RESUMO
Nearly half of the world's population is at risk of malaria, a disease caused by the protozoan parasite Plasmodium, which is estimated to cause more than 240,000,000 infections and kill more than 600,000 people annually. The emergence of Plasmodia resistant to chemoprophylactic treatment highlights the urgency to develop more effective vaccines. In this regard, whole sporozoite vaccination approaches in murine models and human challenge studies have provided substantial insight into the immune correlates of protection from malaria. From these studies, CD8+ T cells have come to the forefront, being identified as critical for vaccine-mediated liver-stage immunity that can prevent the establishment of the symptomatic blood stages and subsequent transmission of infection. However, the unique biological characteristics required for CD8+ T cell protection from liver-stage malaria dictate that more work must be done to design effective vaccines. In this review, we will highlight a subset of studies that reveal basic aspects of memory CD8+ T cell-mediated protection from liver-stage malaria infection.
Assuntos
Vacinas Antimaláricas , Malária , Plasmodium , Camundongos , Humanos , Animais , Memória Imunológica , Fígado , Linfócitos T CD8-PositivosRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing antibodies (NAbs) lack cross-reactivity between SARS-CoV species and variants and fail to mediate long-term protection against infection. The maintained protection against severe disease and death by vaccination suggests a role for cross-reactive T cells. We generated vaccines containing sequences from the spike or receptor binding domain, the membrane and/or nucleoprotein that induced only T cells, or T cells and NAbs, to understand their individual roles. In three models with homologous or heterologous challenge, high levels of vaccine-induced SARS-CoV-2 NAbs protected against neither infection nor mild histological disease but conferred rapid viral control limiting the histological damage. With no or low levels of NAbs, vaccine-primed T cells, in mice mainly CD8+ T cells, partially controlled viral replication and promoted NAb recall responses. T cells failed to protect against histological damage, presumably because of viral spread and subsequent T cell-mediated killing. Neither vaccine- nor infection-induced NAbs seem to provide long-lasting protective immunity against SARS-CoV-2. Thus, a more realistic approach for universal SARS-CoV-2 vaccines should be to aim for broadly cross-reactive NAbs in combination with long-lasting highly cross-reactive T cells. Long-lived cross-reactive T cells are likely key to prevent severe disease and fatalities during current and future pandemics.
Assuntos
Anticorpos Neutralizantes , Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , Vacinas ViraisRESUMO
Most diseases in aquaculture are caused by opportunistic pathogens. One of them, Vibrio harveyi, is a widespread Gram-negative bacterium that has become an important pathogen of aquatic species in marine environments. Here, we propose the use of the causal pie model as a framework to conceptualize the causation of vibriosis in juvenile barramundi (Lates calcarifer) and to establish an effective challenge model. In the model, a sufficient cause, or the causal pie, is a constellation of component causes that lead to an outcome (e.g. vibriosis). In the pilot study, a high cumulative mortality (63.3% ± 10.0%, mean ± SE) was observed when V. harveyi was administered by intraperitoneal injection using a high challenge dose [107 colony-forming units (CFU) fish-1 ], but low or no mortality was observed in fish subject to cold stress or fish with intact skin when challenged by immersion. We, therefore, tested the use of a skin lesion (induced with a 4-mm biopsy punch) combined with cold temperature stress to induce vibriosis following the causal pie model. After challenge, fish were immediately subject to cold stress (22°C) or placed at an optimal temperature of 30°C. All groups were challenged with 108 CFU mL-1 for 60 min. A considerably higher mortality level (72.7% ± 13.9%) was observed in fish challenged with both a skin lesion and cold stress compared with mortality in fish only having a skin lesion (14.6% ± 2.8%). V. harveyi was re-isolated from all moribund fish and was detected by species-specific real-time PCR in gills, head kidney and liver, regardless of challenge treatment confirming vibriosis as the cause of disease. Parenchymal tissues had histopathological changes consistent with vibriosis. Whole-genome sequence (WGS) is provided for the Vibrio harveyi isolate examined in this study. Overall, the causal pie model was a useful framework to conceptualize the design of the experimental challenge model, in which both cold stress and skin damage were identified as component causes of vibriosis with high mortality. This conceptual framework can be applied to other opportunistic pathogens in aquaculture or to the study of co-infections in fish.
Assuntos
Doenças dos Peixes , Perciformes , Vibrioses , Vibrio , Animais , Temperatura Baixa , Temperatura , Resposta ao Choque Frio , Projetos Piloto , Doenças dos Peixes/microbiologia , Vibrioses/veterinária , Vibrioses/microbiologia , PeixesRESUMO
Rationale: Pneumococcal colonization is key to the pathogenesis of invasive disease but is also immunogenic in young adults, protecting against recolonization. Colonization is rarely detected in older adults, despite high rates of pneumococcal disease.Objectives: To establish experimental human pneumococcal colonization in healthy adults aged 50-84 years, to measure the immune response to pneumococcal challenge, and to assess the protective effect of prior colonization against autologous strain rechallenge.Methods: Sixty-four participants were inoculated with Streptococcus pneumoniae (serotype 6B; 80,000 cfu in each nostril). Colonization was determined by bacterial culture of nasal wash, and humoral immune responses were assessed by anticapsular and antiprotein IgG concentrations.Measurements and Main Results: Experimental colonization was established in 39% of participants (25/64) with no adverse events. Colonization occurred in 47% (9/19) of participants aged 50-59 compared with 21% (3/14) in those aged ≥70 years. Previous pneumococcal polysaccharide vaccination did not protect against colonization. Colonization did not confer serotype-specific immune boosting, with a geometric mean titer (95% confidence interval) of 2.7 µg/ml (1.9-3.8) before the challenge versus 3.0 (1.9-4.7) 4 weeks after colonization (P = 0.53). Furthermore, pneumococcal challenge without colonization led to a drop in specific antibody concentrations from 2.8 µg/ml (2.0-3.9) to 2.2 µg/ml (1.6-3.0) after the challenge (P = 0.006). Antiprotein antibody concentrations increased after successful colonization. Rechallenge with the same strain after a median of 8.5 months (interquartile range, 6.7-10.1) led to recolonization in 5/16 (31%).Conclusions: In older adults, experimental pneumococcal colonization is feasible and safe but demonstrates different immunological outcomes compared with younger adults in previous studies.
Assuntos
Anticorpos Antibacterianos/imunologia , Portador Sadio/imunologia , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Infecções Assintomáticas , Técnicas de Cultura , Estudos de Viabilidade , Feminino , Humanos , Imunidade Humoral/imunologia , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Cavidade Nasal , Líquido da Lavagem Nasal , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/uso terapêuticoRESUMO
A novel viral haemorrhagic septicaemia virus (VHSV) of genotype IV was isolated from wild lumpfish (Cyclopterus lumpus), brought to a land-based farm in Iceland, to serve as broodfish. Two groups of lumpfish juveniles, kept in tanks in the same facility, got infected. The virus isolated was identified as VHSV by ELISA and real-time RT-PCR. Phylogenetic analysis, based on the glycoprotein (G) gene sequences, may indicate a novel subgroup of VHSV genotype IV. In controlled laboratory exposure studies with this new isolate, there was 3% survival in the I.P. injection challenged group while there was 90% survival in the immersion group. VHSV was not re-isolated from fish challenged by immersion. In a cohabitation trial, lumpfish infected I.P. (shedders) were placed in tanks with naïve lumpfish as well as naïve Atlantic salmon (Salmo salar L.). 10% of the lumpfish shedders and 43%-50% of the cohabiting lumpfish survived after 4 weeks. 80%-92% of the Atlantic salmon survived, but no viral RNA was detected by real-time RT-PCR nor VHSV was isolated from Atlantic salmon. This is the first isolation of a notifiable virus in Iceland and the first report of VHSV of genotype IV in European waters.
Assuntos
Doenças dos Peixes/virologia , Septicemia Hemorrágica Viral/patologia , Novirhabdovirus/patogenicidade , Perciformes/virologia , Animais , Aquicultura , Surtos de Doenças/veterinária , Doenças dos Peixes/transmissão , Genótipo , Glicoproteínas/genética , Septicemia Hemorrágica Viral/genética , Septicemia Hemorrágica Viral/transmissão , Islândia/epidemiologia , Novirhabdovirus/classificação , Novirhabdovirus/genética , Filogenia , RNA Viral/isolamento & purificação , Salmo salar/virologiaRESUMO
The gut is the largest organ that helps with the immune function. Gut health, especially in young pigs has a significant benefit to health and performance. In an attempt to maintain and enhance intestinal health in pigs and improve productivity in the absence of in-feed antibiotics, researchers have evaluated a wide range of feed additives. Some of these additives such as zinc oxide, copper sulphate, egg yolk antibodies, mannan-oligosaccharides and spray dried porcine plasma and their effectiveness are discussed in this review. One approach to evaluate the effectiveness of these additives in vivo is to use an appropriate disease challenge model. Over the years, researchers have used a number of challenge models which include the use of specific strains of enterotoxigenic Escherichia coli, bacteria lipopolysaccharide challenge, oral challenge with Salmonella enteric serotype Typhimurium, sanitation challenge, and Lawsonia intercellularis challenge. These challenge models together with the criteria used to evaluate the responses of the animals to them are also discussed in this review.
RESUMO
Phagocytosis is an important leucocyte function, however using existing models it cannot be measured in human tissues in vivo. To address this, we characterized a new phagocytosis model using intradermal methylene blue-labelled Escherichia coli injection (MBEC). Methylene blue (MB) is a licensed human medicine and bacterial stain potentially useful for labelling E. coli that are safe for human injection. Ex vivo co-culture of leucocytes with MBEC caused MB to transfer into neutrophils and macrophages by phagocytosis. During this, a 'red shift' in MB fluorescence was shown to be caused by phagolysosomal oxidisation. Hence, MBEC co-culture could be used to measure phagocytosis and phagolysosomal oxidisation in humans, ex vivo. In healthy volunteers, inflammatory exudate sampling using suction blisters 2-24h after intradermal MBEC injection showed that tissue-acquired neutrophils and monocytes contained more MB than their circulating counterparts, whereas blood and inflamed tissue T, B and NK cells were MBlo. This was validated with spectral flow cytometry by visualizing the MB emission spectrum in tissue-acquired neutrophils. Neutrophil MB emission spectra demonstrated more 'red shift' at 24h compared to earlier time-points, in-keeping with progressive phagolysosomal MB oxidisation in neutrophils over time in vivo. This new MBEC model can therefore measure bacterial phagocytosis and phagolysosomal oxidisation in human skin, in vivo. This has a number of important research applications, for example in studying human phagocyte biology, testing novel antimicrobials, and understanding why certain groups such as males, the elderly or those with diabetes, recent surgery or malnutrition are at increased risk of bacterial infection.
RESUMO
Dermal allyl isothiocyanate (AITC) administration and whole-body heat stress (WBHS) are two challenge models that are used to evaluate physiological mechanisms of vasodilation and pharmacological activity in humans. Their exact vasodilatory mechanisms in humans are not fully elucidated but are likely to be nitric oxide (NO)-mediated. This study aimed to evaluate whether there is overlap in the vasodilatory pathways of dermal AITC application and WBHS by combining the challenges. In this open-label interventional study, healthy volunteers underwent dermal administration of AITC twice: under basal conditions and during WBHS. Dermal blood flow (DBF) was non-invasively measured using laser speckle contrast imaging four times, once in each of the following situations: baseline, WBHS only, AITC only, and WBHS combined with AITC. A total of 12 male volunteers, aged 18-61 years, participated in the study. Compared to baseline, following AITC application, their DBF increased by 63.43 AU (baseline: 32.55, 95% CI [17.78, 47.31] AU, AITC only: 95.97, 95% CI [81.21, 110.7] AU, p < 0.0001). During WBHS, the increase in DBF after AITC was 42.76 AU (WBHS only: 87.25, 95% CI [72.49, 102.0] AU, WBHS+AITC: 130.0, 95% CI [115.2, 144.8] AU, p < 0.0001). The combination of WBHS and AITC resulted in a lower DBF than the sum of the DBF responses to AITC and WBHS when applied separately (ED 20.67, 95% CI [-3.532, 44.88], p = 0.0916). This might point towards the presence of an interaction in the vasodilatory mechanism of AITC application and WBHS, possibly indicating overlap in their NOS-driven vasodilatory pathways.
RESUMO
Controlled Human Infection Models (CHIMs) involve deliberately exposing healthy human volunteers to a known pathogen, to allow the detailed study of disease processes and evaluate methods of treatment and prevention, including next generation vaccines. CHIMs are in development for both tuberculosis (TB) and Covid-19, but challenges remain in their ongoing optimisation and refinement. It would be unethical to deliberately infect humans with virulent Mycobacteria tuberculosis (M.tb), however surrogate models involving other mycobacteria, M.tb Purified Protein Derivative or genetically modified forms of M.tb either exist or are under development. These utilise varying routes of administration, including via aerosol, per bronchoscope or intradermal injection, each with their own advantages and disadvantages. Intranasal CHIMs with SARS-CoV-2 were developed against the backdrop of the evolving Covid-19 pandemic and are currently being utilised to both assess viral kinetics, interrogate the local and systemic immunological responses post exposure, and identify immune correlates of protection. In future it is hoped they can be used to assess new treatments and vaccines. The changing face of the pandemic, including the emergence of new virus variants and increasing levels of vaccination and natural immunity within populations, has provided a unique and complex environment within which to develop a SARS-CoV-2 CHIM. This article will discuss current progress and potential future developments in CHIMs for these two globally significant pathogens.
Assuntos
COVID-19 , Mycobacterium tuberculosis , Tuberculose , Humanos , Pandemias , SARS-CoV-2 , Tuberculose/prevenção & controleRESUMO
African swine fever (ASF) is a viral haemorrhagic disease found in domestic and wild boars caused by the African swine fever virus (ASFV). A highly virulent strain was used to evaluate the efficacy of newly developed vaccine candidates. The ASFV strain SY18 was isolated from the first ASF case in China and is virulent in pigs of all ages. To evaluate the pathogenesis of ASFV SY18 following intraoral (IO) and intranasal (IN) infections, a challenge trial was conducted in landrace pigs, with intramuscular (IM) injection as a control. The results showed that the incubation period of IN administration with 40-1000 50 % tissue culture infective dose (TCID50) was 5-8 days, which was not significantly different from that of IM inoculation with 200 TCID50. A significantly longer incubation period, 11-15 days, was observed in IO administration with 40-5000 TCID50. Clinical features were similar among all infected animals. Symptoms, including high fever (≥40.5 °C), anorexia, depression, and recumbency, were observed. No significant differences were detected in the duration of viral shedding during fever. There was no significant difference in disease outcome, and all animals succumbed to death. This trial showed that IN and IO infections could be used for the efficacy evaluation of an ASF vaccine. The IO infection model, similar to that of natural infection, is highly recommended, especially for the primary screening of candidate vaccine strains or vaccines with relatively weak immune efficacy, such as live vector vaccines and subunit vaccines.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Animais , Genótipo , Sus scrofa , Suínos , Vacinas AtenuadasRESUMO
Factors associated with the severity with which different challenge models (CMs) compromise growth performance in pigs were investigated using hierarchical clustering on principal components (HCPC) analysis. One hundred seventy-eight studies reporting growth performance variables (average daily gain [ADG], average daily feed intake [ADFI], gain:feed [GF], and final body weight [FBW]) of a Control (Ct) vs. a Challenged (Ch) group of pigs using different CMs (enteric [ENT], environmental [ENV], lipopolysaccharide [LPS], respiratory [RES], or sanitary condition [SAN] challenges) were included. Studies were grouped by similarity in performance in three clusters (C1, C2, and C3) by HCPC. The effects of CM, cluster, and sex (males [M], females [F], mixed [Mi]) were investigated. Linear (LRP) and quadratic (QRP) response plateau models were fitted to assess the interrelationships between the change in ADG (∆ADG) and ADFI (∆ADFI) and the duration of challenge. All variables increased from C1 through C3, except for GF, which decreased (P < 0.05). LPS was more detrimental to ADG than ENV, RES, and SAN models (P < 0.05). Furthermore, LPS also lowered GF more than all the other CMs (P < 0.05). The ∆ADG independent of ∆ADFI was significant in LPS and SAN (P < 0.05), showed a trend toward the significance in ENT and RES (P < 0.10), and was not significant in ENV (P > 0.10), while the ∆ADG dependent on ∆ADFI was significant in ENT, ENV, and LPS only (P < 0.05). The critical value of ∆ADFI influencing the ∆ADG was significant in pigs belonging to C1 (P < 0.05) but not C2 or C3 (P > 0.10). The ∆ADG independent of duration post-Ch (irreparable portion of growth) was significant in C1 and C2 pigs, whereas the ∆ADFI independent of duration post-Ch (irreparable portion of feed intake) was significant in C1 pigs only (P < 0.05). Moreover, the time for recovery of ADG and ADFI after Ch was significant in pigs belonging to C1 and C2 (P < 0.05). Control F showed reduced ADG compared with Ct-M, and Ch-F showed reduced ADFI compared with Ch-M (P < 0.05). Moreover, the irreparable portion of ΔADG was 4.8 higher in F (-187.7; P < 0.05) compared with M (-39.1; P < 0.05). There are significant differences in growth performance response to CM based on cluster and sex. Furthermore, bacterial lipopolysaccharide appears to be an appropriate noninfectious model for immune stimulation and growth impairment in pigs.
Assuntos
Ração Animal , Ingestão de Alimentos , Ração Animal/análise , Animais , Feminino , Masculino , SuínosRESUMO
The redox system is essential for maintaining cellular homeostasis. When redox homeostasis is disrupted through an increase of reactive oxygen species or a decrease of antioxidants, oxidative distress occurs resulting in multiple tissue and systemic responses and damage. Poultry, swine and fish, raised in commercial conditions, are exposed to different stressors that can affect their productivity. Some dietary stressors can generate oxidative distress and alter the health status and subsequent productive performance of commercial farm animals. For several years, researchers used different dietary stressors to describe the multiple and detrimental effects of oxidative distress in animals. Some of these dietary challenge models, including oxidized fats and oils, exposure to excess heavy metals, soybean meal, protein or amino acids, and feeding diets contaminated with mycotoxins are discussed in this review. A better understanding of the oxidative distress mechanisms associated with dietary stressors allows for improved understanding and evaluation of feed additives as mitigators of oxidative distress.
RESUMO
INTRODUCTION: Malaria challenge models, where healthy human volunteers are intentionally infected with Plasmodium species parasites under controlled conditions, can be undertaken in several well-defined ways. These challenge models enable evaluation of the kinetics of parasite growth and clearance, host-pathogen interactions and the host immune response. They can facilitate discovery of candidate diagnostic biomarkers and novel vaccine targets. As translational tools they can facilitate testing of candidate vaccines and drugs and evaluation of diagnostic tests. AREAS COVERED: Until recently, malaria human challenge models have been limited to only a few Plasmodium falciparum strains and used exclusively in malaria-naïve volunteers in non-endemic regions. Several recent advances include the use of alternate P. falciparum strains and other species of Plasmodia, as well as strains attenuated by chemical, radiation or genetic modification, and the conduct of studies in pre-exposed individuals. Herein, we discuss how this diversification is enabling more thorough vaccine efficacy testing and informing rational vaccine development. EXPERT OPINION: The ability to comprehensively evaluate vaccine efficacy in controlled settings will continue to accelerate the translation of candidate malaria vaccines to the clinic, and inform the development and optimisation of potential vaccines that would be effective against multiple strains in geographically and demographically diverse settings.
Assuntos
Vacinas Antimaláricas/administração & dosagem , Malária/prevenção & controle , Plasmodium/imunologia , Animais , Desenvolvimento de Medicamentos/métodos , Humanos , Malária/imunologia , Malária/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium/isolamento & purificação , Plasmodium falciparum/imunologia , Plasmodium falciparum/isolamento & purificação , Projetos de PesquisaRESUMO
INTRODUCTION: Controlled human infection models (CHIM) have been used in vaccine development to up-select and down-select potential vaccine candidates and to provide proof of vaccine efficacy, and have also been used as a basis for licensure of vaccines for cholera and typhoid by regulatory agencies. CHIM IN DENGUE VACCINES DEVELOPMENT: Dengue fever results in â¼400 million infections a year and is of significant health concern especially in India. There are currently no antivirals for the disease and the only licensed vaccine for dengue is not widely used owing to safety concerns. Controlled dengue human challenge models (DHCM) are currently being used to assess the efficacy of vaccines in development for dengue. DENGUE CHIM IN INDIA: Conducting CHIM studies in India especially for evaluation of dengue vaccine candidates will be hugely beneficial as the disease is endemic to India and hence the effect of pre-exposure to the virus on vaccine safety and efficacy can be established. However, to date no CHIM studies have been conducted in India and there is a need to educate ethics committee members, policy makers and the public on the importance of such studies and what they entail.
Assuntos
Bioética , Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Desenvolvimento de Medicamentos/ética , Animais , Dengue/economia , Dengue/virologia , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , Desenvolvimento de Medicamentos/economia , Humanos , Modelos BiológicosRESUMO
Seasonal influenza vaccines are updated almost annually to match the antigenic drift in influenza hemagglutinin (HA) surface glycoprotein. A new HA stem-based antigen, the so-called "mini-HA," was recently shown to induce cross-protective antibodies. However, cross-reactive antibodies targeting the HA stem can also be found in mice and humans after administration of seasonal vaccine. This has raised the question whether in similar conditions such a mini-HA would be able to show an increased breadth of protection over immunization with full length (FL) HA. We show in mice that in a direct comparison to H1 FL HA, using the same immunization regimen, dosing and adjuvant, a group 1 mini-HA has a higher protective efficacy against group 1 influenza virus challenges not homologous to the H1 FL HA. Although both antigens induce a similar breadth of HA subtype binding, mini-HA immunization induces significantly more HA stem-specific antibodies correlating with survival. In addition, both mini-HA and H1 FL HA immunization induce influenza neutralizing antibodies while mini-HA induces significantly higher levels of mFcγRIII activation, involved in Fc-mediated antibody effector functions. In agreement with previous findings, this confirms that more than one mechanism contributes to protection against influenza. Together our results further warrant the development of a universal influenza vaccine based on the HA stem region.
Assuntos
Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunização , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Neutralizantes/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Antígenos Virais/imunologia , Reações Cruzadas/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Imunidade Celular , Imunoglobulina G/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Camundongos , Testes de Neutralização , Infecções por Orthomyxoviridae/mortalidade , Ligação Proteica/imunologiaRESUMO
There have been significant decreases in malaria mortality and morbidity in the last 10-15 years, and the most advanced pre-erythrocytic malaria vaccine, RTS,S, received a positive opinion from European regulators in July 2015. However, no blood-stage vaccine has reached a phase III trial. The first part of this review summarizes the pros and cons of various assays and models that have been and will be used to predict the efficacy of blood-stage vaccines. In the second part, blood-stage vaccine candidates that showed some efficacy in human clinical trials or controlled human malaria infection models are discussed. Then, candidates under clinical investigation are described in the third part, and other novel candidates and strategies are reviewed in the last part.
Assuntos
Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/isolamento & purificação , Malária/prevenção & controle , Ensaios Clínicos como Assunto , Descoberta de Drogas/tendências , HumanosRESUMO
Despite considerable progress in the development of immunocompetent mouse models using different high end technologies, most available small animal models for HCV study are unsuitable for challenge experiments, which are vital for vaccine development, as they fail to measure the T cell response in liver. A recently developed intra-hepatic challenge model results in HCV antigen expression in mouse hepatocytes and through the detection of the surrogate marker, SEAP, in serum, the effect of prior vaccination can be monitored longitudinally.
Assuntos
Modelos Animais de Doenças , Imunidade Celular , Fígado/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , FemininoRESUMO
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality. Current therapies confer partial benefits either by incompletely improving airflow limitation or by reducing acute exacerbations, hence new therapies are desirable. In the absence of robust early predictors of clinical efficacy, the potential success of novel therapeutic agents in COPD will not entirely be known until the drugs enter relatively large and costly clinical trials. New predictive models in humans, and new study designs are being sought to allow for confirmation of pharmacodynamic and potentially clinically meaningful effects in early development. This review focuses on human challenge models with lipopolysaccharide endotoxin, ozone, and rhinovirus, in the early clinical development phases of novel therapeutic agents for the treatment and reduction of exacerbations in COPD.