Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Med ; 30(1): 22, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317082

RESUMO

BACKGROUND: The contribution of the central nervous system to sepsis pathobiology is incompletely understood. In previous studies, administration of endotoxin to mice decreased activity of the vagus anti-inflammatory reflex. Treatment with the centrally-acting M1 muscarinic acetylcholine (ACh) receptor (M1AChR) attenuated this endotoxin-mediated change. We hypothesize that decreased M1AChR-mediated activity contributes to inflammation following cecal ligation and puncture (CLP), a mouse model of sepsis. METHODS: In male C57Bl/6 mice, we quantified basal forebrain cholinergic activity (immunostaining), hippocampal neuronal activity, serum cytokine/chemokine levels (ELISA) and splenic cell subtypes (flow cytometry) at baseline, following CLP and following CLP in mice also treated with the M1AChR agonist xanomeline. RESULTS: At 48 h. post-CLP, activity in basal forebrain cells expressing choline acetyltransferase (ChAT) was half of that observed at baseline. Lower activity was also noted in the hippocampus, which contains projections from ChAT-expressing basal forebrain neurons. Serum levels of TNFα, IL-1ß, MIP-1α, IL-6, KC and G-CSF were higher post-CLP than at baseline. Post-CLP numbers of splenic macrophages and inflammatory monocytes, TNFα+ and ILß+ neutrophils and ILß+ monocytes were higher than baseline while numbers of central Dendritic Cells (cDCs), CD4+ and CD8+ T cells were lower. When, following CLP, mice were treated with xanomeline activity in basal forebrain ChAT-expressing neurons and in the hippocampus was significantly higher than in untreated animals. Post-CLP serum concentrations of TNFα, IL-1ß, and MIP-1α, but not of IL-6, KC and G-CSF, were significantly lower in xanomeline-treated mice than in untreated mice. Post-CLP numbers of splenic neutrophils, macrophages, inflammatory monocytes and TNFα+ neutrophils also were lower in xanomeline-treated mice than in untreated animals. Percentages of IL-1ß+ neutrophils, IL-1ß+ monocytes, cDCs, CD4+ T cells and CD8+ T cells were similar in xanomeline-treated and untreated post-CLP mice. CONCLUSION: Our findings indicate that M1AChR-mediated responses modulate CLP-induced alterations in serum levels of some, but not all, cytokines/chemokines and affected splenic immune response phenotypes.


Assuntos
Citocinas , Piridinas , Sepse , Tiadiazóis , Masculino , Camundongos , Animais , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CCL3 , Quimiocinas , Punções , Endotoxinas , Encéfalo/metabolismo , Ligadura , Colinérgicos , Fator Estimulador de Colônias de Granulócitos , Camundongos Endogâmicos C57BL , Ceco/metabolismo , Modelos Animais de Doenças
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612596

RESUMO

A better understanding of the function of neutrophil extracellular traps (NETs) may facilitate the development of interventions for sepsis. The study aims to investigate the formation and degradation of NETs in three murine sepsis models and to analyze the production of reactive oxygen species (ROS) during NET formation. Murine sepsis was induced by midgut volvulus (720° for 15 min), cecal ligation and puncture (CLP), or the application of lipopolysaccharide (LPS) (10 mg/kg body weight i.p.). NET formation and degradation was modulated using mice that were genetically deficient for peptidyl arginine deiminase-4 (PAD4-KO) or DNase1 and 1L3 (DNase1/1L3-DKO). After 48 h, mice were killed. Plasma levels of circulating free DNA (cfDNA) and neutrophil elastase (NE) were quantified to assess NET formation and degradation. Plasma deoxyribonuclease1 (DNase1) protein levels, as well as tissue malondialdehyde (MDA) activity and glutathione peroxidase (GPx) activity, were quantified. DNase1 and DNase1L3 in liver, intestine, spleen, and lung tissues were assessed. The applied sepsis models resulted in a simultaneous increase in NET formation and oxidative stress. NET formation and survival differed in the three models. In contrast to LPS and Volvulus, CLP-induced sepsis showed a decreased and increased 48 h survival in PAD4-KO and DNase1/1L3-DKO mice, when compared to WT mice, respectively. PAD4-KO mice showed decreased formation of NETs and ROS, while DNase1/1L3-DKO mice with impaired NET degradation accumulated ROS and chronicled the septic state. The findings indicate a dual role for NET formation and degradation in sepsis and ischemia-reperfusion (I/R) injury: NETs seem to exhibit a protective capacity in certain sepsis paradigms (CLP model), whereas, collectively, they seem to contribute adversely to scenarios where sepsis is combined with ischemia-reperfusion (volvulus).


Assuntos
Antígenos de Grupos Sanguíneos , Ácidos Nucleicos Livres , Armadilhas Extracelulares , Volvo Intestinal , Traumatismo por Reperfusão , Sepse , Animais , Camundongos , Modelos Animais de Doenças , Lipopolissacarídeos , Espécies Reativas de Oxigênio , Sepse/complicações , Prótons , Isquemia
3.
Mol Med ; 29(1): 106, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550630

RESUMO

BACKGROUND: Sepsis is characterized as an insulin resistant state. However, the effects of sepsis on insulin's signal transduction pathway are unknown. The molecular activity driving insulin signaling is controlled by tyrosine phosphorylation of the insulin receptor ß-subunit (IRß) and of insulin receptor substrate molecules (IRS) -1 and IRS-2. HYPOTHESIS: Cecal ligation and puncture (CLP) attenuates IRß, IRS-1 and IRS-2 phosphorylation. METHODS: IACUC-approved studies conformed to ARRIVE guidelines. CLP was performed on C57BL/6 mice; separate cohorts received intraperitoneal insulin at baseline (T0) or at 23 or 47 h. post-CLP, 1 h before mice were euthanized. We measured levels of (1) glucose and insulin in serum, (2) IRß, IRS-1 and IRS-2 in skeletal muscle and liver homogenate and (3) phospho-Irß (pIRß) in liver and skeletal muscle, phospho-IRS-1 (pIRS-1) in skeletal muscle and pIRS-2 in liver. Statistical significance was determined using ANOVA with Sidak's post-hoc correction. RESULTS: CLP did not affect the concentrations of IRß, IRS-1or IRS-2 in muscle or liver homogenate or of IRS-1 in liver. Muscle IRS-1 concentration at 48 h. post-CLP was higher than at T0. Post-CLP pIRS-1 levels in muscle and pIRß and pIRS-2 levels in liver were indistinguishable from T0 levels. At 48 h. post-CLP pIRß levels in muscle were higher than at T0. Following insulin administration, the relative abundance of pIRß in muscle and liver at T0 and at both post-CLP time points was significantly higher than abundance in untreated controls. In T0 controls, the relative abundance of pIRS-1 in muscle and of pIRS-2 in liver following insulin administration was higher than in untreated mice. However, at both post-CLP time points, the relative abundance of pIRS-1 in muscle and of pIRS-2 in liver following insulin administration was not distinguishable from the abundance in untreated mice at the same time point. Serum glucose concentration was significantly lower than T0 at 24 h., but not 48 h., post-CLP. Glucose concentration was lower following insulin administration to T0 mice but not in post-CLP animals. Serum insulin levels were significantly higher than baseline at both post-CLP time points. CONCLUSIONS: CLP impaired insulin-induced tyrosine phosphorylation of both IRS-1 in muscle and IRS-2 in liver. These findings suggest that the molecular mechanism underlying CLP-induced insulin resistance involves impaired IRS-1/IRS-2 phosphorylation.


Assuntos
Proteínas Substratos do Receptor de Insulina , Receptor de Insulina , Sepse , Animais , Camundongos , Glucose/metabolismo , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Fosforilação , Punções , Receptor de Insulina/metabolismo , Sepse/metabolismo , Tirosina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo
4.
J Neuroinflammation ; 20(1): 12, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681815

RESUMO

Sepsis-associated brain injury (SABI) is characterized by an acute deterioration of mental status resulting in cognitive impairment and acquisition of new and persistent functional limitations in sepsis survivors. Previously, we reported that septic mice had evidence of axonal injury, robust microglial activation, and cytotoxic edema in the cerebral cortex, thalamus, and hippocampus in the absence of blood-brain barrier disruption. A key conceptual advance in the field was identification of sulfonylurea receptor 1 (SUR1), a member of the adenosine triphosphate (ATP)-binding cassette protein superfamily, that associates with the transient receptor potential melastatin 4 (TRPM4) cation channel to play a crucial role in cerebral edema development. Therefore, we hypothesized that knockout (KO) of Abcc8 (Sur1 gene) is associated with a decrease in microglial activation, cerebral edema, and improved neurobehavioral outcomes in a murine cecal ligation and puncture (CLP) model of sepsis. Sepsis was induced in 4-6-week-old Abcc8 KO and wild-type (WT) littermate control male mice by CLP. We used immunohistochemistry to define neuropathology and microglial activation along with parallel studies using magnetic resonance imaging, focusing on cerebral edema on days 1 and 4 after CLP. Abcc8 KO mice exhibited a decrease in axonal injury and cytotoxic edema vs. WT on day 1. Abcc8 KO mice also had decreased microglial activation in the cerebral cortex vs. WT. These findings were associated with improved spatial memory on days 7-8 after CLP. Our study challenges a key concept in sepsis and suggests that brain injury may not occur merely as an extension of systemic inflammation. We advance the field further and demonstrate that deletion of the SUR1 gene ameliorates CNS pathobiology in sepsis including edema, axonal injury, neuroinflammation, and behavioral deficits. Benefits conferred by Abcc8 KO in the murine CLP model warrant studies of pharmacological Abcc8 inhibition as a new potential therapeutic strategy for SABI.


Assuntos
Antineoplásicos , Edema Encefálico , Lesões Encefálicas , Disfunção Cognitiva , Sepse , Canais de Cátion TRPM , Camundongos , Masculino , Animais , Camundongos Knockout , Receptores de Sulfonilureias/genética , Edema Encefálico/genética , Sepse/complicações , Sepse/genética , Sepse/patologia , Lesões Encefálicas/complicações , Punções , Edema , Ligadura , Camundongos Endogâmicos C57BL
5.
J Surg Res ; 283: 572-580, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36442256

RESUMO

INTRODUCTION: Since its discovery in 2002, presepsin (P-SEP) has been reported to be useful in the early diagnosis of sepsis and has been evaluated in many clinical studies. However, as antibodies that bind to mouse P-SEP were previously unavailable, serum P-SEP levels in mice are limited. This study used a P-SEP enzyme-linked immunosorbent assay kit to evaluate the changes in serum P-SEP levels in mouse sepsis models compared with changes in other inflammatory markers and determine whether P-SEP can function as a biomarker specific to bacterial infections. METHODS: Sepsis was induced in mice via cecal ligation and puncture (CLP), induction with lipopolysaccharide (LPS), and cecal ligation (CL) model was created as a control for the CLP model, following which clinical biomarkers (P-SEP, C-reactive protein, and procalcitonin) were evaluated. RESULTS: The 48-h survival rates in the CLP, CL, and LPS-induced sepsis models were 67%, 89%, and 57%, respectively. Serum C-reactive protein levels did not increase in the CLP and CL models within 24 h but significantly increased in the LPS-induced sepsis model. Serum procalcitonin levels increased in the CLP and CL models and especially increased in the LPS-induced sepsis model. In contrast, an increase in serum P-SEP level was found in the CLP model at 6 h compared with those at baseline, the CL, and LPS-induced sepsis models. CONCLUSIONS: Mouse P-SEP is elevated early in infection and more specific to bacterial infection compared with other biomarkers.


Assuntos
Infecções Bacterianas , Sepse , Camundongos , Animais , Proteína C-Reativa , Lipopolissacarídeos , Pró-Calcitonina , Biomarcadores , Modelos Animais de Doenças , Ligadura , Ceco
6.
Brain ; 145(4): 1391-1409, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35441215

RESUMO

Sepsis is a life-threatening condition induced by a deregulated host response to severe infection. Post-sepsis syndrome includes long-term psychiatric disorders, such as persistent anxiety and post-traumatic stress disorder, whose neurobiological mechanisms remain unknown. Using a reference mouse model of sepsis, we showed that mice that recovered from sepsis further developed anxiety-related behaviours associated with an exaggerated fear memory. In the brain, sepsis induced an acute pathological activation of a specific neuronal population of the central nucleus of the amygdala, which projects to the ventral bed nucleus of the stria terminalis. Using viral-genetic circuit tracing and in vivo calcium imaging, we observed that sepsis induced persistent changes in the connectivity matrix and in the responsiveness of these central amygdala neurons projecting to the ventral bed nucleus of the stria terminalis. The transient and targeted silencing of this subpopulation only during the acute phase of sepsis with a viral pharmacogenetic approach, or with the anti-epileptic and neuroprotective drug levetiracetam, prevented the subsequent development of anxiety-related behaviours. Specific inhibition of brain anxiety and fear circuits during the sepsis acute phase constitutes a preventive approach to preclude the post-infection psychiatric outcomes.


Assuntos
Núcleo Central da Amígdala , Sepse , Animais , Ansiedade , Transtornos de Ansiedade , Medo/fisiologia , Humanos , Camundongos , Sepse/complicações
7.
Metab Brain Dis ; 38(1): 339-347, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301457

RESUMO

Oxidative stress and inflammation seem to be the main factors responsible for cognitive impairment in sepsis. Genistein (GEN) is claimed to exert many beneficial effects on health, however, its possible effects on brain sepsis remains unclear. Here, we assess the influence and underling mechanisms of GEN on cognitive impairments in cecal ligation and puncture (CLP)-induced septic model. Rats were randomly divided into Sham, Sham + GEN, CLP, CLP + GEN gropus. Rats were treated with GEN (15 mg/kg at 0 and 12 h after CLP, i.p). Twenty-four hours after CLP, protein levels of cytokines, NF-kB and Nrf2, myeloperoxidase (MPO) activity, oxidative damage to lipids and proteins, the activities of antioxidant enzymes and the expression of Nrf2-target genes were evaluated in the hippocampus. At 10 days after sepsis induction, behavioral tests were conducted to evaluate cognitive impairment. The results indicate that GEN can enhance survival percentage and improve cognitive function. Genistein administration significantly reduced TNF-α and IL-1ß levels, MPO activity and protein level of NF-kB in the hippocampus of septic rats. Genistein also decreased the levels of oxidative stress parameters (MDA and protein carbonyls) and elevated the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in septic rats. Furthermore, nuclear Nrf2 and the expression of HO-1 and NQO-1 were also elevated by GEN treatment. These findings suggest that GEN improves cognition impairment in septic rats via decreasing inflammatory responses and oxidative stress, and activation of the Nrf2 pathway.


Assuntos
Disfunção Cognitiva , Encefalopatia Associada a Sepse , Sepse , Ratos , Animais , Encefalopatia Associada a Sepse/tratamento farmacológico , Antioxidantes/farmacologia , Genisteína/farmacologia , Genisteína/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Estresse Oxidativo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Transdução de Sinais
8.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298529

RESUMO

In the development of therapeutic strategies for human diseases, preclinical experimental models have a key role. However, the preclinical immunomodulatory therapies developed using rodent sepsis were not successful in human clinical trials. Sepsis is characterized by a dysregulated inflammation and redox imbalance triggered by infection. Human sepsis is simulated in experimental models using methods that trigger inflammation or infection in the host animals, most often mice or rats. It remains unknown whether the characteristics of the host species, the methods used to induce sepsis, or the molecular processes focused upon need to be revisited in the development of treatment methods that will succeed in human clinical trials. Our goal in this review is to provide a survey of existing experimental models of sepsis, including the use of humanized mice and dirty mice, and to show how these models reflect the clinical course of sepsis. We will discuss the strengths and limitations of these models and present recent advances in this subject area. We maintain that rodent models continue to have an irreplaceable role in studies toward discovering treatment methods for human sepsis.


Assuntos
Roedores , Sepse , Humanos , Ratos , Camundongos , Animais , Sepse/terapia , Inflamação , Modelos Animais de Doenças , Ligadura/métodos , Ceco
9.
Molecules ; 28(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375325

RESUMO

Sepsis-associated acute kidney injury (SA-AKI) results in significant morbidity and mortality, and ferroptosis may play a role in its pathogenesis. Our aim was to examine the effect of exogenous H2S (GYY4137) on ferroptosis and AKI in in vivo and in vitro models of sepsis and explore the possible mechanism involved. Sepsis was induced by cecal ligation and puncture (CLP) in male C57BL/6 mice, which were randomly divided into the sham, CLP, and CLP + GYY4137 group. The indicators of SA-AKI were most prominent at 24 h after CLP, and analysis of the protein expression of ferroptosis indicators showed that ferroptosis was also exacerbated at 24 h after CLP. Moreover, the level of the endogenous H2S synthase CSE (Cystathionine-γ-lyase) and endogenous H2S significantly decreased after CLP. Treatment with GYY4137 reversed or attenuated all these changes. In the in vitro experiments, LPS was used to simulate SA-AKI in mouse renal glomerular endothelial cells (MRGECs). Measurement of ferroptosis-related markers and products of mitochondrial oxidative stress showed that GYY4137 could attenuate ferroptosis and regulate mitochondrial oxidative stress. These findings imply that GYY4137 alleviates SA-AKI by inhibiting ferroptosis triggered by excessive mitochondrial oxidative stress. Thus, GYY4137 may be an effective drug for the clinical treatment of SA-AKI.


Assuntos
Injúria Renal Aguda , Ferroptose , Sepse , Camundongos , Animais , Masculino , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia
10.
Mol Biol Rep ; 49(5): 3875-3883, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35301652

RESUMO

AIM: We aimed to investigate the effects of rasagiline on acute lung injury that develops in the sepsis model induced with the cecal ligation and puncture in rats. MAIN METHODS: The rats were separated into the following six groups, Group 1: Sham, Group 2: Sham + Rasagiline 4 mg/kg, Group 3: Sepsis, Group 4: Sepsis + Rasagiline 1 mg/kg, Group 5: Sepsis + Rasagiline 2 mg/kg, Group 6: Sepsis + Rasagiline 4 mg/kg. A total of four holes were opened with a 16-gauge needle through the cecum distal to the point of ligation. KEY FINDINGS: Rasagiline treatment increased glutathione level and superoxide dismutase activity while decreased the malondialdehyde level after the sepsis. There was a statistically significant improvement in the doses of 2 mg/kg and 4 mg/kg. Rasagiline also increased Tnf-α, IL1ß, IL6, NF-κßand HMGB1 gene expressions in dose-dependent at 2 mg/kg and 4 mg/kg doses. In increased doses, rasagiline prevent the development of edema, the formation of inflammation, and hemorrhage. SIGNIFICANCE: Rasagiline exerts both antioxidant and anti-inflammatory effects on the cecal ligation and puncture induced acute lung injury in rats.


Assuntos
Lesão Pulmonar Aguda , Sepse , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Ceco/metabolismo , Ceco/patologia , Modelos Animais de Doenças , Indanos , Ligadura , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Sepse/tratamento farmacológico , Sepse/metabolismo
11.
Exp Cell Res ; 399(2): 112473, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33428902

RESUMO

Sepsis is a complicated multi-system disorder characterized by a dysregulated host response to infection. Despite substantial progress in the understanding of mechanisms of sepsis, translation of these advances into clinically effective therapies remains challenging. Mesenchymal Stromal Cells (MSCs) possess immunomodulatory properties that have shown therapeutic promise in preclinical models of sepsis. The therapeutic effects of MSCs may vary depending on the source and type of these cells. In this comparative study, the gene expression pattern and surface markers of bone marrow-derived MSCs (BM-MSCs) and umbilical cord-derived MSCs (UC-MSCs) as well as their therapeutic effects in a clinically relevant mouse model of polymicrobial sepsis, cecal ligation and puncture (CLP), were investigated. The results showed remarkable differences in gene expression profile, surface markers and therapeutic potency in terms of enhancing survival and pro/anti-inflammatory responses between the two MSC types. BM-MSCs improved survival concomitant with an enhanced systemic bacterial clearance and improved inflammatory profile post CLP surgery. Despite some improvement in the inflammatory profile of the septic animals, treatment with UC-MSCs did not enhance survival or bacterial clearance. Overall, the beneficial therapeutic effects of BM-MSCs over UC-MSCs may likely be attributed to their pro-inflammatory function, and to some extent anti-inflammatory features, reflected in their gene expression pattern enhancing macrophage polarization to M1/M2 phenotypes resulting in a balanced pro- and anti-inflammatory response against polymicrobial sepsis.


Assuntos
Células da Medula Óssea/citologia , Transplante de Medula Óssea , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Sepse/terapia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Imunofenotipagem , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sepse/genética , Sepse/imunologia , Sepse/patologia
12.
Int J Mol Sci ; 23(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628259

RESUMO

BAM15 (a mitochondrial uncoupling agent) was tested on cecal ligation and puncture (CLP) sepsis mice with in vitro experiments. BAM15 attenuated sepsis as indicated by survival, organ histology (kidneys and livers), spleen apoptosis (activated caspase 3), brain injury (SHIRPA score, serum s100ß, serum miR370-3p, brain miR370-3p, brain TNF-α, and apoptosis), systemic inflammation (cytokines, cell-free DNA, endotoxemia, and bacteremia), and blood-brain barrier (BBB) damage (Evan's blue dye and the presence of green fluorescent E. coli in brain after an oral administration). In parallel, brain miR arrays demonstrated miR370-3p at 24 h but not 120 h post-CLP, which was correlated with metabolic pathways. Either lipopolysaccharide (LPS) or TNF-α upregulated miR370-3p in PC12 (neuron cells). An activation by sepsis factors (LPS, TNF-α, or miR370-3p transfection) damaged mitochondria (fluorescent color staining) and reduced cell ATP, possibly through profound mitochondrial activity (extracellular flux analysis) that was attenuated by BAM15. In bone-marrow-derived macrophages, LPS caused mitochondrial injury, decreased cell ATP, enhanced glycolysis activity (extracellular flux analysis), and induced pro-inflammatory macrophages (iNOS and IL-1ß) which were neutralized by BAM15. In conclusion, BAM15 attenuated sepsis through decreased mitochondrial damage, reduced neuronal miR370-3p upregulation, and induced anti-inflammatory macrophages. BAM15 is proposed to be used as an adjuvant therapy against sepsis hyperinflammation.


Assuntos
Encefalopatias , MicroRNAs , Sepse , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Encefalopatias/genética , Encefalopatias/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Punções , Sepse/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163830

RESUMO

Although bacteria-free DNA in blood during systemic infection is mainly derived from bacterial death, translocation of the DNA from the gut into the blood circulation (gut translocation) is also possible. Hence, several mouse models with experiments on macrophages were conducted to explore the sources, influences, and impacts of bacteria-free DNA in sepsis. First, bacteria-free DNA and bacteriome in blood were demonstrated in cecal ligation and puncture (CLP) sepsis mice. Second, administration of bacterial lysate (a source of bacterial DNA) in dextran sulfate solution (DSS)-induced mucositis mice elevated blood bacteria-free DNA without bacteremia supported gut translocation of free DNA. The absence of blood bacteria-free DNA in DSS mice without bacterial lysate implies an impact of the abundance of bacterial DNA in intestinal contents on the translocation of free DNA. Third, higher serum cytokines in mice after injection of combined bacterial DNA with lipopolysaccharide (LPS), when compared to LPS injection alone, supported an influence of blood bacteria-free DNA on systemic inflammation. The synergistic effects of free DNA and LPS on macrophage pro-inflammatory responses, as indicated by supernatant cytokines (TNF-α, IL-6, and IL-10), pro-inflammatory genes (NFκB, iNOS, and IL-1ß), and profound energy alteration (enhanced glycolysis with reduced mitochondrial functions), which was neutralized by TLR-9 inhibition (chloroquine), were demonstrated. In conclusion, the presence of bacteria-free DNA in sepsis mice is partly due to gut translocation of bacteria-free DNA into the systemic circulation, which would enhance sepsis severity. Inhibition of the responses against bacterial DNA by TLR-9 inhibition could attenuate LPS-DNA synergy in macrophages and might help improve sepsis hyper-inflammation in some situations.


Assuntos
Citocinas/sangue , DNA Bacteriano/imunologia , Sulfato de Dextrana/efeitos adversos , Lipopolissacarídeos/imunologia , Mucosite/imunologia , Sepse/imunologia , Animais , Modelos Animais de Doenças , Fezes/microbiologia , Interleucina-10/sangue , Interleucina-6/sangue , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Mucosite/induzido quimicamente , Mucosite/microbiologia , Sepse/induzido quimicamente , Sepse/microbiologia , Fator de Necrose Tumoral alfa/sangue
14.
Medicina (Kaunas) ; 58(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35334545

RESUMO

Sepsis is an emergent infectious disease and a leading cause of death despite immediate intervention. While Delta neutrophil index (DNI) and myeloperoxidase (MPO) are known as a prodiagnostic marker of sepsis, the preclinical evidence of the best marker of sepsis is unclear. For this, using a well-designed cecal ligation and puncture (CLP)-induced sepsis mouse model, we comparatively measured the level and cost-effectiveness of sepsis biomarkers such as DNI, myeloperoxidase (MPO), procalcitonin (PCT), and tumor necrosis factor-alpha (TNF-α). First, we found that the optimal time point for early detection is at 6 h, 24 h post-CLP. Strikingly, the peak level and fold change of DNI was revealed at 24 h, further showing the best fold change as compared with other biomarker levels. Given the fold change at 6, 24 h, PCT was next to DNI. Third, a cost-effectiveness survey showed that DNI was the best, with PCT next. Further, DNI level was moderate positively associated with PCT (ρ = 0.697, p = 0.012) and TNF-α (ρ = 0.599, p = 0.040). Collectively, these data indicate that DNI in CLP-induced sepsis mice is as effective as the existent inflammatory biomarkers such as MPO, PCT and TNF-α to predict the prognosis of sepsis. This might have clinically important implications that DNI is cost effective, thus quickly and rationally applying to diverse types of imminent sepsis regardless of species. This might be the first report on the validity of DNI in preclinical CLP-induced murine sepsis.


Assuntos
Neutrófilos , Sepse , Animais , Biomarcadores , Modelos Animais de Doenças , Humanos , Camundongos , Punções/efeitos adversos , Estudos Retrospectivos , Sepse/complicações , Sepse/diagnóstico
15.
J Transl Med ; 19(1): 386, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503521

RESUMO

OBJECTIVE: Little is known regarding the functional role of microRNA-193-3p (miR-193-3p) in sepsis. Hence, the aim of the present study was to investigate the effect of miR-193-3p on myocardial injury in mice with sepsis and its mechanism through the regulation of signal transducers and activators of transcription 3 (STAT3). METHODS: The mice model of sepsis was established by cecal ligation and puncture (CLP), septic mice were injected with miR-193-3p agomir, miR-193-3p antagomir or siRNA-STAT3. The expression of miR-193-3p, STAT3 and HMGB1 in the myocardial tissue of septic mice were detected. Cardiac ultrasound, hemodynamics, myocardial injury markers, inflammatory factors and cardiomyocyte apoptosis in septic mice were measured. RESULTS: MiR-193-3p expression was reduced while STAT3 expression was increased in septic mice. Down-regulated STAT3 or up-regulated miR-193-3p improved cardiac function, attenuated myocardial injury, inflammation and cardiomyocyte apoptosis in septic mice. Knockdown STAT3 reversed the role of inhibited miR-193-3p for mice with sepsis. miR-193-3p targeted STAT3, thereby inhibiting HMGB1 expression. CONCLUSION: This study provides evidence that miR-193-3p targets STAT3 expression to reduce HMGB1 expression, thereby reducing septic myocardial damage. MiR-193-3p might be a potential candidate marker and therapeutic target for sepsis.


Assuntos
Proteína HMGB1/metabolismo , MicroRNAs , Fator de Transcrição STAT3/metabolismo , Sepse , Animais , Apoptose , Ceco , Proteína HMGB1/genética , Camundongos , MicroRNAs/genética , Fator de Transcrição STAT3/genética , Sepse/complicações
16.
FASEB J ; 34(2): 2497-2510, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908004

RESUMO

Sepsis is a leading cause of morbidity and mortality in intensive care units. Previously, we identified Protein Kinase C-delta (PKCδ) as an important regulator of the inflammatory response in sepsis. An important issue in development of anti-inflammatory therapeutics is the risk of immunosuppression and inability to effectively clear pathogens. In this study, we investigated whether PKCδ inhibition prevented organ dysfunction and improved survival without compromising pathogen clearance. Sprague Dawley rats underwent sham surgery or cecal ligation and puncture (CLP) to induce sepsis. Post-surgery, PBS or a PKCδ inhibitor (200µg/kg) was administered intra-tracheally (IT). At 24 hours post-CLP, there was evidence of lung and kidney dysfunction. PKCδ inhibition decreased leukocyte influx in these organs, decreased endothelial permeability, improved gas exchange, and reduced blood urea nitrogen/creatinine ratios indicating organ protection. PKCδ inhibition significantly decreased bacterial levels in the peritoneal cavity, spleen and blood but did not exhibit direct bactericidal properties. Peritoneal chemokine levels, neutrophil numbers, or macrophage phenotypes were not altered by PKCδ inhibition. Peritoneal macrophages isolated from PKCδ inhibitor-treated septic rats demonstrated increased bacterial phagocytosis. Importantly, PKCδ inhibition increased survival. Thus, PKCδ inhibition improved survival and improved survival was associated with increased phagocytic activity, enhanced pathogen clearance, and decreased organ injury.


Assuntos
Bactérias/imunologia , Inibidores Enzimáticos/farmacologia , Macrófagos Peritoneais , Neutrófilos , Proteína Quinase C-delta/antagonistas & inibidores , Sepse , Animais , Quimiocinas , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Masculino , Neutrófilos/imunologia , Neutrófilos/patologia , Fagocitose/efeitos dos fármacos , Proteína Quinase C-delta/imunologia , Ratos , Ratos Sprague-Dawley , Sepse/tratamento farmacológico , Sepse/imunologia , Sepse/microbiologia , Sepse/patologia
17.
Cell Biochem Funct ; 39(6): 754-762, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33913177

RESUMO

Sepsis induces several metabolic abnormalities, including hypoglycaemia in the most advanced stage of the disease, a risk factor for complications and death. Although hypoglycaemia can be caused by inhibition of hepatic gluconeogenesis, decreased and increased gluconeogenesis were reported in sepsis. Furthermore, gluconeogenesis from glycerol was not yet evaluated in this disease. The main purpose of this study was to investigate the gluconeogenesis from alanine, lactate, pyruvate and glycerol in rats with early (8 hours) and late (18 hours) sepsis. Parameters related to the characterization of sepsis were also evaluated. Sepsis was induced by cecal ligation and puncture and gluconeogenesis was assessed in liver perfusion. Rats with early and late sepsis showed increased lactataemia, depletion of liver glycogen and peripheral insulin resistance, characterizing the establishment of sepsis. Rats with early and late sepsis showed decreased gluconeogenesis from alanine, lactate and pyruvate. Interestingly, gluconeogenesis from glycerol, a precursor that enters in the pathway at a later step, subsequent to the entry of alanine, lactate and pyruvate, was maintained in rats with early and late sepsis. In conclusion, gluconeogenesis is decreased from alanine, lactate and pyruvate, but maintained from glycerol, in liver perfusion of rats with early and late sepsis. SIGNIFICANCE OF THE STUDY: The maintenance of gluconeogenesis from glycerol, but not from alanine, lactate and pyruvate, together with the liver glycogen depletion, points the glycerol as an important precursor for the maintenance of glycaemic homeostasis in sepsis. The findings open the possibility of further investigation on the administration of glycerol in the treatment of hypoglycaemia associated with more advanced sepsis.


Assuntos
Alanina/metabolismo , Ácido Láctico/metabolismo , Fígado/metabolismo , Ácido Pirúvico/metabolismo , Sepse/metabolismo , Animais , Gluconeogênese , Glicerol/metabolismo , Masculino , Perfusão , Ratos , Ratos Wistar
18.
Can J Physiol Pharmacol ; 99(7): 699-707, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33290154

RESUMO

Chronic ethanol consumption and sepsis cause oxidative stress and renal dysfunction. This study aimed to examine whether chronic ethanol consumption sensitizes the mouse kidney to sub-lethal cecal ligation and puncture (SL-CLP) sepsis, leading to impairment of renal function by tissue oxidative and inflammatory damage. Male C57BL/6J mice were treated for 9 weeks with ethanol (20%, v/v) before SL-CLP was induced. Systolic blood pressure (SBP), survival rate, creatinine plasma, oxidative stress, and inflammatory parameters, inducible nitric oxide synthase (iNOS), cytokines, and metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) levels were evaluated. Chronic ethanol consumption increased SBP, plasma creatinine, O2.-, H2O2, lipid peroxidation, catalase activity, Nox4, IL-6, and TNF-α levels, and MMP-9/TIMP-1 ratio. SL-CLP decreased SBP, increased creatinine, lipid peroxidation, IL-6, TNF-α, nitrate/nitrite (NOx), and iNOS levels, and MMP-2/TIMP-2 ratio, and decreased catalase activity. SL-CLP mice previously treated with ethanol showed a similar decrease in SBP but higher mortality and creatinine levels than SL-CLP alone. These responses were mediated by increased O2-, lipid peroxidation, IL-6, TNF-α, NOx, iNOS, MMP-2, and MMP-9 levels, and MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios. Our findings demonstrated that previous oxidative stress and inflammatory damage caused by ethanol consumption sensitizes the kidney to SL-CLP injury, resulting in impaired kidney function and sepsis prognosis.


Assuntos
Sepse , Animais , Modelos Animais de Doenças , Peróxido de Hidrogênio , Masculino , Camundongos , Estresse Oxidativo
19.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638546

RESUMO

Sepsis is the leading cause of death in intensive care units worldwide. Current treatments of sepsis are largely supportive and clinical trials using specific pharmacotherapy for sepsis have failed to improve outcomes. Here, we used the lipopolysaccharide (LPS)-stimulated mouse RAW264.7 cell line and AlphaLisa assay for TNFa as a readout to perform a supervised drug repurposing screen for sepsis treatment with compounds targeting epigenetic enzymes, including kinases. We identified the SCH772984 compound, an extracellular signal-regulated kinase (ERK) 1/2 inhibitor, as an effective blocker of TNFa production in vitro. RNA-Seq of the SCH772984-treated RAW264.7 cells at 1, 4, and 24 h time points of LPS challenge followed by functional annotation of differentially expressed genes highlighted the suppression of cellular pathways related to the immune system. SCH772984 treatment improved survival in the LPS-induced lethal endotoxemia and cecal ligation and puncture (CLP) mouse models of sepsis, and reduced plasma levels of Ccl2/Mcp1. Functional analyses of RNA-seq datasets for kidney, lung, liver, and heart tissues from SCH772984-treated animals collected at 6 h and 12 h post-CLP revealed a significant downregulation of pathways related to the immune response and platelets activation but upregulation of the extracellular matrix organization and retinoic acid signaling pathways. Thus, this study defined transcriptome signatures of SCH772984 action in vitro and in vivo, an agent that has the potential to improve sepsis outcome.


Assuntos
Anti-Inflamatórios/farmacologia , Endotoxemia/tratamento farmacológico , Indazóis/farmacologia , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Piperazinas/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Triazóis/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Linhagem Celular , Quimiocina CCL2/sangue , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Reposicionamento de Medicamentos , Endotoxemia/mortalidade , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ativação Plaquetária/efeitos dos fármacos , Células RAW 264.7 , Transcriptoma/genética
20.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768881

RESUMO

Although the enhanced responses against serum cell-free DNA (cfDNA) in cases of sepsis-a life-threatening organ dysfunction due to systemic infection-are understood, the influence of the cytosolic DNA receptor cGAS (cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase) on sepsis is still unclear. Here, experiments on cGAS deficient (cGAS-/-) mice were conducted using cecal ligation and puncture (CLP) and lipopolysaccharide (LPS) injection sepsis models and macrophages. Severity of CLP in cGAS-/- mice was less severe than in wildtype (WT) mice, as indicated by mortality, serum LPS, cfDNA, leukopenia, cytokines (TNF-α, IL-6 and IL-10), organ histology (lung, liver and kidney) and spleen apoptosis. With the LPS injection model, serum cytokines in cGAS-/- mice were lower than in WT mice, despite the similar serum cfDNA level. Likewise, in LPS-activated WT macrophages, the expression of several mitochondria-associated genes (as revealed by RNA sequencing analysis) and a profound reduction in mitochondrial parameters, including maximal respiration (determined by extracellular flux analysis), DNA (mtDNA) and mitochondrial abundance (revealed by fluorescent staining), were demonstrated. These data implied the impact of cfDNA resulting from LPS-induced cell injury. In parallel, an additive effect of bacterial DNA on LPS, seen in comparison with LPS alone, was demonstrated in WT macrophages, but not in cGAS-/- cells, as indicated by supernatant cytokines (TNF-α and IL-6), M1 proinflammatory polarization (iNOS and IL-1ß), cGAS, IFN-γ and supernatant cyclic GMP-AMP (cGAMP). In conclusion, cGAS activation by cfDNA from hosts (especially mtDNA) and bacteria was found to induce an additive proinflammatory effect on LPS-activated macrophages which was perhaps responsible for the more pronounced sepsis hyperinflammation observed in WT mice compared with the cGAS-/- group.


Assuntos
Nucleotidiltransferases/metabolismo , Sepse/metabolismo , Animais , Ceco/metabolismo , Citocinas/metabolismo , DNA/metabolismo , Interleucina-10/metabolismo , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nucleotidases/metabolismo , Nucleotídeos Cíclicos , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/genética , Sepse/prevenção & controle , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA