Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.429
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(2): 100723, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253182

RESUMO

Cerebral stroke is one of the leading causes of mortality and disability worldwide. Restoring the cerebral circulation following a period of occlusion and subsequent tissue oxygenation leads to reperfusion injury. Cerebral ischemic reperfusion (I/R) injury triggers immune and inflammatory responses, apoptosis, neuronal damage, and even death. However, the cellular function and molecular mechanisms underlying cerebral I/R-induced neuronal injury are incompletely understood. By integrating proteomic, phosphoproteomic, and transcriptomic profiling in mouse hippocampi after cerebral I/R, we revealed that the differentially expressed genes and proteins mainly fall into several immune inflammatory response-related pathways. We identified that Annexin 2 (Anxa2) was exclusively upregulated in microglial cells in response to cerebral I/R in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. RNA-seq analysis revealed a critical role of Anxa2 in the expression of inflammation-related genes in microglia via the NF-κB signaling. Mechanistically, microglial Anxa2 is required for nuclear translocation of the p65 subunit of NF-κB and its transcriptional activity upon OGD/R in BV2 microglial cells. Anxa2 knockdown inhibited the OGD/R-induced microglia activation and markedly reduced the expression of pro-inflammatory factors, including TNF-α, IL-1ß, and IL-6. Interestingly, conditional medium derived from Anxa2-depleted BV2 cell cultures with OGD/R treatment alleviated neuronal death in vitro. Altogether, our findings revealed that microglia Anxa2 plays a critical role in I/R injury by regulating NF-κB inflammatory responses in a non-cell-autonomous manner, which might be a potential target for the neuroprotection against cerebral I/R injury.


Assuntos
Anexina A2 , Microglia , Traumatismo por Reperfusão , Animais , Camundongos , Anexina A2/metabolismo , Microglia/metabolismo , Multiômica , NF-kappa B/metabolismo , Proteômica , Traumatismo por Reperfusão/metabolismo
2.
Stem Cells ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39364762

RESUMO

Ischemic stroke (IS) is a significant and potentially life-threatening disease with limited treatment options, often resulting in severe disability. Bone marrow stromal cells (BMSCs) transplantation has exhibited promising neuroprotection following cerebral ischemia-reperfusion injury (CIRI). However, the effectiveness is hindered by their low homing rate when administered through the vein. In this study, we aimed to enhance the homing ability of BMSCs through lentivirus transfection to express fucosyltransferase 7. This glycosylation engineered CD44 on BMSCs to express hematopoietic cell E-selectin/L-selectin ligand (HCELL), which is the most potent E-selectin ligand. Following enforced HCELL expression, the transplantation of BMSCs was then evaluated in a middle cerebral artery occlusion (MCAO) model. Results showed that HCELL+BMSCs significantly ameliorated neurological deficits and reduced the volume of cerebral infarction. Furthermore, the transplantation led to a decrease in apoptosis by up-regulating BCL-2 and down-regulating BAX, also reduced the mRNA levels of inflammatory factors, such as interleukin-1ß (IL-1ß), IL-2, IL-6 and tumor necrosis factor-alpha (TNF-α) in the ischemic brain tissue. Notably, enforced HCELL expression facilitated the migration of BMSCs towards cerebral ischemic lesions and their subsequent transendothelial migration through the up-regulation of PTGS-2, increased production of PGE2 and activation of VLA-4. In summary, our study demonstrates that transplantation of HCELL+BMSCs effectively alleviates CIRI, and that enforced HCELL expression enhances the homing of BMSCs to cerebral ischemic lesions and their transendothelial migration via PTGS-2/PGE2/VLA-4. These findings indicate that enforced expression of HCELL on BMSCs could serve as a promising therapeutic strategy for the treatment of ischemic stroke.

3.
J Neurochem ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39323054

RESUMO

Reactive astrocyte activation in the context of cerebral ischemia/reperfusion (I/R) injury gives rise to two distinct subtypes: the neurotoxic A1 type and the neuroprotective A2 type. DJ-1 (Parkinson disease protein 7, PARK7), originally identified as a Parkinson's disease-associated protein, is a multifunctional anti-oxidative stress protein with molecular chaperone and signaling functions. SHP-1 (Src homology 2 domain-containing phosphatase-1) is a protein tyrosine phosphatase closely associated with cellular signal transduction. miR-155 is a microRNA that participates in cellular functions by regulating gene expression. Recent studies have uncovered the relationship between DJ-1 and astrocyte-mediated neuroprotection, which may be related to its antioxidant properties and regulation of signaling molecules such as SHP-1. Furthermore, miR-155 may exert its effects by influencing SHP-1, providing a potential perspective for understanding the molecular mechanisms of stroke. A middle cerebral artery occlusion/reperfusion (MCAO/R) model and an oxygen-glucose deprivation/reperfusion (OGD/R) model were established to simulate focal cerebral I/R injury in vivo and in vitro, respectively. The in vivo interaction between DJ-1 and SHP-1 has been experimentally validated through immunoprecipitation. Overexpression of DJ-1 attenuates I/R injury and suppresses miR-155 expression. In addition, inhibition of miR-155 upregulates SHP-1 expression and modulates astrocyte activation phenotype. These findings suggest that DJ-1 mediates astrocyte activation via the miR-155/SHP-1 pathway, playing a pivotal role in the pathogenesis of cerebral ischemia-reperfusion injury. Our results provide a potential way for exploring the pathogenesis of ischemic stroke and present promising targets for pharmacological intervention.

4.
Mol Med ; 30(1): 77, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840035

RESUMO

BACKGROUND: Ischemic stroke presents a significant threat to human health due to its high disability rate and mortality. Currently, the clinical treatment drug, rt-PA, has a narrow therapeutic window and carries a high risk of bleeding. There is an urgent need to find new effective therapeutic drugs for ischemic stroke. Icariin (ICA), a key ingredient in the traditional Chinese medicine Epimedium, undergoes metabolism in vivo to produce Icaritin (ICT). While ICA has been reported to inhibit neuronal apoptosis after cerebral ischemia-reperfusion (I/R), yet its underlying mechanism remains unclear. METHODS: PC-12 cells were treated with 200 µM H2O2 for 8 h to establish a vitro model of oxidative damage. After administration of ICT, cell viability was detected by Thiazolyl blue tetrazolium Bromide (MTT) assay, reactive oxygen species (ROS) and apoptosis level, mPTP status and mitochondrial membrane potential (MMP) were detected by flow cytometry and immunofluorescence. Apoptosis and mitochondrial permeability transition pore (mPTP) related proteins were assessed by Western blotting. Middle cerebral artery occlusion (MCAO) model was used to establish I/R injury in vivo. After the treatment of ICA, the neurological function was scored by ZeaLonga socres; the infarct volume was observed by 2,3,5-Triphenyltetrazolium chloride (TTC) staining; HE and Nissl staining were used to detect the pathological state of the ischemic cortex; the expression changes of mPTP and apoptosis related proteins were detected by Western blotting. RESULTS: In vitro: ICT effectively improved H2O2-induced oxidative injury through decreasing the ROS level, inhibiting mPTP opening and apoptosis. In addition, the protective effects of ICT were not enhanced when it was co-treated with mPTP inhibitor Cyclosporin A (CsA), but reversed when combined with mPTP activator Lonidamine (LND). In vivo: Rats after MCAO shown cortical infarct volume of 32-40%, severe neurological impairment, while mPTP opening and apoptosis were obviously increased. Those damage caused was improved by the administration of ICA and CsA. CONCLUSIONS: ICA improves cerebral ischemia-reperfusion injury by inhibiting mPTP opening, making it a potential candidate drug for the treatment of ischemic stroke.


Assuntos
Apoptose , Flavonoides , AVC Isquêmico , Potencial da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Estresse Oxidativo/efeitos dos fármacos , Ratos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Apoptose/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/etiologia , Células PC12 , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley
5.
Mol Med ; 30(1): 106, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039432

RESUMO

BACKGROUND: Investigating immune cell infiltration in the brain post-ischemia-reperfusion (I/R) injury is crucial for understanding and managing the resultant inflammatory responses. This study aims to unravel the role of the RPS27A-mediated PSMD12/NF-κB axis in controlling immune cell infiltration in the context of cerebral I/R injury. METHODS: To identify genes associated with cerebral I/R injury, high-throughput sequencing was employed. The potential downstream genes were further analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analyses. For experimental models, primary microglia and neurons were extracted from the cortical tissues of mouse brains. An in vitro cerebral I/R injury model was established in microglia using the oxygen-glucose deprivation/reoxygenation (OGD/R) technique. In vivo models involved inducing cerebral I/R injury in mice through the middle cerebral artery occlusion (MCAO) method. These models were used to assess neurological function, immune cell infiltration, and inflammatory factor release. RESULTS: The study identified RPS27A as a key player in cerebral I/R injury, with PSMD12 likely acting as its downstream regulator. Silencing RPS27A in OGD/R-induced microglia decreased the release of inflammatory factors and reduced neuron apoptosis. Additionally, RPS27A silencing in cerebral cortex tissues mediated the PSMD12/NF-κB axis, resulting in decreased inflammatory factor release, reduced neutrophil infiltration, and improved cerebral injury outcomes in I/R-injured mice. CONCLUSION: RPS27A regulates the expression of the PSMD12/NF-κB signaling axis, leading to the induction of inflammatory factors in microglial cells, promoting immune cell infiltration in brain tissue, and exacerbating brain damage in I/R mice. This study introduces novel insights and theoretical foundations for the treatment of nerve damage caused by I/R, suggesting that targeting the RPS27A and downstream PSMD12/NF-κB signaling axis for drug development could represent a new direction in I/R therapy.


Assuntos
NF-kappa B , Traumatismo por Reperfusão , Proteínas Ribossômicas , Transdução de Sinais , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/genética , Camundongos , NF-kappa B/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Masculino , Modelos Animais de Doenças , Microglia/metabolismo , Microglia/imunologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/imunologia , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas
6.
Biochem Biophys Res Commun ; 704: 149712, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38408414

RESUMO

Astrocytes transfer extracellular functional mitochondria into neurons to rescue injured neurons after a stroke. However, there are no reports on drugs that interfere with intercellular mitochondrial transfer. Chrysophanol (CHR) was an effective drug for the treatment of cerebral ischemia-reperfusion injury (CIRI) and was selected as the test drug. The oxygen-glucose deprivation/reoxygenation (OGD/R) cell model and the middle cerebral artery occlusion animal model were established to investigate the effect of CHR on CIRI. The result showed that astrocytes could act as mitochondrial donors to ameliorate neuronal injury. Additionally, the neuroprotective effect of astrocytes was enhanced by CHR, the CHR improved the neuronal mitochondrial function, decreased the neurological deficit score and infarction volume, recovered cell morphology in ischemic penumbra. The mitochondrial fluorescence probe labeling technique has shown that the protective effect of CHR is associated with accelerated astrocytic mitochondrial transfer to neurons. The intercellular mitochondrial transfer may be an important way to ameliorate ischemic brain injury and be used as a key target for drug treatment.


Assuntos
Antraquinonas , Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Isquemia Encefálica/metabolismo , Astrócitos/metabolismo , Traumatismo por Reperfusão/metabolismo , Neurônios/metabolismo , Mitocôndrias
7.
Microcirculation ; 31(7): e12880, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39120967

RESUMO

OBJECTIVE: Intragastric administration of ninjin'yoeito (NYT), a traditional Japanese herbal medicine, reportedly prevents the decrease in baseline cerebral blood flow (CBF) in the cortex following gastric administration of water. We investigated the effect of NYT on baseline and dynamic changes in cerebral cortical arteriole diameter. METHODS: Urethane-anesthetized mice were intragastrically administered 1 g/kg NYT or distilled water (DW). The artery in the left parietal cortex was imaged using two-photon microscopy. The baseline diameter of penetrating arterioles was measured before and 50-60 min after administration. Dynamic CBF and arteriole diameter changes before, during, and after transient occlusion of the left common carotid artery were measured approximately 10 min after administration. RESULTS: DW decreased the baseline diameter of the penetrating arterioles, whereas NYT did not. During occlusion, the increase in penetrating arteriole diameter was comparable for DW and NYT; however, during reperfusion, the return to preocclusion diameter was slower for NYT than DW. Laser-speckle contrast imaging confirmed that CBF, although comparable during occlusion, was higher during reperfusion for NYT than DW. CONCLUSIONS: These results suggest that NYT attenuates vasoconstriction in penetrating arterioles after intragastric administration and during cerebral reperfusion, contributing to CBF regulation.


Assuntos
Circulação Cerebrovascular , Medicamentos de Ervas Chinesas , Animais , Camundongos , Arteríolas/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Córtex Cerebral/irrigação sanguínea , Reperfusão
8.
Mamm Genome ; 35(3): 346-361, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39115562

RESUMO

Pyroptosis has been regarded as caspase-1-mediated monocyte death that induces inflammation, showing a critical and detrimental role in the development of cerebral ischemia-reperfusion injury (IRI). MARCH1 is an E3 ubiquitin ligase that exerts potential anti-inflammatory functions. Therefore, the study probed into the significance of MARCH1 in inflammation and pyroptosis elicited by cerebral IRI. Middle cerebral artery occlusion/reperfusion (MCAO/R)-treated mice and oxygen glucose deprivation/reoxygenation (OGD/R)-treated hippocampal neurons were established to simulate cerebral IRI in vivo and in vitro. MARCH1 and PCSK9 expression was tested in MCAO/R-operated mice, and their interaction was identified by means of the cycloheximide assay and co-immunoprecipitation. The functional roles of MARCH1 and PCSK9 in cerebral IRI were subsequently determined by examining the neurological function, brain tissue changes, neuronal viability, inflammation, and pyroptosis through ectopic expression and knockdown experiments. PCSK9 expression was increased in the brain tissues of MCAO/R mice, while PCSK9 knockdown reduced brain damage and neurological deficits. Additionally, inflammation and pyroptosis were inhibited in OGD/R-exposed hippocampal neurons upon PCSK9 knockdown, accompanied by LDLR upregulation and NLRP3 inflammasome inactivation. Mechanistic experiments revealed that MARCH1 mediated ubiquitination and degradation of PCSK9, lowering PCSK9 protein expression. Furthermore, it was demonstrated that MARCH1 suppressed inflammation and pyroptosis after cerebral IRI by downregulating PCSK9 both in vivo and in vitro. Taken together, the present study demonstrate the protective effect of MARCH1 against cerebral IRI through PCSK9 downregulation, which might contribute to the discovery of new therapies for improving cerebral IRI.


Assuntos
Inflamação , Pró-Proteína Convertase 9 , Piroptose , Traumatismo por Reperfusão , Ubiquitina-Proteína Ligases , Animais , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Piroptose/genética , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Neurônios/metabolismo , Neurônios/patologia , Masculino , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Regulação para Baixo , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
9.
J Transl Med ; 22(1): 771, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148053

RESUMO

BACKGROUND: Stroke is a globally dangerous disease capable of causing irreversible neuronal damage with limited therapeutic options. Meldonium, an inhibitor of carnitine-dependent metabolism, is considered an anti-ischemic drug. However, the mechanisms through which meldonium improves ischemic injury and its potential to protect neurons remain largely unknown. METHODS: A rat model with middle cerebral artery occlusion (MCAO) was used to investigate meldonium's neuroprotective efficacy in vivo. Infarct volume, neurological deficit score, histopathology, neuronal apoptosis, motor function, morphological alteration and antioxidant capacity were explored via 2,3,5-Triphenyltetrazolium chloride staining, Longa scoring method, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay, rotarod test, transmission electron microscopy and Oxidative stress index related kit. A primary rat hippocampal neuron model subjected to oxygen-glucose deprivation reperfusion was used to study meldonium's protective ability in vitro. Neuronal viability, mitochondrial membrane potential, mitochondrial morphology, respiratory function, ATP production, and its potential mechanism were assayed by MTT cell proliferation and cytotoxicity assay kit, cell-permeant MitoTracker® probes, mitochondrial stress, real-time ATP rate and western blotting. RESULTS: Meldonium markedly reduced the infarct size, improved neurological function and motor ability, and inhibited neuronal apoptosis in vivo. Meldonium enhanced the morphology, antioxidant capacity, and ATP production of mitochondria and inhibited the opening of the mitochondrial permeability transition pore in the cerebral cortex and hippocampus during cerebral ischemia-reperfusion injury (CIRI) in rats. Additionally, meldonium improved the damaged fusion process and respiratory function of neuronal mitochondria in vitro. Further investigation revealed that meldonium activated the Akt/GSK-3ß signaling pathway to inhibit mitochondria-dependent neuronal apoptosis. CONCLUSION: Our study demonstrated that meldonium shows a neuroprotective function during CIRI by preserving the mitochondrial function, thus prevented neurons from apoptosis.


Assuntos
Apoptose , Sobrevivência Celular , Metilidrazinas , Mitocôndrias , Neurônios , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Fármacos Neuroprotetores/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Masculino , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Metilidrazinas/farmacologia , Metilidrazinas/uso terapêutico , Isquemia Encefálica/patologia , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
10.
J Bioenerg Biomembr ; 56(3): 193-204, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38446318

RESUMO

Blood-brain barrier breakdown and ROS overproduction are important events during the progression of ischemic stroke aggravating brain damage. Geraniol, a natural monoterpenoid, possesses anti-apoptotic, cytoprotective, anti-oxidant, and anti-inflammatory activities. Our study aimed to investigate the effect and underlying mechanisms of geraniol in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced human brain microvascular endothelial cells (HBMECs). Apoptosis, caspase-3 activity, and cytotoxicity of HBMECs were evaluated using TUNEL, caspase-3 activity, and CCK-8 assays, respectively. The permeability of HBMECs was examined using FITC-dextran assay. Reactive oxygen species (ROS) production was measured using the fluorescent probe DCFH-DA. The protein levels of zonula occludens-1 (ZO-1), occludin, claudin-5, ß-catenin, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were determined by western blotting. Geraniol showed no cytotoxicity in HBMECs. Geraniol and ROS scavenger N-acetylcysteine (NAC) both attenuated OGD/R-induced apoptosis and increase of caspase-3 activity and the permeability to FITC-dextran in HBMECs. Geraniol relieved OGD/R-induced ROS accumulation and decrease of expression of ZO-1, occludin, claudin-5, and ß-catenin in HBMECs. Furthermore, we found that geraniol activated Nrf2/HO-1 pathway to inhibit ROS in HBMECs. In conclusion, geraniol attenuated OGD/R-induced ROS-dependent apoptosis and permeability in HBMECs through activating the Nrf2/HO-1 pathway.


Assuntos
Monoterpenos Acíclicos , Apoptose , Células Endoteliais , Glucose , Heme Oxigenase-1 , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Humanos , Apoptose/efeitos dos fármacos , Monoterpenos Acíclicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Glucose/metabolismo , Heme Oxigenase-1/metabolismo , Oxigênio/metabolismo , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Microvasos/metabolismo , Microvasos/patologia , Microvasos/efeitos dos fármacos
11.
Toxicol Appl Pharmacol ; 483: 116829, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246288

RESUMO

Aucubin (AU) is a naturally occurring iridoid glycoside known to possess a wide range of pharmacological properties and exhibit a notable protective effect against various pathological conditions. Studies have shown that AU has neuroprotective properties in different neurological diseases. However, its potential protective effects against cerebral ischemia-reperfusion (CIR) injury have not been thoroughly investigated. This study aimed to investigate the impact of AU on CIR injury and explore the underlying mechanism. Cultured neurons treated with AU showed a significant reduction in apoptosis, oxidative stress, and inflammation caused by oxygen-glucose deprivation and reoxygenation (OGD/R). In a rat model of CIR, treatment with AU resulted in a significant decrease in cerebral infarct size and neurological deficits. AU treatment also reversed the increased apoptosis, oxidative stress, and inflammation in the brains of CIR rats. Furthermore, AU was found to enhance the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2), accompanied by increased phosphorylation of serine/threonine-protein kinase AKT and glycogen synthase kinase-3 beta (GSK-3ß). The activation of Nrf2 induced by AU was reversed when the AKT-GSK-3ß cascade was blocked. Additionally, the neuroprotective effect of AU was significantly reduced when Nrf2 was pharmacologically suppressed. In conclusion, these findings suggest that AU exerts a neuroprotective effect on CIR injury, and this effect is mediated by the activation of Nrf2 through the AKT-GSK-3ß axis. This work highlights the potential of AU as a drug candidate for the treatment of CIR injury.


Assuntos
Glucosídeos Iridoides , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Transdução de Sinais , Estresse Oxidativo , Apoptose , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle
12.
Cell Mol Neurobiol ; 44(1): 49, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836960

RESUMO

Mild hypothermia (MH) is an effective measure to alleviate cerebral ischemia-reperfusion (I/R) injury. However, the underlying biological mechanisms remain unclear. This study set out to investigate dynamic changes in urinary proteome due to MH in rats with cerebral I/R injury and explore the neuroprotective mechanisms of MH. A Pulsinelli's four-vessel occlusion (4-VO) rat model was used to mimic global cerebral I/R injury. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the urinary proteome of rats with/without MH (32 °C) treatment after I/R injury. Representative differentially expressed proteins (DEPs) associated with MH were validated by western blotting in hippocampus. A total of 597 urinary proteins were identified, among which 119 demonstrated significant changes associated with MH. Gene Ontology (GO) annotation of the DEPs revealed that MH significantly enriched in endopeptidase activity, inflammatory response, aging, response to oxidative stress and reactive oxygen species, blood coagulation, and cell adhesion. Notably, changes in 12 DEPs were significantly reversed by MH treatment. Among them, 8 differential urinary proteins were previously reported to be closely associated with brain disease, including NP, FZD1, B2M, EPCR, ATRN, MB, CA1and VPS4A. Two representative proteins (FZD1, B2M) were further validated by western blotting in the hippocampus and the results were shown to be consistent with urinary proteomic analysis. Overall, this study strengthens the idea that urinary proteome can sensitively reflect pathophysiological changes in the brain, and appears to be the first study to explore the neuroprotective effects of MH by urinary proteomic analysis. FZD1 and B2M may be involved in the most fundamental molecular biological mechanisms of MH neuroprotection.


Assuntos
Isquemia Encefálica , Hipotermia Induzida , Proteômica , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/urina , Proteômica/métodos , Masculino , Hipotermia Induzida/métodos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/urina , Proteoma/metabolismo , Ratos , Hipocampo/metabolismo
13.
FASEB J ; 37(3): e22733, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36723877

RESUMO

Accumulating evidence suggests that human umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSCs-Exos) are a promising therapeutic strategy for cerebral ischemia-reperfusion injury (CIRI). However, the underlying mechanism remains unclear. hUC-MSCs-Exos were identified by electron microscopy, NTA, and Western blotting. In the hypoxia/reoxygenation (H/R) cell model, human brain microvascular endothelial cells (HBMECs) were cocultured with hUC-MSCs-Exos. Then, cell viability, migration, apoptosis, and tube formation were measured by MTT, flow cytometry, transwell, and tube formation assays. RT-qPCR and Western blotting were used to detect the changes in RNA and protein. RNA pull-down and dual luciferase reporter assays confirmed the relationship between circDLGAP4, miR-320, and KLF5. Ischemia-reperfusion (I/R) rat model was established for in vivo experiments. hUC-MSCs-Exos increased the expression levels of circDLGAP4 and KLF5 but decreased miR-320 in H/R-treated HBMECs by transferring exosomal circDLGAP4. Knockdown of circDLGAP4 in hUC-MSCs-Exos reversed the promoting effects of hUC-MSCs-Exos on cell viability, migration, and tube formation in H/R-treated HBMECs in vitro and also abolished the protective effects of hUC-MSCs-Exos on cerebrovascular injury in I/R rats. Mechanistically, exosomal circDLGAP4 negatively regulated miR-320 in HBMECs, which directly bound to KLF5. In addition, the downregulation of miR-320 could reverse the regulatory effect of exosomal shcircDLGAL5 in H/R-treated HBMECs by upregulating KLF5. hUC-MSCs-Exos-derived circDLGAP4 reduced cerebrovascular injury by regulating miR-320/KLF5 signaling. These results provide a stem cell-based approach to treat CIRI.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Humanos , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Exossomos/genética , Exossomos/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
14.
Neurochem Res ; 49(8): 2105-2119, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38819696

RESUMO

Ischemic stroke involves various pathological processes, among which ferroptosis is crucial. Previous studies by our group have indicated that electroacupuncture (EA) mitigates ferroptosis after ischemic stroke; however, the precise mechanism underlying this effect remains unclear. In the present study, we developed a rat model of middle cerebral artery occlusion/reperfusion. We chose the main acupoint of the treatment methods of the "Awakening and Opening of the Brain". Rats' neurological function and motor coordination were evaluated by neurological function score and the rotarod test, respectively, and the volume of cerebral infarction was analyzed by 2,3,5-triphenyltetrazolium chloride Staining. The cerebrovascular conditions were visualized by time-of-flight magentic resonance angiography. In addition, we detected changes in lipid peroxidation and endogenous antioxidant activity by measuring the malondialdehyde, glutathione, superoxide dismutase activities, glutathione/oxidized glutathione and reduced nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide phosphate ratios. Inductively coupled plasma-mass spectrometry, western blot, reverse transcription-polymerase chain reaction, fluoro-jade B staining, immunofluorescence analysis, and transmission electron microscopy were utilized to examine the influence of EA. The results indicate that EA treatment was effective in reversing neurological impairment, neuronal damage, and protecting mitochondrial morphology and decreasing the cerebral infarct volume in the middle cerebral artery occlusion/reperfusion rat model. EA reduced iron levels, inhibited lipid peroxidation, increased endogenous antioxidant activity, modulated the expression of several ferroptosis-related proteins, and promoted nuclear factor-E2-related factor 2 (Nrf2) nuclear translocation. However, the protective effect of EA was hindered by the Nrf2 inhibitor ML385. These findings suggest that EA can suppress ferroptosis and decrease damage caused by cerebral ischemia/reperfusion by activating Nrf2 and increasing the protein expression of solute carrier family 7 member 11 and glutathione peroxidase 4.


Assuntos
Eletroacupuntura , Ferroptose , Infarto da Artéria Cerebral Média , Fator 2 Relacionado a NF-E2 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ratos Sprague-Dawley , Animais , Ferroptose/fisiologia , Eletroacupuntura/métodos , Fator 2 Relacionado a NF-E2/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Masculino , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/terapia , Traumatismo por Reperfusão/metabolismo , Ratos , Neurônios/metabolismo , Regulação para Baixo/fisiologia
15.
Neurochem Res ; 49(8): 1965-1979, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834843

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) is the second leading cause of death worldwide, posing a huge risk to human life and health. Therefore, investigating the pathogenesis underlying CIRI and developing effective treatments are essential. Ferroptosis is an iron-dependent mode of cell death, which is caused by disorders in iron metabolism and lipid peroxidation. Previous studies demonstrated that ferroptosis is also a form of autophagic cell death, and nuclear receptor coactivator 4(NCOA4) mediated ferritinophagy was found to regulate ferroptosis by interfering with iron metabolism. Ferritinophagy and ferroptosis are important pathogenic mechanisms in CIRI. This review mainly summarizes the link and regulation between ferritinophagy and ferroptosis and further discusses their mechanisms in CIRI. In addition, the potential treatment methods targeting ferritinophagy and ferroptosis for CIRI are presented, providing new ideas for the prevention and treatment of clinical CIRI in the future.


Assuntos
Ferritinas , Ferroptose , Traumatismo por Reperfusão , Ferroptose/fisiologia , Humanos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Animais , Ferritinas/metabolismo , Ferro/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Coativadores de Receptor Nuclear/metabolismo , Morte Celular Autofágica , Peroxidação de Lipídeos/fisiologia
16.
Neurochem Res ; 49(11): 3105-3117, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39167346

RESUMO

Cerebral ischemia reperfusion injury is a severe neurological impairment that occurs after blood flow reconstruction in stroke, and microglia cell pyroptosis is one of its important mechanisms. Electroacupuncture has been shown to be effective in mitigating and alleviating cerebral ischemia reperfusion injury by inhibiting neuroinflammation, reducing cellular pyroptosis, and improving neurological function. In this experiment, we divided the rats into three groups, including the sham operation (Sham) group, the middle cerebral artery occlusion/reperfusion (MCAO/R) group, and the pre-electroacupuncture (EAC) group. Pre-electroacupuncture group was stimulated with electroacupuncture of a certain intensity on the Baihui (GV 20) and Dazhui (GV 14) of the rat once a day from the 7th day to the 1st day before the MCAO/R operation. The extent of cerebral infarction was detected by TTC staining. A modified Zea-Longa five-point scale scoring system was used to determine neurologic function in MCAO rats. The number of neurons and morphological changes were accessed by Nissl staining and HE staining. The cellular damage was detected by TUNEL staining. In addition, the expression levels of RhoA, pyrin, GSDMD, Caspase1, cleaved-Caspase1, Iba-1, CD206, and ROCK2 were examined by western blotting and immunofluorescence. The results found that pre-electroacupuncture significantly attenuated neurological impairment and cerebral infarction compared to the post-MCAO/R rats. In addition, pre-electroacupuncture therapy promoted polarization of microglia to the neuroprotective (M2) phenotype. In addition, pre-electroacupuncture inhibited microglia pyroptosis by inhibiting RhoA/pyrin/GSDMD signaling pathway, thereby reducing neuronal injury and increasing neuronal survival in the MCAO/R rats. Taken together, these results demonstrated that pre-acupuncture could attenuate cerebral ischemia-reperfusion injury by inhibiting microglial pyroptosis. Therefore, pre-electroacupuncture might be a potential preventive strategy for ischemic stroke patients.


Assuntos
Eletroacupuntura , Microglia , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Masculino , Ratos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Eletroacupuntura/métodos , Gasderminas , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/fisiologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/prevenção & controle , Proteínas rho de Ligação ao GTP , Proteína rhoA de Ligação ao GTP/metabolismo , Transdução de Sinais/fisiologia
17.
Nitric Oxide ; 153: 26-40, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39374645

RESUMO

Ischemic stroke is a major cause of death and disability. The activation of neuronal nitric oxide synthase (nNOS) and the resulting production of nitric oxide (NO) via NMDA receptor-mediated calcium influx play an exacerbating role in cerebral ischemia reperfusion injury. The NO rapidly reacts with superoxide (O2-) to form peroxynitrite (ONOO-), a toxic molecule may modify proteins through tyrosine residue nitration, ultimately worsening neuronal damage. SIRT6 has been proven to be crucial in regulating cell proliferation, death, and aging in various pathological settings. We have previous reported that human SIRT6 tyrosine nitration decreased its intrinsic catalytic activity in vitro. However, the exact role of SIRT6 function in the process of cerebral ischemia reperfusion injury is not yet fully elucidated. Herein, we demonstrated that an increase in the nitration of SIRT6 led to reduce its enzymatic activity and aggravated hippocampal neuronal damage in a rat model of four-artery cerebral ischemia reperfusion. In addition, reducing SIRT6 nitration resulted in increase the activity of SIRT6, alleviating hippocampal neuronal damage. Moreover, SIRT6 nitration affected its downstream molecule activity such as PARP1 and GCN5, promoting the process of neuronal ischemic injury in rat hippocampus. Additionally, treatment with NMDA receptor antagonist MK801, or nNOS inhibitor 7-NI, and resveratrol (an antioxidant) diminished SIRT6 nitration and the catalytic activity of downstream molecules like PARP1 and GCN5, thereby reducing neuronal damage. Finally, in the biochemical regulation of SIRT6 activity, tyrosine 257 was essential for its activity and susceptibility to nitration. Replacing tyrosine 257 with phenylalanine in rat SIRT6 attenuated the death of SH-SY5Y neurocytes under oxygen-glucose deprivation (OGD) conditions. These results may offer further understanding of SIRT6 function in the pathogenesis of cerebral ischemic diseases.

18.
Cell Biol Toxicol ; 40(1): 31, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767771

RESUMO

Mitochondrial dysfunction contributes to cerebral ischemia-reperfusion (CI/R) injury, which can be ameliorated by Sirtuin-3 (SIRT3). Under stress conditions, the SIRT3-promoted mitochondrial functional recovery depends on both its activity and expression. However, the approach to enhance SIRT3 activity after CI/R injury remains unelucidated. In this study, Sprague-Dawley (SD) rats were intracranially injected with either adeno-associated viral Sirtuin-1 (AAV-SIRT1) or AAV-sh_SIRT1 before undergoing transient middle cerebral artery occlusion (tMCAO). Primary cortical neurons were cultured and transfected with lentiviral SIRT1 (LV-SIRT1) and LV-sh_SIRT1 respectively before oxygen-glucose deprivation/reoxygenation (OGD/R). Afterwards, rats and neurons were respectively treated with a selective SIRT3 inhibitor, 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). The expression, function, and related mechanism of SIRT1 were investigated by Western Blot, flow cytometry, immunofluorescence staining, etc. After CI/R injury, SIRT1 expression decreased in vivo and in vitro. The simulation and immune-analyses reported strong interaction between SIRT1 and SIRT3 in the cerebral mitochondria before and after CI/R. SIRT1 overexpression enhanced SIRT3 activity by increasing the deacetylation of SIRT3, which ameliorated CI/R-induced cerebral infarction, neuronal apoptosis, oxidative stress, neurological and motor dysfunction, and mitochondrial respiratory chain dysfunction, promoted mitochondrial biogenesis, and retained mitochondrial integrity and mitochondrial morphology. Meanwhile, SIRT1 overexpression alleviated OGD/R-induced neuronal death and mitochondrial bioenergetic deficits. These effects were reversed by AAV-sh_SIRT1 and the neuroprotective effects of SIRT1 were partially offset by 3-TYP. These results suggest that SIRT1 restores the structure and function of mitochondria by activating SIRT3, offering neuroprotection against CI/R injury, which signifies a potential approach for the clinical management of cerebral ischemia.


Assuntos
Isquemia Encefálica , Mitocôndrias , Neurônios , Traumatismo por Reperfusão , Sirtuína 1 , Sirtuína 3 , Animais , Masculino , Ratos , Apoptose , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Sirtuína 1/metabolismo , Sirtuína 1/genética , Sirtuína 3/metabolismo , Sirtuína 3/genética , Sirtuínas
19.
Immunol Invest ; 53(6): 872-890, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38809063

RESUMO

BACKGROUND: Cerebral ischemia/reperfusion injury (CIRI) is still a complicated disease with high fatality rates worldwide. Transmembrane Protein 79 (TMEM79) regulates inflammation and oxidative stress in some other diseases. METHODS: CIRI mouse model was established using C57BL/6J mice through middle cerebral artery occlusion-reperfusion (MCAO/R), and BV2 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to simulate CIRI. Brain tissue or BV2 cells were transfected or injected with lentivirus-carried TMEM79 overexpression vector. The impact of TMEM79 on CIRI-triggered oxidative stress was ascertained by dihydroethidium (DHE) staining and examination of oxidative stress indicators. Regulation of TMEM79 in neuronal apoptosis and inflammation was determined using TUNEL staining and ELISA. RESULTS: TMEM79 overexpression mitigated neurological deficit induced by MCAO/R and decreased the extent of cerebral infarct. TMEM79 prevented neuronal death in brain tissue of MCAO/R mouse model and suppressed inflammatory response by reducing inflammatory cytokines levels. Moreover, TMEM79 significantly attenuated inflammation and oxidative stress caused by OGD/R in BV2 cells. TMEM79 facilitated the activation of Nrf2 and inhibited NLRP3 and caspase-1 expressions. Rescue experiments indicated that the Nrf2/NLRP3 signaling pathway mediated the mitigative effect of TMEM79 on CIRI in vivo and in vitro. CONCLUSION: Overall, TMEM79 was confirmed to attenuate CIRI via regulating the Nrf2/NLRP3 signaling pathway.


Assuntos
Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Proteínas de Membrana , Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Traumatismo por Reperfusão , Animais , Humanos , Masculino , Camundongos , Apoptose , Isquemia Encefálica/metabolismo , Linhagem Celular , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
20.
Exp Cell Res ; 422(1): 113432, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442518

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) is a brain injury that usually occurs during thrombolytic therapy for acute ischemic stroke and impacts human health. Oxidative stress is one of the major causative factors of CIRI. DhHP-3 is a novel peroxidase-mimicking enzyme that exhibits robust reactive oxygen species (ROS) scavenging ability in vitro. Here, we established in vitro and in vivo models of cerebral ischemia-reperfusion to mechanistically investigate whether DhHP-3 can alleviate CIRI. DhHP-3 could reduce ROS, down-regulate apoptotic proteins, suppress p53 phosphorylation, attenuate the DNA damage response (DDR), and inhibit apoptosis in SH-SY5Y cells subjected to oxygen-glucose deprivation/re-oxygenation (OGD/R) and in the brain of Sprague Dawley rats subjected to transient middle cerebral artery occlusion. In conclusion, DhHP-3 has bioactivity of CIRI inhibition through suppression of the ROS-induced apoptosis.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Neuroblastoma , Traumatismo por Reperfusão , Ratos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/genética , Isquemia Encefálica/metabolismo , Estresse Oxidativo , Apoptose , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA