Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.138
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(8): 8320-8339, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39194708

RESUMO

Muscle atrophy is known to be one of the symptoms leading to sarcopenia, which significantly impacts the quality of life, mortality, and morbidity. Therefore, the development of therapeutics for muscle atrophy is essential. This study focuses on addressing muscle loss and atrophy using Ulmus macrocarpa extract and its marker compound, catechin 7-O-ß-D-apiofuranoside, by investigating their effects on biomarkers associated with muscle cell apoptosis. Additionally, protein and gene expression in a muscle atrophy model were examined using Western blotting and RT-PCR. Ulmus macrocarpa has been used as food or medicine due to its safety, including its roots, barks, and fruit. Catechin 7-O-ß-D apiofuranoside is an indicator substance of plants of the Ulmus genus and has been reported to have various effects such as antioxidant and anti-inflammatory effects. The experimental results demonstrated that catechin glycoside and Ulmus macrocarpa extract decreased the expression of the muscle-degradation-related proteins Atrogin-1 and Muscle RING-Finger protein-1 (MuRF1) while increasing the expression of the muscle-synthesis-related proteins Myoblast determination (MyoD) and Myogenin. Gene expression confirmation experiments validated a decrease in the expression of Atrogin and MuRF1 mRNA and an increase in the expression of MyoD and Myogenin mRNA. Furthermore, an examination of muscle protein expression associated with the protein kinase B (Akt)/forkhead box O (FoxO) signaling pathway confirmed a decrease in the expression of FoxO, a regulator of muscle protein degradation. These results confirm the potential of Ulmus macrocarpa extract to inhibit muscle apoptosis, prevent muscle decomposition, and promote the development of functional materials for muscle synthesis, health-functional foods, and natural-product-derived medicines.

2.
J Neurosci Res ; 102(8): e25372, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086264

RESUMO

The objective of this study was to investigate the potential mechanisms by which (+)-catechin alleviates neuropathic pain. Thirty-two male Sprague-Dawley rats were divided into four groups: the sham group, the chronic constriction injury (CCI)group, the CCI+ ibuprofen group, and the CCI+ (+)-catechin group. CCI surgery induces thermal hyperalgesia in rats and (+)-catechin ameliorated CCI-induced thermal hyperalgesia and repaired damaged sciatic nerve in rats. CCI decreased SOD levels in male rat spinal cord dorsal horn and promoted MDA production, induced oxidative stress by increasing NOX4 levels and decreasing antioxidant enzyme HO-1 levels, and also increased protein levels of TLR4, p-NF-κB, NLRP3 inflammasome components, and IL-1ß. In contrast, (+)-catechin reversed the above results. In i vitro experiments, (+)-catechin reduced the generation of reactive oxygen species (ROS) in GMI-R1 cells after LPS stimulation and attenuated the co-expression of IBA-1 and NLRP3. It also showed significant inhibition of the NF-κB and NLRP3 inflammatory pathways and activation of the Nrf2-mediated antioxidant system. Overall, these findings suggest that (+)-catechin inhibits the activation of the NLRP3 inflammasome through the triggering of the Nrf2-induced antioxidant system, the inhibition of the TLR4/NF-κB pathway, and the production of ROS to alleviate CCI-induced neuropathic pain in male rats.


Assuntos
Antioxidantes , Catequina , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neuralgia , Transdução de Sinais , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Catequina/farmacologia , Hiperalgesia/metabolismo , Hiperalgesia/tratamento farmacológico , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Neuralgia/metabolismo , Neuralgia/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/efeitos dos fármacos
3.
Toxicol Appl Pharmacol ; 490: 117036, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009138

RESUMO

Catechin is a kind of flavonoids, mainly derived from the plant Camellia sinensis. It has a strong antioxidant effect, and it also has significant therapeutic effects on anti-cancer, anti-diabetes, and anti-infection. This study was intended to look at how catechin affected the malignant biological activity of gastric cancer cells. We used databases to predict the targets of catechin and the pathogenic targets of gastric cancer. Venn diagram was used to find the intersection genes, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were performed on intersection genes. Using the STRING database, the Protein-Protein Interaction (PPI) network was built. The top 8 genes were screened by Cytoscape 3.9.1, then their binding was verified by molecular docking. The proliferation ability, cell cycle, apoptosis and migration of gastric cancer cells were detected, as well as the protein expression levels of PI3K, p-AKT, and AKT and the mRNA expression levels of AKT1, VEGFA, EGFR, HRAS, and HSP90AA1 in gastric cancer cells. Our research revealed that different concentrations of catechin could effectively inhibit the proliferation and migration of gastric cancer cells, regulate the cell cycle, and promote the death of these cells, and it's possible that the PI3K/Akt pathway was crucial in mediating this impact. Moreover, adding the PI3K/Akt pathway agonist significantly reduced the promoting effect of catechin on the apoptosis of gastric cancer cells. This study suggested that catechin was a potential drug for the treatment of gastric cancer.


Assuntos
Apoptose , Catequina , Movimento Celular , Proliferação de Células , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Catequina/farmacologia , Catequina/análogos & derivados , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Mapas de Interação de Proteínas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo
4.
Ann Bot ; 134(2): 233-246, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38682952

RESUMO

BACKGROUND AND AIMS: Chinese pistachio (Pistacia chinensis), an important horticultural plant species, holds great ornamental value with beautiful leaves and fruits. Seedling propagation of this tree species is restricted by its erratic seed germination; however, the germination mechanism is ambiguous. The aim of this study was to determine the germination mechanism from a novel perspective based on the multi-omics data. METHODS: The multi-omics technique combined with hormone content measurement was applied to seed germination of Chinese pistachio. KEY RESULTS: Due to its great accumulation during seed germination, catechin stood out from the identified metabolites in a broadly targeted metabolomic analysis. Exogenous catechin at 10 mg L-1 significantly improved the germination of Chinese pistachio seeds. An interesting result of hormone analysis was that the improving effect of catechin could be attributed to an increase in gibberellic acid 3 (GA3) content rather than a decrease in abscisic acid (ABA) content before germination. Treatments with paclobutrazol (PAC, a GA biosynthesis inhibitor) and PAC + catechin also showed that the promoting effect of catechin on seed germination depends on GA biosynthesis. Transcriptome analysis and qRT‒PCR further revealed that catechin induced the expression of PcGA20ox5 to activate GA biosynthesis. Several transcription factors were induced by catechin and GA treatments, such as TCP, bZIP and C3H, which may play an important regulatory role in GA biosynthesis in a catechin-mediated way. CONCLUSIONS: Catechin promotes seed germination via GA biosynthesis in Chinese pistachios. This study proposes a novel mechanism by which catechin promotes seed germination via the GA pathway, which provides new insight into a comprehensive understanding of seed dormancy and germination.


Assuntos
Catequina , Germinação , Giberelinas , Pistacia , Sementes , Germinação/efeitos dos fármacos , Giberelinas/metabolismo , Giberelinas/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Pistacia/efeitos dos fármacos , Pistacia/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácido Abscísico/metabolismo
5.
Mol Biol Rep ; 51(1): 434, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520585

RESUMO

BACKGROUND: The formation of advanced glycation end products (AGEs) is the central process contributing to diabetic complications in diabetic individuals with sustained and inconsistent hyperglycemia. Methylglyoxal, a reactive carbonyl species, is found to be a major precursor of AGEs, and its levels are elevated in diabetic conditions. Dysfunction of pancreatic beta cells and impairment in insulin secretion are the hallmarks of diabetic progression. Exposure to methylglyoxal-induced AGEs alters the function and maintenance of pancreatic beta cells. Hence, trapping methylglyoxal could be an ideal approach to alleviate AGE formation and its influence on beta cell proliferation and insulin secretion, thereby curbing the progression of diabetes to its complications. METHODS AND RESULTS: In the present study, we have explored the mechanism of action of (+)-Catechin against methylglyoxal-induced disruption in pancreatic beta cells via molecular biology techniques, mainly western blot. Methylglyoxal treatment decreased insulin synthesis (41.5%) via downregulating the glucose-stimulated insulin secretion pathway (GSIS). This was restored upon co-treatment with (+)-Catechin (29.9%) in methylglyoxal-induced Beta-TC-6 cells. Also, methylglyoxal treatment affected the autocrine function of insulin by disrupting the IRS1/PI3k/Akt pathway. Methylglyoxal treatment suppresses Pdx-1 and Maf A levels, which are responsible for beta cell maintenance and cell proliferation. (+)-Catechin could significantly augment the levels of these transcription factors. CONCLUSION: This is the first study to examine the impact of a natural compound on methylglyoxal with the insulin-mediated autocrine and paracrine activities of pancreatic beta cells. The results indicate that (+)-Catechin exerts a protective effect against methylglyoxal exposure in pancreatic beta cells and can be considered a potential anti-glycation agent in further investigations on ameliorating diabetic complications.


Assuntos
Catequina , Complicações do Diabetes , Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/metabolismo , Catequina/farmacologia , Catequina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Insulina/metabolismo , Diabetes Mellitus/metabolismo , Complicações do Diabetes/metabolismo , Produtos Finais de Glicação Avançada/metabolismo
6.
Biol Pharm Bull ; 47(7): 1331-1337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39048354

RESUMO

Green tea (GT) catechins exhibit antiviral effects in experimental studies. However, we lack clinical evidence on the preventive effects of catechin concentrations in gargling against acute upper respiratory tract infections (URTIs). Therefore, we aimed to investigate the concentration-dependence of GT catechins in gargling on the incidence of URTIs. We conducted an open-label randomized study. The target population consisted of 209 students from the University of Shizuoka and Meiji University, who were randomly assigned to high-catechin (approximate catechin concentration: 76.4 mg/dL), low-catechin (approximate catechin concentration: 30.8 mg/dL), and a control water gargling (catechin concentration: 0 mg/dL) group. All participants gargled water or GT daily for 12 weeks. The symptoms of URTIs were recorded on a daily survey form by participants. The incidences of URTIs occurred in 6 (9.1%), 7 (10.8%), and 11 (15.7%) participants in the high-catechin, low-catechin, and water groups, respectively. Cox proportional hazards analysis, using background factors and prevention status as covariates, revealed a hazard ratio of 0.57 (95% Confidence Interval (CI): 0.21-1.55, p = 0.261) for the high-catechin vs. water group and 0.54 (95% CI: 0.20-1.50, p = 0.341) for the low-catechin vs. water group. Our findings showed the incidence of URTIs in a concentration-dependent GT gargling was not significantly different, partly owing to the low event rates caused by intense precautions against the coronavirus disease 2019 pandemic. Our study would serve as a foundation for the development of an advanced protocol with optimal concentrations and a larger number of participants.


Assuntos
Catequina , Infecções Respiratórias , Chá , Catequina/farmacologia , Catequina/uso terapêutico , Catequina/administração & dosagem , Humanos , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/epidemiologia , Masculino , Feminino , Chá/química , Adulto Jovem , Adulto , Relação Dose-Resposta a Droga , Doença Aguda , Incidência , Antivirais/uso terapêutico
7.
J Sep Sci ; 47(9-10): e2400142, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726732

RESUMO

Catechins, renowned for their antioxidant properties and health benefits, are commonly present in beverages, particularly tea and wine. An efficient and cost-effective salting-out assisted liquid-liquid extraction (SALLE) method has been developed and validated for the simultaneous determination of six catechins and caffeine in tea and wine samples using high-performance liquid chromatography-ultraviolet (HPLC-UV). This method demonstrates outstanding performance: linearity (1-120 µg/mL, r2 > 0.999), accuracy (96.5%-103.4% recovery), and precision (≤14.7% relative standard deviation), meeting validation requirements set by the US Food and Drug Administration. The reduced sample size (0.1 g) minimizes matrix interferences and costs without compromising sensitivity. All analytes were detected in Camellia sinensis teas, with green tea displaying the highest total catechin content (47.5-100.1 mg/mL), followed by white and black teas. Analysis of wine samples reveals the presence of catechin in all red and white wines, and epigallocatechin gallate in all red wine samples, highlighting the impact of winemaking processes on catechin content. The SALLE-HPLC-UV approach represents a green alternative by eliminating organic waste, surpassing conventional dilution methods in specificity and sensitivity for catechin determination. AGREEprep assessment emphasizes the strengths of the SALLE procedure, including material reusability, throughput efficiency, minimal sample requirements, low energy consumption, and the absence of organic waste generation.


Assuntos
Cafeína , Catequina , Extração Líquido-Líquido , Chá , Vinho , Cromatografia Líquida de Alta Pressão/métodos , Vinho/análise , Cafeína/análise , Catequina/análise , Chá/química , Extração Líquido-Líquido/métodos , Espectrofotometria Ultravioleta , Raios Ultravioleta
8.
Pestic Biochem Physiol ; 204: 106063, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277379

RESUMO

Lindane (LDN) is a well-known herbicidal drug that exerts deleterious impacts on vital body organs including the liver. Catechin (CTN) is a plant-based flavonoid that demonstrates various pharmacological abilities. This trial was executed to evaluate the ameliorative efficacy of CTN to combat LDN instigated hepatotoxicity in male albino rats (Rattus norvegicus). Thirty-two rats were categorized into four groups including control, LDN (30 mg/kg), LDN (30 mg/kg) + CTN (40 mg/kg) and CTN (40 mg/kg) alone treated group. It was observed that LDN dysregulated the expressions of PI3K/PIP3/Akt and Nrf-2/Keap-1 pathway. Moreover, the activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), heme­oxygenase-1 (HO-1) and glutathione reductase (GSR) were subsided after LDN intoxication. Besides, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), ALT (Alanine aminotransferase), AST (Aspartate transaminase), Gamma-glutamyl transferase (GGT) and ALP (Alkaline phosphatase) were increased whereas reduced the levels of albumin and total proteins in response to LDN exposure. Additionally, LDN administration escalated the levels of Interleukin-6 (IL-6), Nuclear factor kappa-B (NF-κB), Interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and the activity of cyclooxygenase-2 (COX-2). Furthermore, the gene expressions of Bcl-2-associated X protein (Bax) and Cysteinyl aspartate-acid proteases-3 (Caspase-3) were enhanced whereas the expression of B-cell lymphoma-2 (Bcl-2) was lowered following the LDN treatment. LDN instigated various histological impairments in hepatic tissues. Nonetheless, concurrent administration of CTN remarkably ameliorated liver impairments via regulating aforementioned disruptions owing to its antioxidant, anti-apoptotic and histo-protective potentials.


Assuntos
Catequina , Hexaclorocicloexano , Fígado , Fator 2 Relacionado a NF-E2 , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Masculino , Ratos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Catequina/farmacologia , Hexaclorocicloexano/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Herbicidas/toxicidade
9.
Int J Vitam Nutr Res ; 94(5-6): 422-433, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38229476

RESUMO

Polycystic ovary syndrome (PCOS), is a health problem observed in women of reproductive age. Different diets, physical activity recommendations and lifestyle changes can be effective in dealing with the symptoms of PCOS. Nutrition is indeed an essential part of the treatment of the disease as it directly affects body weight loss, insulin resistance, lipid profile, hormones, and dermatological complaints such as acne. Polyphenols, simply classified as flavonoids and non-flavonoids, are bioactive components found in plant-based foods. The most common polyphenols in the diet are flavanols, flavonols, flavanone, anthocyanins. In particular, polyphenols which are compounds naturally found in foods, have antioxidant, anticancer, anti-inflammatory, antimutagenic benefits along with many other ones. In the treatment of PCOS, polyphenols may help reduce the symptoms, improve insulin resistance and poor lipid profile, and cure hormonal disorders. It has been reported that polyphenols are influential in menstrual cycle disorders and enable a decrease in body weight, hyperandrogenism, estrogen, testosterone, luteinizing hormone (LH)/follicle stimulating hormone (FSH) ratios and LH. For adequate daily intake of polyphenols, which are found in high amounts in fruits and vegetables, at least 5 portions of fruits and vegetables should be consumed in addition to a healthy nutrition pattern. In this review, the effects of various polyphenols on polycystic ovary syndrome are discussed.


Assuntos
Síndrome do Ovário Policístico , Polifenóis , Síndrome do Ovário Policístico/tratamento farmacológico , Humanos , Feminino , Polifenóis/administração & dosagem , Polifenóis/uso terapêutico , Resistência à Insulina , Dieta , Antioxidantes/administração & dosagem , Flavonoides/uso terapêutico , Flavonoides/administração & dosagem
10.
Sensors (Basel) ; 24(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38894153

RESUMO

As a non-destructive, fast, and cost-effective technique, near-infrared (NIR) spectroscopy has been widely used to determine the content of bioactive components in tea. However, due to the similar chemical structures of various catechins in black tea, the NIR spectra of black tea severely overlap in certain bands, causing nonlinear relationships and reducing analytical accuracy. In addition, the number of NIR spectral wavelengths is much larger than that of the modeled samples, and the small-sample learning problem is rather typical. These issues make the use of NIRS to simultaneously determine black tea catechins challenging. To address the above problems, this study innovatively proposed a wavelength selection algorithm based on feature interval combination sensitivity segmentation (FIC-SS). This algorithm extracts wavelengths at both coarse-grained and fine-grained levels, achieving higher accuracy and stability in feature wavelength extraction. On this basis, the study built four simultaneous prediction models for catechins based on extreme learning machines (ELMs), utilizing their powerful nonlinear learning ability and simple model structure to achieve simultaneous and accurate prediction of catechins. The experimental results showed that for the full spectrum, the ELM model has better prediction performance than the partial least squares model for epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), and epigallocatechin gallate (EGCG). For the feature wavelengths, our proposed FIC-SS-ELM model enjoys higher prediction performance than ELM models based on other wavelength selection algorithms; it can simultaneously and accurately predict the content of EC (Rp2 = 0.91, RMSEP = 0.019), ECG (Rp2 = 0.96, RMSEP = 0.11), EGC (Rp2 = 0.97, RMSEP = 0.15), and EGCG (Rp2 = 0.97, RMSEP = 0.35) in black tea. The results of this study provide a new method for the quantitative determination of the bioactive components of black tea.


Assuntos
Algoritmos , Catequina , Espectroscopia de Luz Próxima ao Infravermelho , Chá , Catequina/análise , Catequina/química , Catequina/análogos & derivados , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Chá/química , Análise dos Mínimos Quadrados , Aprendizado de Máquina
11.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38612446

RESUMO

Camellia is an important plant genus that includes well-known species such as C. sinensis, C. oleifera, and C. japonica. The C. sinensis cultivar 'Sangmok', one of Korea's standard types of tea landraces, is a small evergreen tree or shrub. Genome annotation has shown that Korean tea plants have special and unique benefits and superior components, such as catechin. The genome of Camellia sinensis cultivar 'Sangmok' was assembled on the chromosome level, with a length of 2678.62 Mbp and GC content of 38.16%. Further, 15 chromosome-scale scaffolds comprising 82.43% of the assembly (BUSCO completeness, 94.3%) were identified. Analysis of 68,151 protein-coding genes showed an average of 5.003 exons per gene. Among 82,481 coding sequences, the majority (99.06%) were annotated by Uniprot/Swiss-Prot. Further analysis revealed that 'Sangmok' is closely related to C. sinensis, with a divergence time of 60 million years ago. A total of 3336 exclusive gene families in 'Sangmok' were revealed by gene ontology analysis to play roles in auxin transport and cellular response mechanisms. By comparing these exclusive genes with 551 similar catechin genes, 17 'Sangmok'-specific catechin genes were identified by qRT-PCR, including those involved in phytoalexin biosynthesis and related to cytochrome P450. The 'Sangmok' genome exhibited distinctive genes compared to those of related species. This comprehensive genomic investigation enhances our understanding of the genetic architecture of 'Sangmok' and its specialized functions. The findings contribute valuable insights into the evolutionary and functional aspects of this plant species.


Assuntos
Camellia sinensis , Catequina , Humanos , Metabolismo Secundário , Éxons , Cromossomos Humanos Par 15 , Camellia sinensis/genética , Chá
12.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792205

RESUMO

This research presents a new, eco-friendly, and swift method combining solid-phase extraction and hydrophobic deep eutectic solvents (DES) with high-performance liquid chromatography (SPE-DES-HPLC) for extracting and quantifying catechin and epicatechin in Shanxi aged vinegar (SAV). The parameters, such as the elution solvent type, the XAD-2 macroporous resin dosage, the DES ratio, the DES volume, the adsorption time, and the desorption time, were optimized via a one-way experiment. A central composite design using the Box-Behnken methodology was employed to investigate the effects of various factors, including 17 experimental runs and the construction of three-dimensional response surface plots to identify the optimal conditions. The results show that the optimal conditions were an HDES (tetraethylammonium chloride and octanoic acid) ratio of 1:3, an XAD-2 macroporous resin dosage of 188 mg, and an adsorption time of 11 min. Under these optimal conditions, the coefficients of determination of the method were greater than or equal to 0.9917, the precision was less than 5%, and the recoveries ranged from 98.8% to 118.8%. The environmentally friendly nature of the analytical process and sample preparation was assessed via the Analytical Eco-Scale and AGREE, demonstrating that this method is a practical and eco-friendly alternative to conventional determination techniques. In summary, this innovative approach offers a solid foundation for the assessment of flavanol compounds present in SAV samples.


Assuntos
Ácido Acético , Catequina , Solventes Eutéticos Profundos , Interações Hidrofóbicas e Hidrofílicas , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos , Ácido Acético/química , Catequina/química , Catequina/análise , Solventes Eutéticos Profundos/química , Adsorção
13.
Molecules ; 29(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39339462

RESUMO

Catechin is one of the representative antioxidants that shows physiological activities such as an anti-cancer effect. We have developed a chemically modified catechin analog possessing a planar structure, which shows an enhanced radical-scavenging activity as well as inhibitory effects on the proliferation and migration of cancer cells, compared to the parent (+)-catechin. In this study, the mechanism for cancer cell inhibition by the planar catechin was partly elucidated using a gastric cancer cell line. The planar catechin treatment induced an enhanced expression of an apoptotic marker, cleaved caspase-3, in addition to the mitigation of the intracellular accumulation of reactive oxygen species (ROS) and NF-κB expression. Furthermore, γH2AX, a marker of double-strand breaks in DNA, was also induced by the planar catechin treatment in a dose-dependent manner. These findings suggest that the removal of ROS by the planar catechin with a higher antioxidant ability executed NF-κB suppression and/or the planar catechin-injured DNA, leading to the induction of apoptosis in cancer cells.


Assuntos
Apoptose , Catequina , NF-kappa B , Espécies Reativas de Oxigênio , Humanos , Catequina/farmacologia , Catequina/análogos & derivados , Catequina/química , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , NF-kappa B/metabolismo , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antioxidantes/farmacologia , Antioxidantes/química , Caspase 3/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
14.
J Clin Biochem Nutr ; 75(1): 17-23, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39070531

RESUMO

Neutrophil extracellular trap (NET) formation is a unique self-defense mechanism of neutrophils; however, it is also involved in many diseases, including atherosclerosis. Resveratrol and catechin are antioxidants with anti-atherosclerotic properties. Here, we examined the effects of resveratrol, catechin, and other related compounds on NET formation. HL-60-derived neutrophils were pretreated with resveratrol and other compounds before stimulation with phorbol-myristate acetate (PMA). DNA and myeloperoxidase released from neutrophils were determined. Resveratrol suppressed the DNA release from neutrophils in a dose-dependent manner. NET formation was enhanced by 1-palmitoyl-2-oxovaleroyl phosphatidylcholine (POVPC), a truncated form of oxidized phospholipid, and resveratrol suppressed NET formation induced by POVPC and PMA. Furthermore, we designed several analogs of resveratrol or catechin whose conformation was restricted by the inhibition of the free rotation of aromatic rings. The conformationally constrained analogs were more effective at inhibiting NET formation; however, their inhibitory function decreased when compound was a large, hydrophobic analog. The most potent compounds, planar catechin and resveratrol, suppressed myeloperoxidase release from activated neutrophils. In addition, these compounds suppressed DNA release from neutrophils stimulated with calcium ionophore. These results suggest that resveratrol, catechin and their analogs exert anti-NET effects, and that constraining the geometry of these compounds enhanced their inhibitory effects.

15.
Plant Foods Hum Nutr ; 79(2): 482-488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38748356

RESUMO

Hypertension remains a significant global health concern, contributing significantly to cardiovascular diseases and mortality rates. The inhibition of angiotensin-converting enzyme (ACE) plays a crucial role in alleviating high blood pressure. We investigated the potential of finger millets (Eleusine coracana) as a natural remedy for hypertension by isolating and characterizing its ACE-inhibitory compound. First, we evaluated the ACE-inhibitory activity of the finger millet ethanol extract and subsequently proceeded with solvent fractionation. Among the solvent fractions, the ethyl acetate fraction exhibited the highest ACE inhibitory activity and was further fractionated. Using preparative high-performance liquid chromatography, the ethyl acetate fraction was separated into four subfractions, with fraction 2 (F2) exhibiting the highest ACE inhibitory activity. Subsequent 1 H-nuclear magnetic resonance (NMR) and 13 C-NMR analyses confirmed that the isolated compound from F2 was catechin. Furthermore, molecular docking studies indicated that catechin has the potential to act as an ACE inhibitor. These findings suggest that finger millets, particularly as a source of catechin, have the potential to be used as a natural antihypertensive.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Anti-Hipertensivos , Eleusine , Simulação de Acoplamento Molecular , Extratos Vegetais , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Eleusine/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/química , Cromatografia Líquida de Alta Pressão , Peptidil Dipeptidase A/metabolismo , Hipertensão/tratamento farmacológico , Espectroscopia de Ressonância Magnética
16.
Brief Bioinform ; 22(2): 1346-1360, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33386025

RESUMO

The global pandemic crisis, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed the lives of millions of people across the world. Development and testing of anti-SARS-CoV-2 drugs or vaccines have not turned to be realistic within the timeframe needed to combat this pandemic. Here, we report a comprehensive computational approach to identify the multi-targeted drug molecules against the SARS-CoV-2 proteins, whichare crucially involved in the viral-host interaction, replication of the virus inside the host, disease progression and transmission of coronavirus infection. Virtual screening of 75 FDA-approved potential antiviral drugs against the target proteins, spike (S) glycoprotein, human angiotensin-converting enzyme 2 (hACE2), 3-chymotrypsin-like cysteine protease (3CLpro), cathepsin L (CTSL), nucleocapsid protein, RNA-dependent RNA polymerase (RdRp) and non-structural protein 6 (NSP6), resulted in the selection of seven drugs which preferentially bind to the target proteins. Further, the molecular interactions determined by molecular dynamics simulation revealed that among the 75 drug molecules, catechin can effectively bind to 3CLpro, CTSL, RBD of S protein, NSP6 and nucleocapsid protein. It is more conveniently involved in key molecular interactions, showing binding free energy (ΔGbind) in the range of -5.09 kcal/mol (CTSL) to -26.09 kcal/mol (NSP6). At the binding pocket, catechin is majorly stabilized by the hydrophobic interactions, displays ΔEvdW values: -7.59 to -37.39 kcal/mol. Thus, the structural insights of better binding affinity and favorable molecular interaction of catechin toward multiple target proteins signify that catechin can be potentially explored as a multi-targeted agent against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Catequina/farmacologia , Polifenóis/farmacologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Catequina/química , Catequina/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Polifenóis/uso terapêutico
17.
Plant Cell Environ ; 46(8): 2401-2418, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37190917

RESUMO

High temperatures (HTs) seriously affect the yield and quality of tea. Catechins, derived from the flavonoid pathway, are characteristic compounds that contribute to the flavour of tea leaves. In this study, we first showed that the flavonoid content of tea leaves was significantly reduced under HT conditions via metabolic profiles; and then demonstrated that two transcription factors, CsHSFA1b and CsHSFA2 were activated by HT and negatively regulate flavonoid biosynthesis during HT treatment. Jasmonate (JA), a defensive hormone, plays a key role in plant adaption to environmental stress. However, little has been reported on its involvement in HT response in tea. Herein, we demonstrated that CsHSFA1b and CsHSFA2 activate CsJAZ6 expression through directly binding to heat shock elements in its promoter, and thereby repress the JA pathway. Most secondary metabolites are regulated by JA, including catechin in tea. Our study reported that CsJAZ6 directly interacts with CsEGL3 and CsTTG1 and thereby reduces catechin accumulation. From this, we proposed a CsHSFA-CsJAZ6-mediated HT regulation model of catechin biosynthesis. We also determined that negative regulation of the JA pathway by CsHSFAs and its homologues is conserved in Arabidopsis. These findings broaden the applicability of the regulation of JAZ by HSF transcription factors and further suggest the JA pathway as a valuable candidate for HT-resistant breeding and cultivation.


Assuntos
Camellia sinensis , Catequina , Camellia sinensis/metabolismo , Catequina/metabolismo , Temperatura , Proteínas de Plantas/metabolismo , Flavonoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Chá/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo
18.
Arch Microbiol ; 205(5): 191, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059897

RESUMO

This four-season observational study aimed to examine the mediating role of the gut microbiota in the associations between green tea and catechin intakes and glucose metabolism in individuals without type 2 diabetes mellitus (T2DM). In each of the 4 seasons, 85 individuals without T2DM (56 male [65.9%]; mean [standard deviation] age: 43.3 [9.4] years) provided blood samples, stool samples, 3-day weighed dietary records, and green tea samples. Catechin intake was estimated by analyzing the tea samples. Linear mixed-effects model analysis showed that green tea intake was negatively associated with fasting blood glucose and insulin levels, even after considering the seasonal variations. Of the gut microbial species associated with green tea intake, the mediation analysis revealed that Phocaeicola vulgatus mediated the association between green tea intake and fasting blood glucose levels. These findings indicate that green tea can improve glucose metabolism by decreasing the abundance of P. vulgatus that is associated with elevated blood glucose levels in individuals without T2DM.


Assuntos
Catequina , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Masculino , Adulto , Chá , Estações do Ano , Glicemia/análise , Glicemia/metabolismo , Análise de Mediação
19.
Mol Biol Rep ; 50(7): 5575-5584, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37160631

RESUMO

BACKGROUND: Adzuki beans (ABs; Vigna angularis) were reported to show potential for prevention of cholesterol absorption and lowering of the blood cholesterol level. However, the main active compounds and some cellular effects remain unknown. In this study, we evaluated the potential cholesterol-lowering effects of (+)-catechin 7-O-ß-D-glucopyranoside (C7G) and (+)-epicatechin 7-O-ß-D-glucopyranoside (E7G), identified as abundant polyphenols in ABs. METHODS AND RESULTS: To investigate the cholesterol-lowering activity in vitro, cholesterol micelles, bile acids, and Caco-2 cells as an intestinal model were used in the study. C7G and E7G each inhibited micellar solubility in a dose-dependent manner, and their inhibitory activity was as strong as that of (+)-catechin (IC50 values: C7G, 0.23 ± 0.03 mg/ml; E7G, 0.22 ± 0.02 mg/ml; (+)-catechin, 0.26 ± 0.11 mg/ml). The AB polyphenols showed binding activity toward bile acids and changed them into an insoluble form. When Caco-2 cells were treated with C7G or E7G, the amount of incorporated cholesterol was significantly decreased compared with vehicle-treated control cells, and no cytotoxicity was observed under the experimental conditions used. Meanwhile, quantitative real-time PCR revealed that the mRNA level of the cholesterol transporter NPC1L1 remained unchanged in the treated cells. CONCLUSIONS: Taken together, the present findings suggest that C7G and E7G are the main active compounds in ABs, and have the ability to inhibit micellar solubility, bind to bile acids, and suppress cholesterol absorption. The present study supports the health benefits of ABs as a medicinal food and the application of AB polyphenols as medicinal supplements to suppress cholesterol elevation.


Assuntos
Catequina , Vigna , Humanos , Polifenóis/farmacologia , Catequina/farmacologia , Células CACO-2 , Colesterol/metabolismo , Ácidos e Sais Biliares
20.
J Appl Toxicol ; 43(2): 287-297, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35982029

RESUMO

As one of the most popular beverages, green tea has attracted much interest for its beneficial effects on human health. However, the toxicity of green tea and its underlying mechanism are still poorly understood. Here, we evaluated the effect of green tea and its constituents on development by exposing zebrafish embryos to them. Morphologic results demonstrated that 0.1% and 0.2% green tea increased mortality, delayed epiboly of gastrulation, and shortened body length. Green tea altered the expression pattern of dlx3, cstlb, myod, and papc and decreased the expression levels of wnt5 and wnt11, suggesting that green tea disturbed convergence and extension movement through the downregulation of wnt5 and wnt11. The increased expression of the dorsal gene chordin and reduced expression of wnt8 and its target genes vox and vent in embryos exposed to 0.1% and 0.2% green tea indicated that green tea could affect dorsoventral differentiation by inhibiting the wnt8 signaling pathway. Additionally, green tea could inhibit epiboly progression by disrupting F-actin organization or removing F-actin in vegetal yolks during gastrulation. However, no malformation was caused by exposure to the five catechins and gallic acid individually. The mixture of constituents showed a similar effect to green tea solution on the embryos, such as smaller eyes and head, shorter body length, and slower heart rate, which indicated that the effect of green tea solution on embryo development was mainly due to the comprehensive effect of multiple components in the green tea solution.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Actinas/metabolismo , Chá/metabolismo , Desenvolvimento Embrionário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA