic myocardium is characterized by marked glycogen elevation and altered cardiomyocyte glycogen localization. We establish that cardiac glycophagy flux is disturbed in diabetes. Glycophagy may represent a potential therapeutic target for alleviating the myocardial impacts of metabolic disruption in diabetic heart disease.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/tratamento farmacológico , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Glicogênio/metabolismo , Autofagia , Diabetes Mellitus/metabolismo
5.
Adv Exp Med Biol ; 1441: 365-396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884721

RESUMO

The heart is composed of a heterogeneous mixture of cellular components perfectly intermingled and able to integrate common environmental signals to ensure proper cardiac function and performance. Metabolism defines a cell context-dependent signature that plays a critical role in survival, proliferation, or differentiation, being a recognized master piece of organ biology, modulating homeostasis, disease progression, and adaptation to tissue damage. The heart is a highly demanding organ, and adult cardiomyocytes require large amount of energy to fulfill adequate contractility. However, functioning under oxidative mitochondrial metabolism is accompanied with a concomitant elevation of harmful reactive oxygen species that indeed contributes to the progression of several cardiovascular pathologies and hampers the regenerative capacity of the mammalian heart. Cardiac metabolism is dynamic along embryonic development and substantially changes as cardiomyocytes mature and differentiate within the first days after birth. During early stages of cardiogenesis, anaerobic glycolysis is the main energetic program, while a progressive switch toward oxidative phosphorylation is a hallmark of myocardium differentiation. In response to cardiac injury, different signaling pathways participate in a metabolic rewiring to reactivate embryonic bioenergetic programs or the utilization of alternative substrates, reflecting the flexibility of heart metabolism and its central role in organ adaptation to external factors. Despite the well-established metabolic pattern of fetal, neonatal, and adult cardiomyocytes, our knowledge about the bioenergetics of other cardiac populations like endothelial cells, cardiac fibroblasts, or immune cells is limited. Considering the close intercellular communication and the influence of nonautonomous cues during heart development and after cardiac damage, it will be fundamental to better understand the metabolic programs in different cardiac cells in order to develop novel interventional opportunities based on metabolic rewiring to prevent heart failure and improve the limited regenerative capacity of the mammalian heart.


Assuntos
Metabolismo Energético , Miocárdio , Miócitos Cardíacos , Humanos , Animais , Miócitos Cardíacos/metabolismo , Miocárdio/metabolismo , Coração , Diferenciação Celular , Glicólise , Fosforilação Oxidativa , Transdução de Sinais , Mitocôndrias Cardíacas/metabolismo
6.
Exp Physiol ; 108(6): 874-890, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37184360

RESUMO

NEW FINDINGS: What is the central question of this study? What are the physiological roles of cardiomyocyte-derived tetrahydrobiopterin (BH4) in cardiac metabolism and stress response? What is the main finding and its importance? Cardiomyocyte BH4 has a physiological role in cardiac metabolism. There was a shift of substrate preference from fatty acid to glucose in hearts with targeted deletion of BH4 synthesis. The changes in fatty-acid metabolic profile were associated with a protective effect in response to ischaemia-reperfusion (IR) injury, and reduced infarct size. Manipulating fatty acid metabolism via BH4 availability could play a therapeutic role in limiting IR injury. ABSTRACT: Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide (NO) synthases in which its production of NO is crucial for cardiac function. However, non-canonical roles of BH4 have been discovered recently and the cell-specific role of cardiomyocyte BH4 in cardiac function and metabolism remains to be elucidated. Therefore, we developed a novel mouse model of cardiomyocyte BH4 deficiency, by cardiomyocyte-specific deletion of Gch1, which encodes guanosine triphosphate cyclohydrolase I, a required enzyme for de novo BH4 synthesis. Cardiomyocyte (cm)Gch1 mRNA expression and BH4 levels from cmGch1 KO mice were significantly reduced compared to Gch1flox/flox (WT) littermates. Transcriptomic analyses and protein assays revealed downregulation of genes involved in fatty acid oxidation in cmGch1 KO hearts compared with WT, accompanied by increased triacylglycerol concentration within the myocardium. Deletion of cardiomyocyte BH4 did not alter basal cardiac function. However, the recovery of left ventricle function was improved in cmGch1 KO hearts when subjected to ex vivo ischaemia-reperfusion (IR) injury, with reduced infarct size compared to WT hearts. Metabolomic analyses of cardiac tissue after IR revealed that long-chain fatty acids were increased in cmGch1 KO hearts compared to WT, whereas at 5 min reperfusion (post-35 min ischaemia) fatty acid metabolite levels were higher in WT compared to cmGch1 KO hearts. These results indicate a new role for BH4 in cardiomyocyte fatty acid metabolism, such that reduction of cardiomyocyte BH4 confers a protective effect in response to cardiac IR injury. Manipulating cardiac metabolism via BH4 could play a therapeutic role in limiting IR injury.


Assuntos
Miócitos Cardíacos , Traumatismo por Reperfusão , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/metabolismo , Óxido Nítrico Sintase/metabolismo , Infarto/metabolismo , Ácidos Graxos/metabolismo
7.
Cardiovasc Drugs Ther ; 37(2): 379-399, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35881280

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is recognised as an increasingly prevalent, morbid and burdensome condition with a poor outlook. Recent advances in both the understanding of HFpEF and the technological ability to image cardiac function and metabolism in humans have simultaneously shone a light on the molecular basis of this complex condition of diastolic dysfunction, and the inflammatory and metabolic changes that are associated with it, typically in the context of a complex patient. This review both makes the case for an integrated assessment of the condition, and highlights that metabolic alteration may be a measurable outcome for novel targeted forms of medical therapy. It furthermore highlights how recent technological advancements and advanced medical imaging techniques have enabled the characterisation of the metabolism and function of HFpEF within patients, at rest and during exercise.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico , Diagnóstico por Imagem , Exercício Físico , Função Ventricular Esquerda
8.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569578

RESUMO

Parkinson's-disease (PD) is an incurable, age-related neurodegenerative disease, and its global prevalence of disability and death has increased exponentially. Although motor symptoms are the characteristic manifestations of PD, the clinical spectrum also contains a wide variety of non-motor symptoms, which are the main cause of disability and determinants of the decrease in a patient's quality of life. Noteworthy in this regard is the stress on the cardiac system that is often observed in the course of PD; however, its effects have not yet been adequately researched. Here, an untargeted metabolomics approach was used to assess changes in cardiac metabolism in the 6-hydroxydopamine model of PD. Beta-sitosterol, campesterol, cholesterol, monoacylglycerol, α-tocopherol, stearic acid, beta-glycerophosphoric acid, o-phosphoethanolamine, myo-inositol-1-phosphate, alanine, valine and allothreonine are the metabolites that significantly discriminate parkinsonian rats from sham counterparts. Upon analysis of the metabolic pathways with the aim of uncovering the main biological pathways involved in concentration patterns of cardiac metabolites, the biosynthesis of both phosphatidylethanolamine and phosphatidylcholine, the glucose-alanine cycle, glutathione metabolism and plasmalogen synthesis most adequately differentiated sham and parkinsonian rats. Our results reveal that both lipid and energy metabolism are particularly involved in changes in cardiac metabolism in PD. These results provide insight into cardiac metabolic signatures in PD and indicate potential targets for further investigation.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/metabolismo , Oxidopamina , Doenças Neurodegenerativas/complicações , Qualidade de Vida , Alanina
9.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834946

RESUMO

The increased metabolic activity of the heart as a pump involves a high demand of mitochondrial adenosine triphosphate (ATP) production for its mechanical and electrical activities accomplished mainly via oxidative phosphorylation, supplying up to 95% of the necessary ATP production, with the rest attained by substrate-level phosphorylation in glycolysis. In the normal human heart, fatty acids provide the principal fuel (40-70%) for ATP generation, followed mainly by glucose (20-30%), and to a lesser degree (<5%) by other substrates (lactate, ketones, pyruvate and amino acids). Although ketones contribute 4-15% under normal situations, the rate of glucose use is drastically diminished in the hypertrophied and failing heart which switches to ketone bodies as an alternate fuel which are oxidized in lieu of glucose, and if adequately abundant, they reduce myocardial fat delivery and usage. Increasing cardiac ketone body oxidation appears beneficial in the context of heart failure (HF) and other pathological cardiovascular (CV) conditions. Also, an enhanced expression of genes crucial for ketone break down facilitates fat or ketone usage which averts or slows down HF, potentially by avoiding the use of glucose-derived carbon needed for anabolic processes. These issues of ketone body utilization in HF and other CV diseases are herein reviewed and pictorially illustrated.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Corpos Cetônicos/metabolismo , Cetonas , Insuficiência Cardíaca/metabolismo , Glucose/metabolismo , Trifosfato de Adenosina
10.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373444

RESUMO

Ischemic heart disease (IHD) is the leading cause of heart failure (HF) and is a significant cause of morbidity and mortality globally. An ischemic event induces cardiomyocyte death, and the ability for the adult heart to repair itself is challenged by the limited proliferative capacity of resident cardiomyocytes. Intriguingly, changes in metabolic substrate utilisation at birth coincide with the terminal differentiation and reduced proliferation of cardiomyocytes, which argues for a role of cardiac metabolism in heart regeneration. As such, strategies aimed at modulating this metabolism-proliferation axis could, in theory, promote heart regeneration in the setting of IHD. However, the lack of mechanistic understanding of these cellular processes has made it challenging to develop therapeutic modalities that can effectively promote regeneration. Here, we review the role of metabolic substrates and mitochondria in heart regeneration, and discuss potential targets aimed at promoting cardiomyocyte cell cycle re-entry. While advances in cardiovascular therapies have reduced IHD-related deaths, this has resulted in a substantial increase in HF cases. A comprehensive understanding of the interplay between cardiac metabolism and heart regeneration could facilitate the discovery of novel therapeutic targets to repair the damaged heart and reduce risk of HF in patients with IHD.


Assuntos
Insuficiência Cardíaca , Isquemia Miocárdica , Recém-Nascido , Humanos , Coração , Miócitos Cardíacos/metabolismo , Isquemia Miocárdica/metabolismo , Insuficiência Cardíaca/metabolismo , Proliferação de Células
11.
Diabetologia ; 65(3): 411-423, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994805

RESUMO

Diabetes contributes to the development of heart failure through various metabolic, structural and biochemical changes. The presence of diabetes increases the risk for the development of cardiovascular disease (CVD), and since the introduction of cardiovascular outcome trials to test diabetic drugs, the importance of improving our understanding of the mechanisms by which diabetes increases the risk for heart failure has come under the spotlight. In addition to the coronary vasculature changes that predispose individuals with diabetes to coronary artery disease, diabetes can also lead to cardiac dysfunction independent of ischaemic heart disease. The hyperlipidaemic, hyperglycaemic and insulin resistant state of diabetes contributes to a perturbed energy metabolic milieu, whereby the heart increases its reliance on fatty acids and decreases glucose oxidative rates. In addition to changes in cardiac energy metabolism, extracellular matrix remodelling contributes to the development of cardiac fibrosis, and impairments in calcium handling result in cardiac contractile dysfunction. Lipotoxicity and glucotoxicity also contribute to impairments in vascular function, cardiac contractility, calcium signalling, oxidative stress, cardiac efficiency and lipoapoptosis. Lastly, changes in protein acetylation, protein methylation and DNA methylation contribute to a myriad of gene expression and protein activity changes. Altogether, these changes lead to decreased cardiac efficiency, increased vulnerability to an ischaemic insult and increased risk for the development of heart failure. This review explores the above mechanisms and the way in which they contribute to cardiac dysfunction in diabetes.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Diabetes Mellitus/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Humanos , Miocárdio/metabolismo , Oxirredução
12.
BMC Genomics ; 23(1): 421, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659182

RESUMO

Physiological trait variation underlies health, responses to global climate change, and ecological performance. Yet, most physiological traits are complex, and we have little understanding of the genes and genomic architectures that define their variation. To provide insight into the genetic architecture of physiological processes, we related physiological traits to heart and brain mRNA expression using a weighted gene co-expression network analysis. mRNA expression was used to explain variation in six physiological traits (whole animal metabolism (WAM), critical thermal maximum (CTmax), and four substrate specific cardiac metabolic rates (CaM)) under 12 °C and 28 °C acclimation conditions. Notably, the physiological trait variations among the three geographically close (within 15 km) and genetically similar F. heteroclitus populations are similar to those found among 77 aquatic species spanning 15-20° of latitude (~ 2,000 km). These large physiological trait variations among genetically similar individuals provide a powerful approach to determine the relationship between mRNA expression and heritable fitness related traits unconfounded by interspecific differences. Expression patterns explained up to 82% of metabolic trait variation and were enriched for multiple signaling pathways known to impact metabolic and thermal tolerance (e.g., AMPK, PPAR, mTOR, FoxO, and MAPK) but also contained several unexpected pathways (e.g., apoptosis, cellular senescence), suggesting that physiological trait variation is affected by many diverse genes.


Assuntos
Mudança Climática , Transcriptoma , Aclimatação , Animais , Fenótipo , RNA Mensageiro , Temperatura
13.
Am J Physiol Heart Circ Physiol ; 322(6): H1032-H1043, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486479

RESUMO

Our group previously demonstrated that an excess of nutrients, as observed in diabetes, provokes an increase in cardiac protein acetylation responsible for a reduced insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane. The acetylated proteins involved in this event have yet not been identified. α-Tubulin is a promising candidate as a major cytoskeleton component involved, among other things, in the translocation of GLUT4-containing vesicles from their intracellular pools toward the plasma membrane. Moreover, α-tubulin is known to be acetylated, Lys40 (K40) being its best characterized acetylated residue. The present work sought to evaluate the impact of α-tubulin K40 acetylation on cardiac glucose entry, with a particular interest in GLUT4 translocation. First, we observed that a mouse model of high-fat diet-induced obesity presented an increase in cardiac α-tubulin K40 acetylation level. We next showed that treatment of insulin-sensitive primary cultured adult rat cardiomyocytes with tubacin, a specific tubulin acetylation inducer, reduced insulin-stimulated glucose uptake and GLUT4 translocation. Conversely, decreasing α-tubulin K40 acetylation by expressing a nonacetylable dominant form of α-tubulin (mCherry α-tubulin K40A mutant) remarkably intensified insulin-induced glucose transport. Finally, mCherry α-tubulin K40A expression similarly improved glucose transport in insulin-resistant cardiomyocytes or after AMP-activated protein kinase activation. Taken together, our study demonstrates that modulation of α-tubulin K40 acetylation level affects glucose transport in cardiomyocytes, offering new putative therapeutic insights regarding modulation of glucose metabolism in insulin-resistant and diabetic hearts.NEW & NOTEWORTHY Acetylation level of α-tubulin on K40 is increased in the heart of a diet-induced mouse model of type 2 diabetes. Pharmacological stimulation of α-tubulin K40 acetylation lowers insulin-mediated GLUT4 vesicles translocation to the plasma membrane, reducing glucose transport. Expressing a nonacetylable dominant form of α-tubulin boosts glucose uptake in both insulin-sensitive and insulin-resistant cardiomyocytes.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Miócitos Cardíacos , Tubulina (Proteína) , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilação , Animais , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Lisina/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Transporte Proteico , Ratos , Tubulina (Proteína)/metabolismo
14.
Basic Res Cardiol ; 117(1): 42, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008727

RESUMO

Sympathetic nerve denervation after myocardial infarction (MI) predicts risk of sudden cardiac death. Therefore, therapeutic approaches limit infarct size, improving adverse remodeling and restores sympathetic innervation have a great clinical potential. Remote ischemic perconditioning (RIPerc) could markedly attenuate MI-reperfusion (MIR) injury. In this study, we aimed to assess its effects on cardiac sympathetic innervation and metabolism. Transient myocardial ischemia is induced by ligature of the left anterior descending coronary artery (LAD) in male Sprague-Dawley rats, and in vivo cardiac 2-[18F]FDG and [11C]mHED PET scans were performed at 14-15 days after ischemia. RIPerc was induced by three cycles of 5-min-long unilateral hind limb ischemia and intermittent 5 min of reperfusion during LAD occlusion period. The PET quantitative parameters were quantified in parametric polar maps. This standardized format facilitates the regional radioactive quantification in deficit regions to remote areas. The ex vivo radionuclide distribution was additionally identified using autoradiography. Myocardial neuron density (tyrosine hydroxylase positive staining) and chondroitin sulfate proteoglycans (CSPG, inhibiting neuron regeneration) expression were assessed by immunohistochemistry. There was no significant difference in the mean hypometabolism 2-[18F]FDG uptake ratio (44.6 ± 4.8% vs. 45.4 ± 4.4%) between MIR rats and MIR + RIPerc rats (P > 0.05). However, the mean [11C]mHED nervous activity of denervated myocardium was significantly elevated in MIR + RIPerc rats compared to the MIR rats (35.9 ± 7.1% vs. 28.9 ± 2.3%, P < 0.05), coupled with reduced denervated myocardium area (19.5 ± 5.3% vs. 27.8 ± 6.6%, P < 0.05), which were associated with preserved left-ventricular systolic function, a less reduction in neuron density, and a significant reduction in CSPG and CD68 expression in the myocardium. RIPerc presented a positive effect on cardiac sympathetic-nerve innervation following ischemia, but showed no significant effect on myocardial metabolism.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Fluordesoxiglucose F18 , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley
15.
FASEB J ; 35(11): e21956, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34605573

RESUMO

MicroRNAs are key regulators of the cardiac response to injury. MiR-100 has recently been suggested to be involved in different forms of heart failure, but functional studies are lacking. In the present study, we examined the impact of transgenic miR-100 overexpression on cardiac structure and function during physiological aging and pathological pressure-overload-induced heart failure in mice after transverse aortic constriction surgery. MiR-100 was moderately upregulated after induction of pressure overload in mice. While in our transgenic model the cardiomyocyte-specific overexpression of miR-100 did not result in an obvious cardiac phenotype in unchallenged mice, the transgenic mouse strain exhibited less left ventricular dilatation and a higher ejection fraction than wildtype animals, demonstrating an attenuation of maladaptive cardiac remodeling by miR-100. Cardiac transcriptome analysis identified a repression of several regulatory genes related to cardiac metabolism, lipid peroxidation, and production of reactive oxygen species (ROS) by miR-100 overexpression, possibly mediating the observed functional effects. While the modulation of ROS-production seemed to be indirectly affected by miR-100 via Alox5-and Nox4-downregulation, we demonstrated that miR-100 induced a direct repression of the scavenger protein CD36 in murine hearts resulting in a decreased uptake of long-chain fatty acids and an alteration of mitochondrial respiratory function with an enhanced glycolytic state. In summary, we identified miR-100 as a modulator of cardiac metabolism and ROS production without an apparent cardiac phenotype at baseline but a protective effect under conditions of pressure-overload-induced cardiac stress, providing new insight into the mechanisms of heart failure.


Assuntos
Antígenos CD36/metabolismo , Insuficiência Cardíaca/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Animais , Antígenos CD36/genética , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Células HEK293 , Insuficiência Cardíaca/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , NADPH Oxidase 4/genética , Ratos , Volume Sistólico/genética , Transfecção , Remodelação Ventricular/genética
16.
Circ Res ; 126(1): 60-74, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31698999

RESUMO

RATIONALE: Metabolic and structural remodeling is a hallmark of heart failure. This remodeling involves activation of the mTOR (mammalian target of rapamycin) signaling pathway, but little is known on how intermediary metabolites are integrated as metabolic signals. OBJECTIVE: We investigated the metabolic control of cardiac glycolysis and explored the potential of glucose 6-phosphate (G6P) to regulate glycolytic flux and mTOR activation. METHODS AND RESULTS: We developed a kinetic model of cardiomyocyte carbohydrate metabolism, CardioGlyco, to study the metabolic control of myocardial glycolysis and G6P levels. Metabolic control analysis revealed that G6P concentration is dependent on phosphoglucose isomerase (PGI) activity. Next, we integrated ex vivo tracer studies with mathematical simulations to test how changes in glucose supply and glycolytic flux affect mTOR activation. Nutrient deprivation promoted a tight coupling between glucose uptake and oxidation, G6P reduction, and increased protein-protein interaction between hexokinase II and mTOR. We validated the in silico modeling in cultured adult mouse ventricular cardiomyocytes by modulating PGI activity using erythrose 4-phosphate. Inhibition of glycolytic flux at the level of PGI caused G6P accumulation, which correlated with increased mTOR activation. Using click chemistry, we labeled newly synthesized proteins and confirmed that inhibition of PGI increases protein synthesis. CONCLUSIONS: The reduction of PGI activity directly affects myocyte growth by regulating mTOR activation.


Assuntos
Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato/metabolismo , Miocárdio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Química Click , Simulação por Computador , Glucose/farmacologia , Glicólise , Hexoquinase/metabolismo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Oxirredução , Consumo de Oxigênio , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fosfatos Açúcares/farmacologia
17.
J Cardiovasc Magn Reson ; 24(1): 34, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35658896

RESUMO

BACKGROUND: Hyperpolarized (HP) [1-13C]pyruvate cardiovascular magnetic resonance (CMR) imaging can visualize the uptake and intracellular conversion of [1-13C]pyruvate to either [1-13C]lactate or 13C-bicarbonate depending on the prevailing metabolic state. The aim of the present study was to combine an adenosine stress test with HP [1-13C]pyruvate CMR to detect cardiac metabolism in the healthy human heart at rest and during moderate stress. METHODS: A prospective descriptive study was performed between October 2019 and August 2020. Healthy human subjects underwent cine CMR and HP [1-13C]pyruvate CMR at rest and during adenosine stress. HP [1-13C]pyruvate CMR images were acquired at the mid-left-ventricle (LV) level. Semi-quantitative assessment of first-pass myocardial [1-13C]pyruvate perfusion and metabolism were assessed. Paired t-tests were used to compare mean values at rest and during stress. RESULTS: Six healthy subjects (two female), age 29 ± 7 years were studied and no adverse reactions occurred. Myocardial [1-13C]pyruvate perfusion was significantly increased during stress with a reduction in time-to-peak from 6.2 ± 2.8 to 2.7 ± 1.3 s, p = 0.02. This higher perfusion was accompanied by an overall increased myocardial uptake and metabolism. The conversion rate constant (kPL) for lactate increased from 11 ± 9 *10-3 to 20 ± 10 * 10-3 s-1, p = 0.04. The pyruvate oxidation rate (kPB) increased from 4 ± 4 *10-3 to 12 ± 7 *10-3 s-1, p = 0.008. This increase in carbohydrate metabolism was positively correlated with heart rate (R2 = 0.44, p = 0.02). CONCLUSIONS: Adenosine stress testing combined with HP [1-13C]pyruvate CMR is feasible and well-tolerated in healthy subjects. We observed an increased pyruvate oxidation during cardiac stress. The present study is an important step in the translation of HP [1-13C]pyruvate CMR into clinical cardiac imaging. Trial registration EUDRACT, 2018-003533-15. Registered 4th of December 2018, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2018-003533-15.


Assuntos
Imagem de Perfusão do Miocárdio , Ácido Pirúvico , Adenosina , Adulto , Teste de Esforço , Feminino , Humanos , Lactatos , Imageamento por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética , Masculino , Imagem de Perfusão do Miocárdio/métodos , Oxirredutases , Valor Preditivo dos Testes , Estudos Prospectivos , Adulto Jovem
18.
Clin Exp Pharmacol Physiol ; 49(1): 35-45, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459495

RESUMO

Hypertension induced left ventricular hypertrophy (LVH) augments the risk of cardiovascular anomalies. Mitochondrial alterations result in oxidative stress, accompanied by decrease in fatty acid oxidation, leading to the activation of the hypertrophic program. Targeted antioxidants are expected to reduce mitochondrial reactive oxygen species more effectively than general antioxidants. This study was designed to assess whether the mito-targeted antioxidant, Mito-Tempol (Mito-TEMP) is more effective than the general oxidant, Tempol (TEMP) in reduction of hypertension and hypertrophy and prevention of shift in cardiac energy metabolism. Spontaneously hypertensive rats were administered either TEMP (20 mg/kg/day) or Mito-TEMP (2 mg/kg/day) intraperitoneally for 30 days. Post treatment, animals were subjected to 2D-echocardiography. Myocardial lysates were subjected to RPLC - LTQ-Orbitrap-MS analysis. Mid-ventricular sections were probed for markers of energy metabolism and fibrosis. The beneficial effect on cardiovascular structure and function was significantly higher for Mito-TEMP. Increase in mitochondrial antioxidants and stimulation of fatty acid metabolism; with significant improvement in cardiovascular function was apparent in spontaneously hypertensive rats (SHR) treated with Mito-TEMP. The study indicates that Mito-TEMP is superior to its non- targeted isoform in preventing hypertension induced LVH, and the beneficial effects on heart are possibly mediated by reversal of metabolic remodelling.


Assuntos
Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Ecocardiografia , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Marcadores de Spin
19.
Proc Natl Acad Sci U S A ; 116(48): 24115-24121, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31704768

RESUMO

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. The major AF susceptibility locus 4q25 establishes long-range interactions with the promoter of PITX2, a transcription factor gene with critical functions during cardiac development. While many AF-linked loci have been identified in genome-wide association studies, mechanistic understanding into how genetic variants, including those at the 4q25 locus, increase vulnerability to AF is mostly lacking. Here, we show that loss of pitx2c in zebrafish leads to adult cardiac phenotypes with substantial similarities to pathologies observed in AF patients, including arrhythmia, atrial conduction defects, sarcomere disassembly, and altered cardiac metabolism. These phenotypes are also observed in a subset of pitx2c+/- fish, mimicking the situation in humans. Most notably, the onset of these phenotypes occurs at an early developmental stage. Detailed analyses of pitx2c loss- and gain-of-function embryonic hearts reveal changes in sarcomeric and metabolic gene expression and function that precede the onset of cardiac arrhythmia first observed at larval stages. We further find that antioxidant treatment of pitx2c-/- larvae significantly reduces the incidence and severity of cardiac arrhythmia, suggesting that metabolic dysfunction is an important driver of conduction defects. We propose that these early sarcomere and metabolic defects alter cardiac function and contribute to the electrical instability and structural remodeling observed in adult fish. Overall, these data provide insight into the mechanisms underlying the development and pathophysiology of some cardiac arrhythmias and importantly, increase our understanding of how developmental perturbations can predispose to functional defects in the adult heart.


Assuntos
Arritmias Cardíacas/metabolismo , Proteínas de Homeodomínio/genética , Sarcômeros/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Acetilcisteína/farmacologia , Animais , Animais Geneticamente Modificados , Antioxidantes/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Doença do Sistema de Condução Cardíaco/etiologia , Doença do Sistema de Condução Cardíaco/genética , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Eletrocardiografia , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Larva/efeitos dos fármacos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Sarcômeros/genética , Sarcômeros/patologia , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo
20.
Curr Heart Fail Rep ; 19(4): 180-190, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567658

RESUMO

PURPOSE OF REVIEW: We review the clinical benefits of altering myocardial substrate metabolism in heart failure. RECENT FINDINGS: Modulation of cardiac substrates (fatty acid, glucose, or ketone metabolism) offers a wide range of therapeutic possibilities which may be applicable to heart failure. Augmenting ketone oxidation seems to offer great promise as a new therapeutic modality in heart failure. The heart has long been recognized as metabolic omnivore, meaning it can utilize a variety of energy substrates to maintain adequate ATP production. The adult heart uses fatty acid as a major fuel source, but it can also derive energy from other substrates including glucose and ketone, and to some extent pyruvate, lactate, and amino acids. However, cardiomyocytes of the failing heart endure remarkable metabolic remodeling including a shift in substrate utilization and reduced ATP production, which account for cardiac remodeling and dysfunction. Research to understand the implication of myocardial metabolic perturbation in heart failure has grown in recent years, and this has raised interest in targeting myocardial substrate metabolism for heart failure therapy. Due to the interdependency between different pathways, the main therapeutic metabolic approaches include inhibiting fatty acid uptake/fatty acid oxidation, reducing circulating fatty acid levels, increasing glucose oxidation, and augmenting ketone oxidation.


Assuntos
Insuficiência Cardíaca , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/uso terapêutico , Adulto , Metabolismo Energético , Ácidos Graxos/metabolismo , Ácidos Graxos/uso terapêutico , Glucose/metabolismo , Glucose/uso terapêutico , Humanos , Cetonas/metabolismo , Cetonas/uso terapêutico , Miocárdio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA