Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 575
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Brain ; 147(2): 627-636, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071653

RESUMO

Extracellular vesicles (EVs) are membrane vesicles that are released extracellularly and considered to be implicated in the pathogenesis of neurodegenerative diseases including Alzheimer's disease. Here, CSF EVs of 16 ATN-classified cases were subjected to quantitative proteome analysis. In these CSF EVs, levels of 11 proteins were significantly altered during the ATN stage transitions (P < 0.05 and fold-change > 2.0). These proteins were thought to be associated with Alzheimer's disease pathogenesis and represent candidate biomarkers for pathogenic stage classification. Enzyme-linked immunosorbent assay analysis of CSF and plasma EVs revealed altered levels of cathepsin B (CatB) during the ATN transition (seven ATN groups in validation set, n = 136). The CSF and plasma EV CatB levels showed a negative correlation with CSF amyloid-ß42 concentrations. This proteomic landscape of CSF EVs in ATN classifications can depict the molecular framework of Alzheimer's disease progression, and CatB may be considered a promising candidate biomarker and therapeutic target in Alzheimer's disease amyloid pathology.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Humanos , Doença de Alzheimer/patologia , Proteoma/metabolismo , Catepsina B/metabolismo , Proteômica , Vesículas Extracelulares/metabolismo , Biomarcadores , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo
2.
Mol Ther ; 32(4): 1048-1060, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38369752

RESUMO

The endosome cleavable linkers have been widely employed by antibody-drug conjugates and small molecule-drug conjugates (SMDCs) to control the accurate release of payloads. An effective linker should provide stability in systemic circulation but efficient payload release at its targeted tumor sites. This conflicting requirement always leads to linker design with increasing structural complexity. Balance of the effectiveness and structural complexity presents a linker design challenge. Here, we explored the possibility of mono-amino acid as so far the simplest cleavable linker (X-linker) for SMDC-based auristatin delivery. Within a diverse set of X-linkers, the SMDCs differed widely in bioactivity, with one (Asn-linker) having significantly improved potency (IC50 = 0.1 nM) and fast response to endosomal cathepsin B cleavage. Notably, this SMDC, once grafted with effector protein fragment crystallizable (Fc), demonstrated a profound in vivo therapeutic effect in aspects of targetability, circulation half-life (t1/2 = 73 h), stability, and anti-tumor efficacy. On the basis of these results, we believe that this mono-amino acid linker, together with the new SMDC-Fc scaffold, has significant potential in targeted delivery application.


Assuntos
Antineoplásicos , Imunoconjugados , Preparações Farmacêuticas , Aminoácidos , Imunoconjugados/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
3.
Cell Mol Life Sci ; 81(1): 207, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709385

RESUMO

The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.


Assuntos
Catepsina B , Lisossomos , Pancreatite , Vesículas Secretórias , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Animais , Lisossomos/metabolismo , Pancreatite/metabolismo , Pancreatite/patologia , Pancreatite/genética , Catepsina B/metabolismo , Catepsina B/genética , Camundongos , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7/metabolismo , Doença Aguda , Células Acinares/metabolismo , Células Acinares/patologia , Tripsinogênio/metabolismo , Tripsinogênio/genética , Ceruletídeo , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Nano Lett ; 24(3): 950-957, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38198622

RESUMO

Sonodynamic therapy (SDT) was hampered by the sonosensitizers with low bioavailability, tumor accumulation, and therapeutic efficiency. In situ responsive sonosensitizer self-assembly strategy may provide a promising route for cancer sonotheranositics. Herein, an intelligent sonotheranostic peptide-purpurin conjugate (P18-P) is developed that can self-assemble into supramolecular structures via self-aggregation triggered by rich enzyme cathepsin B (CTSB). After intravenous injection, the versatile probe could achieve deep tissue penetration because of the penetration sequence of P18-P. More importantly, CTSB-triggered self-assembly strongly prolonged retention time, amplified photoacoustic imaging signal for sensitive CTSB detection, and boosted reactive oxygen species for advanced SDT, evoking specific CTSB responsive sonotheranostics. This peptide-purpurin conjugate may serve as an efficient sonotheranostic platform for the early diagnosis of CTSB activity and effective cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Terapia por Ultrassom , Humanos , Catepsina B , Terapia por Ultrassom/métodos , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Nanopartículas/química
5.
Infect Immun ; 92(6): e0014124, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38722166

RESUMO

The human-specific bacterial pathogen group A Streptococcus (GAS) is a significant cause of morbidity and mortality. Macrophages are important to control GAS infection, but previous data indicate that GAS can persist in macrophages. In this study, we detail the molecular mechanisms by which GAS survives in THP-1 macrophages. Our fluorescence microscopy studies demonstrate that GAS is readily phagocytosed by macrophages, but persists within phagolysosomes. These phagolysosomes are not acidified, which is in agreement with our findings that GAS cannot survive in low pH environments. We find that the secreted pore-forming toxin Streptolysin O (SLO) perforates the phagolysosomal membrane, allowing leakage of not only protons but also large proteins including the lysosomal protease cathepsin B. Additionally, GAS recruits CD63/LAMP-3, which may contribute to lysosomal permeabilization, especially in the absence of SLO. Thus, although GAS does not inhibit fusion of the lysosome with the phagosome, it has multiple mechanisms to prevent proper phagolysosome function, allowing for persistence of the bacteria within the macrophage. This has important implications for not only the initial response but also the overall functionality of the macrophages, which may lead to the resulting pathologies in GAS infection. Our data suggest that therapies aimed at improving macrophage function may positively impact patient outcomes in GAS infection.


Assuntos
Proteínas de Bactérias , Lisossomos , Macrófagos , Streptococcus pyogenes , Estreptolisinas , Streptococcus pyogenes/imunologia , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Lisossomos/metabolismo , Lisossomos/microbiologia , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fagossomos/microbiologia , Fagossomos/metabolismo , Células THP-1 , Fagocitose , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/metabolismo , Catepsina B/metabolismo , Concentração de Íons de Hidrogênio
6.
Mol Pharm ; 21(3): 1382-1389, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38372213

RESUMO

Cathepsin B, a lysosomal protease, is considered as a crucial biomarker for tumor diagnosis and treatment as it is overexpressed in numerous cancers. A stimulus-responsive SF scaffold has been reported to detect the activity of a variety of tumor-associated enzymes. In this work, a small-molecule PET tracer ([68Ga]NOTA-SF-CV) was developed by combining an SF scaffold with a cathepsin B-specific recognition substrate Cit-Val. Upon activation by cathepsin B, [68Ga]NOTA-SF-CV could form the cyclization product in a reduction environment, resulting in reduced hydrophilicity. This unique property could effectively prevent exocytosis of the tracer in cathepsin B-overexpressing tumor cells, leading to prolonged retention and amplified PET imaging signal. Moreover, [68Ga]NOTA-SF-CV had great targeting specificity to cathepsin B. In vivo microPET imaging results showed that [68Ga]NOTA-SF-CV was able to effectively visualize the expression level of cathepsin B in various tumors. Hence, [68Ga]NOTA-SF-CV may be served as a potential tracer for diagnosing cathepsin B-related diseases.


Assuntos
Radioisótopos de Gálio , Neoplasias , Humanos , Radioisótopos de Gálio/química , Catepsina B , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/diagnóstico por imagem , Compostos Radiofarmacêuticos/química , Linhagem Celular Tumoral
7.
Bioorg Chem ; 147: 107370, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621338

RESUMO

Here, we introduce a novel and effective approach utilizing a cathepsin B cleavage albumin-binding SN38 prodrug specifically designed for the treatment of metastatic breast cancer. Termed Mal-va-mac-SN38, our prodrug exhibits a unique ability to rapidly and covalently bind with endogenous albumin, resulting in the formation of HSA-va-mac-SN38. This prodrug demonstrates exceptional stability in human plasma. Importantly, HSA-va-mac-SN38 showcases an impressive enhancement in cellular uptake by 4T1 breast cancer cells, primarily facilitated through caveolin-mediated endocytosis. Intriguingly, the release of the active SN38, is triggered by the enzymatic activity of cathepsin B within the lysosomal environment. In vivo studies employing a lung metastasis 4T1 breast cancer model underscore the potency of HSA-va-mac-SN38. Histological immunohistochemical analyses further illuminate the multifaceted impact of our prodrug, showcasing elevated levels of apoptosis, downregulated expression of matrix metalloproteinases, and inhibition of angiogenesis, all critical factors contributing to the anti-metastatic effect observed. Biodistribution studies elucidate the capacity of Mal-va-mac-SN38 to augment tumor accumulation through covalent binding to serum albumin, presenting a potential avenue for targeted therapeutic interventions. Collectively, our findings propose a promising therapeutic avenue for metastatic breast cancer, through the utilization of a cathepsin B-cleavable albumin-binding prodrug.


Assuntos
Antineoplásicos , Neoplasias da Mama , Catepsina B , Desenho de Fármacos , Pró-Fármacos , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Catepsina B/metabolismo , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Animais , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Relação Dose-Resposta a Droga , Apoptose/efeitos dos fármacos
8.
Plant Cell Rep ; 43(3): 81, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418607

RESUMO

KEY MESSAGE: Cathepsin B plays an important role that degrades the Rubisco large subunit RbcL in freezing stress. Programmed cell death (PCD) has been well documented in both development and in response to environmental stresses in plants, however, PCD induced by freezing stress and its molecular mechanisms remain poorly understood. In the present study, we characterized freezing-induced PCD and explored its mechanisms in Arabidopsis. PCD induced by freezing stress was similar to that induced by other stresses and senescence in Arabidopsis plants with cold acclimation. Inhibitor treatment assays and immunoblotting indicated that cathepsin B mainly contributed to increased caspase-3-like activity during freezing-induced PCD. Cathepsin B was involved in freezing-induced PCD and degraded the large subunit, RbcL, of Rubisco. Our results demonstrate an essential regulatory mechanism of cathepsin B for Rubisco degradation in freezing-induced PCD, improving our understanding of freezing-induced cell death and nitrogen and carbohydrate remobilisation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Catepsina B/metabolismo , Congelamento , Ribulose-Bifosfato Carboxilase/metabolismo , Apoptose , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
9.
Xenobiotica ; : 1-13, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738708

RESUMO

1. Over the past two decades antibody-drug conjugates (ADCs) have emerged as a highly effective drug delivery technology. ADCs utilize a monoclonal antibody, a chemical linker, and a therapeutic payload to selectively deliver highly potent pharmaceutical agents to specific cell types.2. Challenges such as premature linker cleavage and clearance due to linker hydrophobicity have adversely impacted the stability and safety of ADCs. While there are various solutions to these challenges, our team has focused on replacement of hydrophobic ValCit linkers (cleaved by CatB) with Asn-containing linkers that are cleaved by lysosomal legumain.3. Legumain is abundantly present in lysosomes and is known to play a role in tumor microenvironment dynamics. Herein, we directly compare the lysosomal cleavage, cytotoxicity, plasma stability, and efficacy of a traditional cathepsin cleavable ADC to a matched Asn-containing legumain-cleavable ADC.4. We demonstrate that Asn-containing linker sequences are specifically cleaved by lysosomal legumain and that Asn-linked MMAE ADCs are broadly active against a variety of tumors, even those with low legumain expression. Finally, we show that AsnAsn-linked ADCs exhibit comparable or improved efficacy to traditional ValCit-linked ADCs. Our study paves the way for replacement of the traditional ValCit linker technology with more hydrophilic Asn-containing peptide linker sequences.

10.
Lipids Health Dis ; 23(1): 194, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909243

RESUMO

BACKGROUND: Lipid droplet (LD)-laden microglia is a key pathological hallmark of multiple sclerosis. The recent discovery of this novel microglial subtype, lipid-droplet-accumulating microglia (LDAM), is notable for increased inflammatory factor secretion and diminished phagocytic capability. Lipophagy, the autophagy-mediated selective degradation of LDs, plays a critical role in this context. This study investigated the involvement of microRNAs (miRNAs) in lipophagy during demyelinating diseases, assessed their capacity to modulate LDAM subtypes, and elucidated the potential underlying mechanisms involved. METHODS: C57BL/6 mice were used for in vivo experiments. Two weeks post demyelination induction at cervical level 4 (C4), histological assessments and confocal imaging were performed to examine LD accumulation in microglia within the lesion site. Autophagic changes were observed using transmission electron microscopy. miRNA and mRNA multi-omics analyses identified differentially expressed miRNAs and mRNAs under demyelinating conditions and the related autophagy target genes. The role of miR-223 in lipophagy under these conditions was specifically explored. In vitro studies, including miR-223 upregulation in BV2 cells via lentiviral infection, validated the bioinformatics findings. Immunofluorescence staining was used to measure LD accumulation, autophagy levels, target gene expression, and inflammatory mediator levels to elucidate the mechanisms of action of miR-223 in LDAM. RESULTS: Oil Red O staining and confocal imaging revealed substantial LD accumulation in the demyelinated spinal cord. Transmission electron microscopy revealed increased numbers of autophagic vacuoles at the injury site. Multi-omics analysis revealed miR-223 as a crucial regulatory gene in lipophagy during demyelination. It was identified that cathepsin B (CTSB) targets miR-223 in autophagy to integrate miRNA, mRNA, and autophagy gene databases. In vitro, miR-223 upregulation suppressed CTSB expression in BV2 cells, augmented autophagy, alleviated LD accumulation, and decreased the expression of the inflammatory mediator IL-1ß. CONCLUSION: These findings indicate that miR-223 plays a pivotal role in lipophagy under demyelinating conditions. By inhibiting CTSB, miR-223 promotes selective LD degradation, thereby reducing the lipid burden and inflammatory phenotype in LDAM. This study broadens the understanding of the molecular mechanisms of lipophagy and proposes lipophagy induction as a potential therapeutic approach to mitigate inflammatory responses in demyelinating diseases.


Assuntos
Autofagia , Catepsina B , Doenças Desmielinizantes , Gotículas Lipídicas , Lisofosfatidilcolinas , Camundongos Endogâmicos C57BL , MicroRNAs , Microglia , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Microglia/patologia , Camundongos , Gotículas Lipídicas/metabolismo , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Catepsina B/metabolismo , Catepsina B/genética , Lisofosfatidilcolinas/metabolismo , Modelos Animais de Doenças , Masculino , Regulação da Expressão Gênica , Linhagem Celular
11.
Arch Pharm (Weinheim) ; 357(3): e2300372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38012535

RESUMO

Herein, we report the design and synthesis of a library of 28 new 1,2,3-triazole derivatives bearing carboxylic acid and ester moieties as dual inhibitors of carbonic anhydrase (CA) and cathepsin B enzymes. The synthesised compounds were assayed in vitro for their inhibition potential against four human CA (hCA) isoforms, I, II, IX and XII. The carboxylic acid derivatives displayed low micromolar inhibition against hCA II, IX and XII in contrast to the ester derivatives. Most of the target compounds showed poor inhibition against the hCA I isoform. 4-Fluorophenyl appended carboxylic acid derivative 6c was found to be the most potent inhibitor of hCA IX and hCA XII with a KI value of 0.7 µM for both the isoforms. The newly synthesised compounds showed dual inhibition towards CA as well as cathepsin B. The ester derivatives exhibited higher % inhibition at 10-7 M concentration as compared with the corresponding carboxylic acid derivatives against cathepsin B. The results from in silico studies of the target compounds with the active site of cathepsin B were found in good correlation with the in vitro results. Moreover, two compounds, 5i and 6c, showed cytotoxic activity against A549 lung cancer cells, with IC50 values lower than 100 µM.


Assuntos
Anidrases Carbônicas , Ácidos Carboxílicos , Humanos , Ácidos Carboxílicos/farmacologia , Ésteres/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Catepsina B , Relação Estrutura-Atividade , Triazóis/farmacologia , Isoformas de Proteínas
12.
Arch Pharm (Weinheim) ; : e2400114, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900588

RESUMO

The design and synthesis of a library of 21 novel benzenesulfonamide-bearing 3-functionalized pyrazole-linked 1,2,3-triazole derivatives as dual inhibitors of cathepsin B and carbonic anhydrase enzymes are reported. The target 1,2,3-triazole-linked pyrazolic esters (16) were synthesized by the condensation of 1,2,3-triazolic diketo esters with 4-hydrazinobenzenesulfonamide hydrochloride, and these were further converted into the corresponding carboxylic acid (17) and carboxamide (18) analogs. The synthesized compounds were assayed in vitro for their inhibition potential against human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. They were found to be potent inhibitors at the low nanomolar level against the cancer-related hCA IX and XII and to be selective towards the cytosolic isoform hCA I. The physiologically important isoform hCA II was potently inhibited by all the newly synthesized compounds showing KI values ranging between 0.8 and 561.5 nM. The ester derivative 16c having 4-fluorophenyl (KI = 5.2 nM) was the most potent inhibitor of hCA IX, and carboxamide derivative 18b (KI = 2.2 nM) having 4-methyl substituted phenyl was the most potent inhibitor of hCA XII. The newly synthesized compounds exhibited potent cathepsin B inhibition at 10-7 M concentration. In general, the carboxamide derivatives (18) showed higher % inhibition as compared with the corresponding ester derivatives (16) and carboxylic acid derivatives (17) for cathepsin B. The interactions of the target compounds with the active sites of cathepsin B and CA were studied through molecular docking studies. Further, the in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of the target compounds were also studied.

13.
Arch Pharm (Weinheim) ; : e2400366, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991221

RESUMO

The present research focused on the tail-approach synthesis of novel extended thiazolotriazoles (8a-8j) and triazolothiadiazines (11a-11j) including aminotriazole intermediate 10. After successful synthesis, all the compounds were evaluated for their inhibition potential against cytosolic isoforms of human carbonic anhydrase (hCA I, II), tumor-linked transmembrane isoforms (hCA IX, XII), and cathepsin B. As per the inhibition data, the newly synthesized compounds showed poor inhibition against hCA I. Many of the compounds showed effective inhibition toward hCA IX and/or XII in low nanomolar concentration. Despite the strong to moderate inhibition of hCA II by these compounds, more than half of them demonstrated better inhibition against hCA IX and/or XII, comparatively. Further, insights of CA inhibition data of these extended analogs and their comparison with earlier reported thiazolotriazole and triazolothiadiazine derivatives might help in the rational design of novel potent and selective hCA IX and XII inhibitors. The novel compounds were also found to possess anti-cathepsin B potential at a low concentration of 10-7 M. Broadly, compounds of series 11a-11j presented more effective inhibition against cathepsin B than their counterparts in series 8a-8j. Moreover, these in vitro results with respect to cathepsin B inhibition were also supported by the in silico insights obtained via molecular modeling studies.

14.
J Labelled Comp Radiopharm ; 67(8): 295-304, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38837480

RESUMO

Cathepsin B (CTSB) is a lysosomal protease that is overexpressed in tumor cells. Radioimmunoconjugates (RICs) composed of CTSB-recognizing chelating agents are expected to increase the molecular weights of their radiometabolites by forming conjugates with CTSB in cells, resulting in their improved retention in tumor cells. We designed a novel CTSB-recognizing trifunctional chelating agent, azide-[111In]In-DOTA-CTSB-substrate ([111In]In-ADCS), to synthesize a RIC, trastuzumab-[111In]In-ADCS ([111In]In-TADCS), and evaluated its utility to improve tumor retention of the RIC. [111In]In-ADCS and [111In]In-TADCS were synthesized with satisfactory yield and purity. [111In]In-ADCS was markedly stable in murine plasma until 96 h postincubation. [111In]In-ADCS showed binding to CTSB in vitro, and the conjugation was blocked by the addition of CTSB inhibitor. In the internalization assay, [111In]In-TADCS exhibited high-level retention in SK-OV-3 cells, indicating the in vitro utility of the CTSB-recognizing unit. In the biodistribution assay, [111In]In-TADCS showed high-level tumor accumulation, but the retention was hardly improved. In the first attempt to combine a CTSB-recognizing unit and RIC, these findings show the fundamental properties of the CTSB-recognizing trifunctional chelating agent to improve tumor retention of RICs.


Assuntos
Catepsina B , Quelantes , Imunoconjugados , Catepsina B/metabolismo , Quelantes/química , Quelantes/síntese química , Animais , Camundongos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Distribuição Tecidual , Linhagem Celular Tumoral , Humanos , Radioisótopos de Índio/química , Técnicas de Química Sintética , Trastuzumab/química
15.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530526

RESUMO

Neuropathic lysosomal storage disorders (LSDs) present with activated pro-inflammatory microglia. However, anti-inflammatory treatment failed to improve disease pathology. We characterise the mechanisms underlying microglia activation in Niemann-Pick disease type A (NPA). We establish that an NPA patient and the acid sphingomyelinase knockout (ASMko) mouse model show amoeboid microglia in neurodegeneration-prone areas. In vivo microglia ablation worsens disease progression in ASMko mice. We demonstrate the coexistence of different microglia phenotypes in ASMko brains that produce cytokines or counteract neuronal death by clearing myelin debris. Overloading microglial lysosomes through myelin debris accumulation and sphingomyelin build-up induces lysosomal damage and cathepsin B extracellular release by lysosomal exocytosis. Inhibition of cathepsin B prevents neuronal death and behavioural anomalies in ASMko mice. Similar microglia phenotypes occur in a Niemann-Pick disease type C mouse model and patient. Our results show a protective function for microglia in LSDs and how this is corrupted by lipid lysosomal overload. Data indicate cathepsin B as a key molecule mediating neurodegeneration, opening research pathways for therapeutic targeting of LSDs and other demyelinating diseases.


Assuntos
Catepsina B/metabolismo , Microglia/patologia , Doença de Niemann-Pick Tipo A/patologia , Esfingomielina Fosfodiesterase/genética , Animais , Linhagem Celular , Pré-Escolar , Modelos Animais de Doenças , Progressão da Doença , Humanos , Recém-Nascido , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Camundongos Knockout , Microglia/metabolismo , Doença de Niemann-Pick Tipo A/genética , Fenótipo , Esfingomielinas/metabolismo
16.
J Cell Sci ; 134(1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33277382

RESUMO

Gap junctions have well-established roles in cell-cell communication by way of forming permeable intercellular channels. Less is understood about their internalization, which forms double membrane vesicles containing cytosol and membranes from another cell called connexosomes or annular gap junctions. Here, we systematically investigated the fate of connexosomes in intact ovarian follicles. High-pressure frozen, serial-sectioned tissue was immunogold labeled for connexin 43 (Cx43, also known as GJA1). Within a volume corresponding to ∼35 cells, every labeled structure was categorized and had its surface area measured. Measurements support the concept that multiple connexosomes form from larger invaginated gap junctions. Subsequently, the inner and outer membranes separate, Cx43 immunogenicity is lost from the outer membrane, and the inner membrane appears to undergo fission. One pathway for processing involves lysosomes, based on localization of cathepsin B to some processed connexosomes. In summary, this study demonstrates new technology for high-resolution analyses of gap junction processing.This article has an associated First Person interview with the first author of the paper.


Assuntos
Comunicação Celular , Junções Comunicantes , Feminino , Humanos , Lisossomos , Microscopia Eletrônica , Microscopia Imunoeletrônica , Folículo Ovariano
17.
Biochem Biophys Res Commun ; 666: 45-51, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37178504

RESUMO

Parotid glands are exocrine glands that release saliva into the oral cavity. Acinar cells of parotid glands produce many secretory granules (SGs) that contain the digestion enzyme amylase. After the generation of SGs in the Golgi apparatus, they mature by enlarging and membrane remodeling. VAMP2, which is involved in exocytosis, accumulates in the membrane of mature SGs. The remodeling of SG membranes is regarded as a preparation process for exocytosis but its detailed mechanism remains unknown. To address that subject, we investigated the secretory ability of newly formed SGs. Although amylase is a useful indicator of secretion, the cell leakage of amylase might affect the measurement of secretion. Thus, in this study, we focused on cathepsin B (CTSB), a lysosomal protease, as an indicator of secretion. It has been reported that some procathepsin B (pro-CTSB), which is a precursor of CTSB, is initially sorted to SGs after which it is transported to lysosomes by clathrin-coated vesicles. Because pro-CTSB is processed to mature CTSB after its arrival in lysosomes, we can distinguish between the secretion of SGs and cell leakage by measuring the secretion of pro-CTSB and mature CTSB, respectively. When acinar cells isolated from parotid glands were stimulated with isoproterenol (Iso), a ß-adrenergic agonist, the secretion of pro-CTSB was increased. In contrast, mature CTSB was not detected in the medium although it was abundant in the cell lysates. To prepare parotid glands rich in newly formed SGs, the depletion of per-existing SGs was induced by an intraperitoneal injection of Iso into rats. At 5 h after that injection, newly formed SGs were observed in parotid acinar cells and the secretion of pro-CTSB was also detected. We confirmed that the purified newly formed SGs contained pro-CTSB, but not mature CTSB. At 2 h after Iso injection, few SGs were observed in the parotid glands and the secretion of pro-CTSB was not detected, which proved that the Iso injection depleted pre-existing SGs and the SGs observed at 5 h were newly formed after the Iso injection. These results suggest that newly formed SGs have a secretory ability prior to membrane remodeling.


Assuntos
Amilases , Catepsina B , Animais , Ratos , Agonistas Adrenérgicos beta/farmacologia , Amilases/metabolismo , Catepsina B/metabolismo , Grânulos Citoplasmáticos/metabolismo , Isoproterenol/farmacologia , Glândula Parótida/metabolismo , Vesículas Secretórias/metabolismo
18.
Small ; 19(29): e2300015, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029574

RESUMO

Magnetic resonance imaging (MRI) is a superior and noninvasive imaging technique with unlimited tissue penetration depth and superb spatiotemporal resolution, however, using intracellular self-assembly of Gd-containing nanoparticles to enhance the T2 -weighted MR contrast of cancer cells in vivo for precise tumor MRI is rarely reported. The lysosomal cysteine protease cathepsin B (CTSB) is regarded as an attractive biomarker for the early diagnosis of cancers and metastasis. Herein, taking advantage of a biocompatible condensation reaction, a "smart" Gd-based CTSB-responsive small molecular contrast agent VC-Gd-CBT is developed, which can self-assemble into large intracellular Gd-containing nanoparticles by glutathione reduction and CTSB cleavage to enhance the T2 -weighted MR contrast of CTSB-overexpressing MDA-MB-231 cells at 9.4 T. In vivo T2 -weighted MRI studies using MDA-MB-231 murine xenografts show that the T2 -weighted MR contrast change of tumors in VC-Gd-CBT-injected mice is distinctly larger than the mice injected with the commercial agent gadopentetate dimeglumine, or co-injected with CTSB inhibitor and VC-Gd-CBT, indicating that the accumulation of self-assembled Gd-containing nanoparticles at tumor sites effectively enhances the T2 -weighted MR tumor imaging. Hence, this CTSB-targeted small molecule VC-Gd-CBT has the potential to be employed as a T2 contrast agent for the clinical diagnosis of cancers at an early stage.


Assuntos
Nanopartículas , Neoplasias , Humanos , Animais , Camundongos , Meios de Contraste , Gadolínio , Catepsina B , Neoplasias/diagnóstico , Imageamento por Ressonância Magnética/métodos
19.
Virol J ; 20(1): 2, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611172

RESUMO

BACKGROUND: Recent seminal studies have revealed that endosomal reactive oxygen species (ROS) promote rather than inhibit viral infection. Some ROS generators, including shikonin and H2O2, have the potential to enhance recombinant adeno-associated virus (rAAV) transduction. However, the impact of ROS on rAAV intracellular trafficking remains unclear. METHODS: To understand the effects of ROS on the transduction of rAAV vectors, especially the rAAV subcellular distribution profiles, this study systematically explored the effect of ROS on each step of rAAV intracellular trafficking pathway using fluorescently-labeled rAAV and qPCR quantification determination. RESULTS: The results showed promoted in-vivo and in-vitro rAAV transduction by ROS exposure, regardless of vector serotype or cell type. ROS treatment directed rAAV intracellular trafficking towards a more productive pathway by upregulating the expression of cathepsins B and L, accelerating the rAAV transit in late endosomes, and increasing the rAAV nucleus entry. CONCLUSIONS: These data support that ROS generative drugs, such as shikonin, have the potential to promote rAAV vector transduction by promoting rAAV's escape from late endosomes, and enhancing its productive trafficking to the nucleus.


Assuntos
Dependovirus , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio/metabolismo , Transdução Genética , Dependovirus/genética , Peróxido de Hidrogênio/metabolismo , Endossomos , Vetores Genéticos
20.
Mol Pharm ; 20(7): 3539-3548, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37289648

RESUMO

Cysteine cathepsin B (CTS-B) is a crucial enzyme that is overexpressed in numerous malignancies and contributes to the invasion and metastasis of cancer. Therefore, this study sets out to develop and evaluate an activity-based multimodality theranostic agent targeting CTS-B for cancer imaging and therapy. A CTS-B activity-based probe, BMX2, was synthesized and labeled efficiently with 68Ga and 90Y to produce 68Ga-BMX2 for multimodality imaging and 90Y-BMX2 for radiation therapy. The affinity and specificity of BMX2 binding with the CTS-B enzyme were determined by fluorescent western blots using recombined active human CTS-B enzyme (rh-CTS-B) and four cancer cell lines including HeLa, HepG2, MCF7, and U87MG, with CA074 as the CTS-B inhibitor for control. Confocal laser scanning microscope imaging and cell uptake measurement were also performed. Then, in vivo PET imaging and fluorescence imaging were acquired on HeLa xenografts. Finally, the therapeutic effect of 90Y-BMX2 was tested. BMX2 could be specifically activated by rh-CTS-B and stably bound to the enzyme. The binding of BMX2 with CTS-B is time-dependent and enzyme concentration-dependent. Although CTS-B expression varied between cell lines, all showed significant uptake of BMX2 and 68Ga-BMX2. In vivo optical and PET imaging showed a high tumor uptake of BMX2 and 68Ga-BMX2 and accumulation for more than 24 h. 90Y-BMX2 could significantly inhibit HeLa tumor growth. The development of 68Ga/90Y-BMX2, a radioactive and fluorescent dual modality theranostic agent, demonstrated an effective theranostic approach for PET diagnostic imaging, fluorescence imaging, and radionuclide therapy of cancers, which may have a potential for clinical translation for cancer theranostics in the future.


Assuntos
Cisteína , Neoplasias , Humanos , Radioisótopos de Gálio , Medicina de Precisão , Corantes Fluorescentes , Catepsina B , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/diagnóstico por imagem , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA