Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.554
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(33): 10355-10361, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39119944

RESUMO

Combining rare earth elements with the halide perovskite structure offers valuable insights into designing nonlead (Pb) luminescent materials. However, most of these compositions tend to form zero-dimensional (0D) networks of metal-halide polyhedra, with higher-dimensional (1D, 2D, and 3D) structures receiving relatively less exploration. Herein, we present synthesis and optical properties of Cs3CeCl6·3H2O, characterized by its unique 1D crystal structure. The conduction band minimum of Cs3CeCl6·3H2O becomes less localized as a result of the increased structural dimension, making it possible for the materials to achieve an efficient electrical injection. For both Cs3CeCl6·3H2O single crystals and nanocrystals, we also observed remarkable luminescence with near-unity photoluminescence quantum yield and exceptional phase stability. Cs3CeCl6·3H2O single crystals demonstrate an X-ray scintillation light yield of 31900 photons/MeV, higher than that of commercial LuAG:Ce (22000 photons/MeV); electrically driven light-emitting diodes fabricated with Cs3CeCl6·3H2O nanocrystals yield the characteristic emission of Ce3+, indicating their potential use in next-generation violet-light-emitting devices.

2.
Nano Lett ; 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39480024

RESUMO

This study presents a high-performance solid oxide fuel cell employing a perovskite cathode, strontium iron molybdenum oxide [Sr2Fe1.5Mo0.5O6-δ (SFM)], infiltrated with praseodymium-cerium oxide [Pr0.2Ce0.8O2-δ (PCO)], a fluorite. This infiltration notably enhances the oxygen reduction reaction kinetics and long-term stability. Evidence of enhanced stability is seen through minimized impedance degradation over 50 h. Furthermore, PCO infiltration improves the cathode's resistance to chromium poisoning by suppressing strontium degradation. Compared to the bare SFM cathode, the PCO-infiltrated SFM composite cathode doubles the cell's power density at 800 °C.

3.
BMC Genomics ; 25(1): 162, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331729

RESUMO

In this work, a novel isatin-Schiff base L2 had been synthesized through a simple reaction between isatin and 2-amino-5-methylthio-1,3,4-thiadiazole. The produced Schiff base L2 was then subjected to a hydrothermal reaction with cerium chloride to produce the cerium (III)-Schiff base complex C2. Several spectroscopic methods, including mass spectra, FT-IR, elemental analysis, UV-vis, 13C-NMR, 1H-NMR, Thermogravimetric Analysis, HR-TEM, and FE-SEM/EDX, were used to completely characterize the produced L2 and C2. A computer simulation was performed using the MOE software program to find out the probable biological resistance of studied compounds against the proteins in some types of bacteria or fungi. To investigate the interaction between the ligand and its complex, we conducted molecular docking simulations using the molecular operating environment (MOE). The docking simulation findings revealed that the complex displayed greater efficacy and demonstrated a stronger affinity for Avr2 effector protein from the fungal plant pathogen Fusarium oxysporum (code 5OD4) than the original ligand. The antibacterial activity of the ligand and its Ce3+ complex were applied in vitro tests against different microorganism. The study showed that the complex was found to be more effective than the ligand.


Assuntos
Cério , Isatina , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Isatina/farmacologia , Isatina/química , Cério/farmacologia , Bases de Schiff/farmacologia , Bases de Schiff/química , Simulação por Computador , Ligantes , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
4.
Curr Issues Mol Biol ; 46(4): 3005-3021, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38666918

RESUMO

The ion doping of mesoporous silica nanoparticles (MSNs) has played an important role in revolutionizing several materials applied in medicine and dentistry by enhancing their antibacterial and regenerative properties. Mineral trioxide aggregate (MTA) is a dental material widely used in vital pulp therapies with high success rates. The aim of this study was to investigate the effect of the modification of MTA with cerium (Ce)- or calcium (Ca)-doped MSNs on the biological behavior of human gingival fibroblasts (hGFs). MSNs were synthesized via sol-gel, doped with Ce and Ca ions, and mixed with MTA at three ratios each. Powder specimens were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Biocompatibility was evaluated using a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay following hGFs' incubation in serial dilutions of material eluates. Antioxidant status was evaluated using Cayman's antioxidant assay after incubating hGFs with material disc specimens, and cell attachment following dehydration fixation was observed through SEM. Material characterization confirmed the presence of mesoporous structures. Biological behavior and antioxidant capacity were enhanced in all cases with a statistically significant increase in CeMTA 50.50. The application of modified MTA with cerium-doped MSNs offers a promising strategy for vital pulp therapies.

5.
Biochem Biophys Res Commun ; 703: 149647, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38350211

RESUMO

The establishment of an osseointegration is crucial for the long-term stability and functionality of implant materials, and early angiogenesis is the key to successful osseointegration. However, the bioinertness of titanium implants affects osseointegration, limiting their clinical application. In this study, inspired by the rapid polarization of macrophages following the phagocytosis of bacteria, we developed bacteroid cerium oxide particles; these particles were composed of CeO2 and had a size similar to that of Bacillus (0.5 µ m). These particles were constructed on the implant surfaces using a hydrothermal method. In vitro experiments demonstrated that the particles effectively decreased the reactive oxygen species (ROS) levels in macrophages (RAW264.7). Furthermore, these particles exerted effects on M1 macrophage polarization, enhanced nitric oxide (NO) secretion to promote vascular regeneration, and facilitated rapid macrophage transition to the M2 phenotype. Subsequently, the particles facilitated human umbilical vein endothelial cell (HUVEC) migration. In vivo studies showed that these particles rapidly stimulated innate immune responses in animal models, leading to enhanced angiogenesis around the implant and improved osseointegration. In summary, the presence of bacteroid cerium oxide particles on the implant surface regulated and accelerated macrophage polarization, thereby enhancing angiogenesis during the immune response and improving peri-implant osseointegration.


Assuntos
Cério , Osseointegração , Animais , Humanos , Macrófagos , Cério/farmacologia , Imunidade Inata , Neovascularização Patológica , Titânio , Osteogênese , Propriedades de Superfície
6.
Small ; : e2407802, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39439140

RESUMO

Excessive generation of reactive oxygen species (ROS) poses a huge obstacle to the healing process of diabetic wounds, resulting in chronic, non-healing wounds. While numerous anti-ROS therapeutics have been developed, satisfied intra- and extra- cellular ROS homeostasis is hard to be established in diabetic wounds. To address this issue, a nanoparticle via loading metformin and CeO2 into mesoporous silica (MSN@Met-CeO2) is designed and synthesized, which is then encapsulated within ROS-responsive hydrogel and shaped as microneedles (MNs) for better application in diabetic wounds. Interestingly, a unique metformin-cerium chelate (Ce· 3Metformin) is formed during the synthesis of MSN@Met-CeO2 MN, which significantly strengthened the inhibitory effect of metformin on mitochondrial complex I. With the presence of Ce· 3Metformin, MSN@Met-CeO2 MN performed a remarkable effect on intracellular mtROS reduction as well as extracellular ROS elimination, the latter is primarily accomplished through the dissociative CeO2 in MSN@Met-CeO2 MN. In the mouse diabetic wound model, MSN@Met-CeO2 MN exhibited a superior pro-healing effect with accelerated inflammation resolution and enhanced angiogenesis, thus highlighting its significant potential for clinical application.

7.
Small ; : e2407340, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360460

RESUMO

Oxidative stress, chronic inflammation, and immune senescence are important pathologic factors in diabetic wound nonhealing. This study loads taurine (Tau) into cerium dioxide (CeO2) to develop CeO2@Tau nanoparticles with excellent antioxidant, anti-inflammatory, and anti-aging properties. To enhance the drug penetration efficiency in wounds, CeO2@Tau is encapsulated in gelatin methacryloyl (GelMA) hydrogel to prepare CeO2@Tau@Hydrogel@Microneedle (CTH@MN) patch system. Microneedle technology achieves precise and efficient delivery of CeO2@Tau, ensuring their deep penetration into the wound tissue for optimal efficacy. Rigorous in vitro and in vivo tests have confirmed the satisfactory therapeutic effect of CTH@MN patch on diabetic wound healing. Mechanistically, CTH@MN attenuates oxidative damage and inflammatory responses in macrophages by inhibiting the ROS/NF-κB signaling pathway. Meanwhile, CTH@MN activated autophagy-mediated anti-aging activity, creating a favorable immune microenvironment for tissue repair. Notably, in a diabetic mouse wound model, the multifunctional CTH@MN patch significantly promotes wound healing by systematically regulating the oxidation-inflammation-aging (oxi-inflamm-aging) pathological axis. In conclusion, the in-depth exploration of the CTH@MN system in this study provides new strategies and perspectives for treating diabetic non-healing wounds.

8.
Small ; 20(33): e2311684, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38533989

RESUMO

Carbonate-superstructured solid fuel cells (CSSFCs) are an emerging type of fuel cells with high flexibility of fuels. However, using ethane fuel for solid fuel cells is a great challenge due to serious degradation of their anodes. Herein, this critical issue is solved by creating a novel gradient functional layer anode for CSSFCs. First, a finer-scale anode with a larger surface area is demonstrated to provide more active sites for the internal reforming reaction of ethane, achieving a 60% higher ethane conversion rate and 40% lower polarization resistance than conventional anodes. Second, incorporating a gradient functional layer into the anode results in an additional 50% enhancement in the peak power density of CSSFCs to a record high value (up to 241 mW cm-2) with dry ethane fuel at a low temperature of 550 °C, which is even comparable to the power density of conventional solid oxide fuel cells above 700 °C. Furthermore, the CSSFC with the gradient anode exhibits excellent durability for over 200 h. This finding provides a new strategy to develop efficient anodes for hydrocarbon fuels.

9.
Small ; 20(26): e2310926, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38239093

RESUMO

Activation of small molecules is considered to be a central concern in the theoretical investigation of environment- and energy-related catalytic conversions. Sub-nanostructured frustrated Lewis pairs (FLPs) have been an emerging research hotspot in recent years due to their advantages in small molecule activation. Although the progress of catalytic applications of FLPs is increasingly reported, the fundamental theories related to the structural formation, site regulation, and catalytic mechanism of FLPs have not yet been fully developed. Given this, it is attempted to demonstrate the underlying theory of FLPs formation, corresponding regulation methods, and its activation mechanism on small molecules using CeO2 as the representative metal oxide. Specifically, this paper presents three fundamental principles for constructing FLPs on CeO2 surfaces, and feasible engineering methods for the regulation of FLPs sites are presented. Furthermore, cases where typical small molecules (e.g., hydrogen, carbon dioxide, methane oxygen, etc.) are activated over FLPs are analyzed. Meanwhile, corresponding future challenges for the development of FLPs-centered theory are presented. The insights presented in this paper may contribute to the theories of FLPs, which can potentially provide inspiration for the development of broader environment- and energy-related catalysis involving small molecule activation.

10.
Small ; : e2404463, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235409

RESUMO

The pro-inflammatory immune microenvironment in the localized lesion areas and the absence of DNA damage repair mechanisms in endothelial cells serve as essential accelerating factors in the development of atherosclerosis. The lack of targeted therapeutic strategies represents a significant limitation in the efficacy of therapeutic agents for atherosclerosis. In this study, Genetically engineered SNHG12-loaded cerium-macrophage exosomes (Ce-Exo) are designed as atherosclerosis-targeting agents. In vivo studies demonstrated that Ce-Exo exhibited multivalent targeting properties for macrophages, with a 4.1-fold higher atherosclerotic plaque-aggregation ability than that of the control drugs. This suggests that Ce-Exo has a higher homing capacity and deeper penetration into the atherosclerotic plaque. In apolipoprotein E-deficient mice, Ce-Exo found to effectively remodel the immune microenvironment in the lesion area, repair endothelial cell damage, and inhibit the development of atherosclerosis. This study provides a novel approach to the treatment of atherosclerosis and demonstrates the potential of cell-derived drug carriers in biomedicine.

11.
Small ; 20(21): e2308823, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38102099

RESUMO

The chemical inertness of CO2 molecules makes their adsorption and activation on a catalyst surface one of the key challenges in recycling CO2 into chemical fuels. However, the traditional template synthesis and chemical modification strategies used to tackle this problem face severe structural collapse and modifier deactivation issues during the often-needed post-processing procedure. Herein, a CO2 self-selective hydrothermal growth strategy is proposed for the synthesis of CeO2 octahedral nanocrystals that participate in strong physicochemical interactions with CO2 molecules. The intense affinity for CO2 molecules persists during successive high-temperature treatments required for Ni deposition. This demonstrates the excellent structural heredity of the CO2 self-selective CeO2 nanocrystals, which leads to an outstanding photothermal CH4 productivity exceeding 9 mmol h-1 mcat -2 and an impressive selectivity of >99%. The excellent performance is correlated with the abundant oxygen vacancies and hydroxyl species on the CeO2 surface, which create many frustrated Lewis-pair active sites, and the strong interaction between Ni and CeO2 that promotes the dissociation of H2 molecules and the spillover of H atoms, thereby greatly benefitting the photothermal CO2 methanation reaction. This self-selective hydrothermal growth strategy represents a new pathway for the development of effective catalysts for targeted chemical reactions.

12.
Small ; 20(42): e2401925, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39007535

RESUMO

The voluntary introduction of defects can be considered an effective strategy for enhancing the electrochemical properties of metal oxide electrodes. In this study, the enhanced pseudocapacitive properties of an acceptor (Gd) doped cerium oxide nanoparticle-a sustainable metal oxide with low environmental and human toxicity-are investigated in depth using ex situ X-ray photoemission spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Interestingly, with 15 at% Gd doping (15GDC), the specific capacitance of the nanoparticles measured at 1 A g-1 enhanced to 547.8 F g-1, which is fivefold higher than undoped CeO2 (98.7 F g-1 at 1 A g-1). The rate-dependent capacitance is also improved for 15GDC, which showed a 31.0% decrease in the specific capacitance upon a tenfold increase in the current density, while CeO2 showed a 49.9% decrease. The enhanced electrochemical properties are studied in depth via ex situ XPS and EIS analysis, which revealed that the oxygen vacancies at the surface of the nanoparticles played important roles in enhancing both the specific capacitance and the high-rate performance of 15GDC by acting as the active site for pseudocapacitive redox reaction and allowing fast diffusion of oxygen ions at the surface of 15GDC nanoparticles.

13.
Small ; 20(13): e2307236, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37974471

RESUMO

Bimetallic metal-organic frameworks (MOFs) are promising nanomaterials whose reactivity towards biomolecules remains challenging due to issues related to synthesis, stability, control over metal oxidation state, phase purity, and atomic level characterization. Here, these shortcomings are rationally addressed through development of a synthesis of mixed metal Zr/Ce-MOFs in aqueous environment, overcoming significant hurdles in the development of MOF nanozymes, sufficiently stable on biologically relevant conditions. Specifically, a green and safe synthesis of Zr/Ce-MOF-808 is reported in water/acetic acid mixture which affords remarkably water-stable materials with reliable nanozymatic reactivity, including MOFs with a high Ce content previously reported to be unstable in water. The new materials outperform analogous bimetallic MOF nanozymes, showcasing that rational synthesis modifications could impart outstanding improvements. Further, atomic-level characterization by X-ray Absorption Fine Structure (XAFS) and X-ray Diffraction (XRD) confirmed superior nanozymes arise from differences in the synthetic method, which results in aqueous stable materials, and Ce incorporation, which perturbs the ligand exchange dynamics of the material, and could ultimately be used to fine tune the intrinsic MOF reactivity. Similar rational strategies which leverage metals in a synergistic manner should enable other water-stable bimetallic MOF nanozymes able to surpass existing ones, laying the path for varied biotechnological applications.


Assuntos
Estruturas Metalorgânicas , Nanoestruturas , Ácido Acético , Biotecnologia , Água
14.
J Bioenerg Biomembr ; 56(5): 505-515, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39102102

RESUMO

This study investigated Cerium oxide nanoparticles (CeONPs) effect on central neuropathic pain (CNP). The compressive method of spinal cord injury (SCI) model was used for pain induction. Three groups were formed by a random allocation of 24 rats. In the treatment group, CeONPs were injected above and below the lesion site immediately after inducing SCI. pain symptoms were evaluated using acetone, Radian Heat, and Von Frey tests weekly for six weeks. Finally, we counted fibroblasts using H&E staining. We evaluated the expression of Cx43, GAD65 and HDAC2 proteins using the western blot method. The analysis of results was done by PRISM software. At the end of the study, we found that CeONPs reduced pain symptoms to levels similar to those observed in normal animals. CeONPs also increased the expression of GAD65 and Cx43 proteins but did not affect HDAC2 inhibition. CeONPs probably have a pain-relieving effect on chronic pain by potentially preserving GAD65 and Cx43 protein expression and hindering fibroblast infiltration.


Assuntos
Cério , Nanopartículas , Animais , Ratos , Cério/farmacologia , Cério/uso terapêutico , Masculino , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Histona Desacetilase 2/metabolismo , Ratos Wistar , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo , Injeções Espinhais
15.
Eur J Nucl Med Mol Imaging ; 51(13): 4015-4025, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38940841

RESUMO

PURPOSE: The radionuclide pair cerium-134/lanthanum-134 (134Ce/134La) was recently proposed as a suitable diagnostic counterpart for the therapeutic alpha-emitter actinium-225 (225Ac). The unique properties of 134Ce offer perspectives for developing innovative in vivo investigations that are not possible with 225Ac. In this work, 225Ac- and 134Ce-labelled tracers were directly compared using internalizing and slow-internalizing cancer models to evaluate their in vivo comparability, progeny meandering, and potential as a matched theranostic pair for clinical translation. Despite being an excellent chemical match, 134Ce/134La has limitations to the setting of quantitative positron emission tomography imaging. METHODS: The precursor PSMA-617 and a macropa-based tetrazine-conjugate (mcp-PEG8-Tz) were radiolabelled with 225Ac or 134Ce and compared in vitro and in vivo using standard (radio)chemical methods. Employing biodistribution studies and positron emission tomography (PET) imaging in athymic nude mice, the radiolabelled PSMA-617 tracers were evaluated in a PC3/PIP (PC3 engineered to express a high level of prostate-specific membrane antigen) prostate cancer mouse model. The 225Ac and 134Ce-labelled mcp-PEG8-Tz were investigated in a BxPC-3 pancreatic tumour model harnessing the pretargeting strategy based on a trans-cyclooctene-modified 5B1 monoclonal antibody. RESULTS: In vitro and in vivo studies with both 225Ac and 134Ce-labelled tracers led to comparable results, confirming the matching pharmacokinetics of this theranostic pair. However, PET imaging of the 134Ce-labelled precursors indicated that quantification is highly dependent on tracer internalization due to the redistribution of 134Ce's PET-compatible daughter 134La. Consequently, radiotracers based on internalizing vectors like PSMA-617 are suited for this theranostic pair, while slow-internalizing 225Ac-labelled tracers are not quantitatively represented by 134Ce PET imaging. CONCLUSION: When employing slow-internalizing vectors, 134Ce might not be an ideal match for 225Ac due to the underestimation of tumour uptake caused by the in vivo redistribution of 134La. However, this same characteristic makes it possible to estimate the redistribution of 225Ac's progeny noninvasively. In future studies, this unique PET in vivo generator will further be harnessed to study tracer internalization, trafficking of receptors, and the progression of the tumour microenvironment.


Assuntos
Actínio , Cério , Tomografia por Emissão de Pósitrons , Animais , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Humanos , Cério/química , Distribuição Tecidual , Masculino , Compostos Radiofarmacêuticos , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral , Dipeptídeos , Compostos Heterocíclicos com 1 Anel , Antígeno Prostático Específico
16.
Chemistry ; 30(14): e202304012, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38133488

RESUMO

Cerium oxide nanoparticles (CNPs) have recently gained increasing interest as redox enzyme-mimetics to scavenge the intracellular excess of reactive oxygen species, including hydrogen peroxide (H2 O2 ). Despite the extensive exploration, there remains a notable discrepancy regarding the interpretation of observed redshift of UV-Visible spectroscopy due to H2 O2 addition and the catalase-mimicking mechanism of CNPs. To address this question, we investigated the reaction mechanism by taking a closer look at the reaction intermediate during the catalase mimicking reaction. In this study, we present evidence demonstrating that in aqueous solutions, H2 O2 adsorption at CNP surface triggers the formation of stable intermediates known as cerium-peroxo (Ce-O2 2- ) and/or cerium-hydroperoxo (Ce-OOH- ) complexes as resolved by Raman scattering and UV-Visible spectroscopy. Polymer coating presents steric hinderance for H2 O2 accessibility to the solid-liquid interface limiting further intermediate formation. We demonstrate in depth that the catalytic reactivity of CNPs in the H2 O2 disproportionation reaction increases with the Ce(III)-fraction and decreases in the presence of polymer coatings. The developed approach using UV-Visible spectroscopy for the characterization of the surface peroxide species can potentially serve as a foundation for determining the catalytic reactivity of CNPs in the disproportionation of H2 O2 .

17.
Chemistry ; 30(55): e202402470, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39073203

RESUMO

This paper describes the synthesis of a cerium(IV)-based molecular gear composed of a thioether functionalized phthalocyanine anchoring ligand, and a helical naphthalocyanine rotating cogwheel functionalized with four carbazoles. The naphthalocyanine ligand 9 was obtained after eleven steps (overall yield of 0.2 %) as a mixture of three geometrical isomers, two of which are chiral and exhibit high levels of steric hindrance, as shown by DFT calculations. Their attributions have been made using 1H-NMR based on their different symmetry groups. The ratio of isomers was also determined and the prochiral C4h naphthalocyanine shown to be the major compound (55 %). Its heteroleptic complexation with cerium (IV) and the anchoring phthalocyanine ligand 10 gave the targeted molecular gear in a 16 % yield.

18.
Chemistry ; 30(26): e202400642, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38436591

RESUMO

The need for synthetic methodologies capable of rapidly altering molecular structure are in high demand. Most existing methods to modify scaffolds rely on net exothermicity to drive the desired transformation. We sought to develop a general strategy for the cleavage of C-C bonds ß to hydroxyl groups independent of inherent substrate strain. To this end we have applied a multicatalytic cerium photoredox-based system capable of activating O-H bonds in lactols to deliver formate esters. The same system is also capable of effecting hydrodecarboxylation and hydrodecarbonylation reactions. Initial mechanistic probes demonstrate atomic chlorine (Cl⋅) is generated under the reaction conditions, but substrate activation through cerium-alkoxides or -carboxylates cannot be ruled out.

19.
Chemistry ; 30(43): e202400731, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38801720

RESUMO

Hybrid poly-ion complexes were synthesized through the complexation of a double hydrophilic copolymer with Ce(III) ions. These colloids act as reservoirs for cerium ions, enabling the synthesis of cerium-based Prussian blue nanoparticles with a cubic structure, a narrow size distribution around 100 nm, and good colloidal stability in water. Upon high-temperature calcination, these nanoparticles are transformed into a cerium/iron-based metal oxide catalyst (CeO2/Fe2O3). The resultant composite catalyst demonstrates superior performance in the photo-Fenton oxidation of methylene blue pollutants, achieving a conversion efficiency that rivals other metal-based oxides and cerium-based catalysts.

20.
Chemistry ; 30(46): e202400755, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38860741

RESUMO

Historically, cerium has been attractive for pharmaceutical and industrial applications. The cerium atom has the unique ability to cycle between two chemical states (Ce(III) and Ce(IV)) and drastically adjust its electronic configuration: [Xe] 4f15d16s2 in response to a chemical reaction. Understanding how electrons drive chemical reactions is an important topic. The most direct way of probing the chemical and electronic structure of materials is by X-ray absorption spectroscopy (XAS) or X-ray absorption near-edge structure (XANES) in high energy resolution fluorescence detection (HERFD) mode. Such measurements at the Ce L3 edge have the advantage of a high penetration depth, enabling in-situ reaction studies in a time-resolved manner and investigation of material production or material performance under specific conditions. But how much do we understand Ce L3 XANES? This article provides an overview of the information that can be extracted from experimental Ce L3 XAS/XANES/HERFD data. A collection of XANES data recorded on various cerium systems in HERFD mode is presented here together with detailed discussions on data analysis and the current status of spectral interpretation, including electronic structure calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA