Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(49): e2314542120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015849

RESUMO

High-resolution imaging with compositional and chemical sensitivity is crucial for a wide range of scientific and engineering disciplines. Although synchrotron X-ray imaging through spectromicroscopy has been tremendously successful and broadly applied, it encounters challenges in achieving enhanced detection sensitivity, satisfactory spatial resolution, and high experimental throughput simultaneously. In this work, based on structured illumination, we develop a single-pixel X-ray imaging approach coupled with a generative image reconstruction model for mapping the compositional heterogeneity with nanoscale resolvability. This method integrates a full-field transmission X-ray microscope with an X-ray fluorescence detector and eliminates the need for nanoscale X-ray focusing and raster scanning. We experimentally demonstrate the effectiveness of our approach by imaging a battery sample composed of mixed cathode materials and successfully retrieving the compositional variations of the imaged cathode particles. Bridging the gap between structural and chemical characterizations using X-rays, this technique opens up vast opportunities in the fields of biology, environmental, and materials science, especially for radiation-sensitive samples.

2.
Proc Natl Acad Sci U S A ; 119(47): e2210516119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375054

RESUMO

Nearfield spectroscopic imaging techniques can be a powerful tool to map both cellular ultrastructure and molecular composition simultaneously but are currently limited in measurement capability. Resonance enhanced (RE) atomic force microscopy infrared (AFM-IR) spectroscopic imaging offers high-sensitivity measurements, for example, but probe-sample mechanical coupling, nonmolecular optical gradient forces, and noise overwhelm recorded chemical signals. Here, we analyze the key factors limiting AFM-IR measurements and propose an instrument design that enables high-sensitivity nanoscale IR imaging by combining null-deflection measurements with RE sensitivity. Our developed null-deflection scanning probe IR (NDIR) spectroscopic imaging provides ∼24× improvement in signal-to-noise ratio (SNR) compared with the state of the art, enables optimal signal recording by combining cantilever resonance with maximum laser power, and reduces background nonmolecular signals for improved analytical accuracy. We demonstrate the use of these properties for high-sensitivity, hyperspectral imaging of chemical domains in 100-nm-thick sections of cellular acini of a prototypical cancer model cell line, MCF-10A. NDIR chemical imaging enables facile recording of label-free, chemically accurate, high-SNR vibrational spectroscopic data from nanoscale domains, paving the path for routine studies of biomedical, forensic, and materials samples.


Assuntos
Lasers , Espectrofotometria Infravermelho/métodos , Microscopia de Força Atômica/métodos , Linhagem Celular
3.
Proc Natl Acad Sci U S A ; 119(26): e2203519119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727976

RESUMO

One of the biggest challenges in microbiome research in environmental and medical samples is to better understand functional properties of microbial community members at a single-cell level. Single-cell isotope probing has become a key tool for this purpose, but the current detection methods for determination of isotope incorporation into single cells do not allow high-throughput analyses. Here, we report on the development of an imaging-based approach termed stimulated Raman scattering-two-photon fluorescence in situ hybridization (SRS-FISH) for high-throughput metabolism and identity analyses of microbial communities with single-cell resolution. SRS-FISH offers an imaging speed of 10 to 100 ms per cell, which is two to three orders of magnitude faster than achievable by state-of-the-art methods. Using this technique, we delineated metabolic responses of 30,000 individual cells to various mucosal sugars in the human gut microbiome via incorporation of deuterium from heavy water as an activity marker. Application of SRS-FISH to investigate the utilization of host-derived nutrients by two major human gut microbiome taxa revealed that response to mucosal sugars tends to be dominated by Bacteroidales, with an unexpected finding that Clostridia can outperform Bacteroidales at foraging fucose. With high sensitivity and speed, SRS-FISH will enable researchers to probe the fine-scale temporal, spatial, and individual activity patterns of microbial cells in complex communities with unprecedented detail.


Assuntos
Bacteroidetes , Firmicutes , Microbioma Gastrointestinal , Hibridização in Situ Fluorescente , Análise Espectral Raman , Bacteroidetes/metabolismo , Firmicutes/metabolismo , Humanos , Hibridização in Situ Fluorescente/métodos , Isótopos , Análise de Célula Única , Análise Espectral Raman/métodos , Açúcares/metabolismo
4.
Nano Lett ; 24(3): 1024-1033, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207237

RESUMO

Nanomedicine has brought significant advancements to healthcare by utilizing nanotechnology in medicine. Despite much promise, the further development of nanocarriers for clinical use has been hindered by a lack of understanding and visualization of nano-bio interactions. Conventional imaging methods have limitations in resolution, sensitivity, and specificity. This study introduces a label-free optical approach using stimulated Raman scattering (SRS) microscopy to image poly(lactic-co-glycolic acid) (PLGA) nanocarriers, the most widely used polymeric nanocarrier for delivery therapeutic agents, with single-particle sensitivity and quantification capabilities. A unique Raman peak was identified for PLGA ester, enabling generalized bio-orthogonal bond imaging. We demonstrated quantitative SRS imaging of PLGA nanocarriers across different biological systems from cells to animal tissues. This label-free imaging method provides a powerful tool for studying this prevalent nanocarrier and quantitatively visualizing their distribution, interaction, and clearance in vivo.


Assuntos
Microscopia , Nanopartículas , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Nanopartículas/química
5.
J Exp Bot ; 75(6): 1654-1670, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37889862

RESUMO

Mass spectrometry imaging (MSI) has emerged as an invaluable analytical technique for investigating the spatial distribution of molecules within biological systems. In the realm of plant science, MSI is increasingly employed to explore metabolic processes across a wide array of plant tissues, including those in leaves, fruits, stems, roots, and seeds, spanning various plant systems such as model species, staple and energy crops, and medicinal plants. By generating spatial maps of metabolites, MSI has elucidated the distribution patterns of diverse metabolites and phytochemicals, encompassing lipids, carbohydrates, amino acids, organic acids, phenolics, terpenes, alkaloids, vitamins, pigments, and others, thereby providing insights into their metabolic pathways and functional roles. In this review, we present recent MSI studies that demonstrate the advances made in visualizing the plant spatial metabolome. Moreover, we emphasize the technical progress that enhances the identification and interpretation of spatial metabolite maps. Within a mere decade since the inception of plant MSI studies, this robust technology is poised to continue as a vital tool for tackling complex challenges in plant metabolism.


Assuntos
Metaboloma , Plantas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Plantas/metabolismo , Raízes de Plantas/metabolismo , Sementes
6.
Anal Bioanal Chem ; 416(14): 3373-3388, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38625560

RESUMO

A novel approach using diffusive gradients in thin films (DGT) with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for two-dimensional mapping of elemental solute release at sub-picogram levels during aqueous corrosion of Al alloys is presented. Evaluation of different DGT gels with mixed micro-sized binding phases (polyacrylamide-Chelex-Metsorb, polyurethane (PU)-Chelex-Metsorb, PU-Chelex-Zr(OH)4) demonstrated the superior performance of PU gels due to their tear-proof handling, low shrinkage, and compliance with green chemistry. DGT devices containing PU-Chelex-Zr(OH)4 gels, which have not been characterized for Al sampling before, showed quantitative uptake of Al, Zn, and Cu solutes over time (t = 4-48 h) with higher Al capacity (ΓDGT = 6.25 µg cm-2) than different gels. Application of PU-Chelex-Zr(OH)4 gels on a high-strength Al-Cu alloy (Al2219) exposed to NaCl (w = 1.5%, pH = 4.5, T = 21 °C) for 15 min in a novel piston-type configuration revealed reproducible patterns of Al and Zn co-solubilization with a spatial expansion ranging between 50 and 1000 µm. This observation, together with complementary solid-state data from secondary electron microscopy with energy-dispersive X-ray spectroscopy, showed the presence of localized pitting corrosion at the material surface. Detection limits for total solute masses of Al, Zn, and Cu were ≤0.72 pg, ≤8.38 pg, and ≤0.12 pg, respectively, for an area of 0.01 mm2, demonstrating the method's unique capability to localize and quantify corrosion processes at ultra-trace levels and high resolution. Our study advances the assessment of Al alloy degradation in aqueous environments, supporting the design of corrosion-resistant materials for fostering technological safety and sustainability.

7.
Biol Pharm Bull ; 47(5): 878-885, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692863

RESUMO

The existence of substandard and falsified medicines threatens people's health and causes economic losses as well as a loss of trust in medicines. As the distribution of pharmaceuticals becomes more globalized and the spread of substandard and falsified medicines continues worldwide, pharmaceutical security measures must be strengthened. To eradicate substandard and falsified medicines, our group is conducting fact-finding investigations of medicines distributed in lower middle-income countries (LMICs) and on the Internet. From the perspective of pharmaceutics, such as physical assessment of medicines, we are working to clarify the actual situation and develop methods to detect substandard and falsified medicines. We have collected substandard and falsified medicines distributed in LMICs and on the Internet and performed pharmacopoeial tests, mainly using HPLC, which is a basic analytic method. In addition to quality evaluation, we have evaluated the applicability of various analytic methods, including observation of pharmaceuticals using an electron microscope, Raman scattering analysis, near-IR spectroscopic analysis, chemical imaging, and X-ray computed tomography (CT) to detect substandard and falsified medicines, and we have clarified their limitations. We also developed a small-scale quality screening method using statistical techniques. We are engaged in the development of methods to monitor the distribution of illegal medicines and evolve research in forensic and policy science. These efforts will contribute to the eradication of substandard and falsified medicines. Herein, I describe our experience in the development of detection methods and elucidation of the pharmaceutical status of substandard and falsified medicines using novel technologies.


Assuntos
Medicamentos Falsificados , Medicamentos Fora do Padrão , Humanos , Medicamentos Falsificados/análise , Controle de Qualidade , Medicamentos Fora do Padrão/análise
8.
Angew Chem Int Ed Engl ; 63(6): e202306033, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37782261

RESUMO

The structural and morphological characterization of individual catalyst particles for olefin polymerization, as well as for the reverse process of polyolefin decomposition, can provide an improved understanding for how these catalyst materials operate under relevant reaction conditions. In this review, we discuss an emerging analytical toolbox of 2D and 3D chemical imaging techniques that is suitable for investigating the chemistry and reactivity of related catalyst systems. While synchrotron-based X-ray microscopy still provides unparalleled spatial resolutions in 2D and 3D, a number of laboratory-based techniques, most notably focused ion beam-scanning electron microscopy, confocal fluorescence microscopy, infrared photoinduced force microscopy and laboratory-based X-ray nano-computed tomography, have helped to significantly expand the arsenal of analytical tools available to scientists in heterogeneous catalysis and polymer science. In terms of future research, the review outlines the role and impact of in situ and operando (spectro-)microscopy experiments, involving sophisticated reactors as well as online reactant and product analysis, to obtain real-time information on the formation, decomposition, and mobility of polymer phases within single catalyst particles. Furthermore, the potential of fluorescence microscopy, X-ray microscopy and optical microscopy is highlighted for the high-throughput characterization of olefin polymerization and polyolefin decomposition catalysts. By combining these chemical imaging techniques with, for example, chemical staining methodologies, selective probe molecules as well as particle sorting approaches, representative structure-activity relationships can be derived at the level of single catalyst particles.

9.
Environ Sci Technol ; 57(30): 10911-10918, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37440474

RESUMO

Microplastics have been detected in human stool, lungs, and placentas, which have direct exposure to the external environment through various body cavities, including the oral/anal cavity and uterine/vaginal cavity. Crucial data on microplastic exposure in completely enclosed human organs are still lacking. Herein, we used a laser direct infrared chemical imaging system and scanning electron microscopy to investigate whether microplastics exist in the human heart and its surrounding tissues. Microplastic specimens were collected from 15 cardiac surgery patients, including 6 pericardia, 6 epicardial adipose tissues, 11 pericardial adipose tissues, 3 myocardia, 5 left atrial appendages, and 7 pairs of pre- and postoperative venous blood samples. Microplastics were not universally present in all tissue samples, but nine types were found across five types of tissue with the largest measuring 469 µm in diameter. Nine types of microplastics were also detected in pre- and postoperative blood samples with a maximum diameter of 184 µm, and the type and diameter distribution of microplastics in the blood showed alterations following the surgical procedure. Moreover, the presence of poly(methyl methacrylate) in the left atrial appendage, epicardial adipose tissue, and pericardial adipose tissue cannot be attributed to accidental exposure during surgery, providing direct evidence of microplastics in patients undergoing cardiac surgery. Further research is needed to examine the impact of surgery on microplastic introduction and the potential effects of microplastics in internal organs on human health.

10.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220350, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691470

RESUMO

X-ray diffraction/scattering computed tomography (XDS-CT) methods are a non-destructive class of chemical imaging techniques that have the capacity to provide reconstructions of sample cross-sections with spatially resolved chemical information. While X-ray diffraction CT (XRD-CT) is the most well-established method, recent advances in instrumentation and data reconstruction have seen greater use of related techniques like small angle X-ray scattering CT and pair distribution function CT. Additionally, the adoption of machine learning techniques for tomographic reconstruction and data analysis are fundamentally disrupting how XDS-CT data is processed. The following narrative review highlights recent developments and applications of XDS-CT with a focus on studies in the last five years. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

11.
Chem Pharm Bull (Tokyo) ; 71(6): 454-458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258200

RESUMO

In pharmaceutics, substandard drug manufacturing can sometimes occur. Usually, end-product release tests are conducted to detect defective products, but in many cases, they are not able to identify the root causes of quality defects. In recent years, chemical imaging techniques have been widely used to study quality defects by visualizing the distribution of components in solid dosage forms. However, in most studies, the causes are predicted from images of ingredients, and the impact of each factor is unclear. In this study, we prepared model tablets and intentionally changed only the distribution of disintegrants, and visualized this distribution using the Raman chemical imaging technique to evaluate the effect on the dissolution behavior of the tablets. We found that tablet disintegration occurs completely when the amount of disintegrant is sufficient to disintegrate the tablet and is distributed throughout the tablet, even if the distribution is not uniform. In contrast, if there was a large area where the disintegrant was not present, the tablet did not disintegrate sufficiently. This suggests that it is more important that a sufficient amount of disintegrant is present throughout the tablet rather than the degree of deviation of disintegrant distribution.


Assuntos
Química Farmacêutica , Excipientes , Química Farmacêutica/métodos , Solubilidade , Comprimidos
12.
Sensors (Basel) ; 23(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067898

RESUMO

Odor information fills every corner of our lives yet obtaining its spatiotemporal distribution is a difficult challenge. Localized surface plasmon resonance has shown good sensitivity and a high response/recovery speed in odor sensing and converts chemical information such as odor information into optical information, which can be captured by charge-coupled device cameras. This suggests that the utilization of localized surface plasmon resonance has great potential in two-dimensional odor trace visualization. In this study, we developed a two-dimensional imaging system based on backside scattering from a localized surface plasmon resonance substrate to visualize odor traces, providing an intuitive representation of the spatiotemporal distribution of odor, and evaluated the performance of the system. In comparative experiments, we observed distinct differences between odor traces and disturbances caused by environmental factors in differential images. In addition, we noted changes in intensity at positions corresponding to the odor traces. Furthermore, for indoor experiments, we developed a method of finding the optimal capture time by comparing changes in differential images relative to the shape of the original odor trace. This method is expected to assist in the collection of spatial information of unknown odor traces in future research.

13.
Sensors (Basel) ; 23(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36850417

RESUMO

The detection of beneficial microbes living within perennial ryegrass seed causing no apparent defects is challenging, even with the most sensitive and conventional methods, such as DNA genotyping. Using a near-infrared hyperspectral imaging system (NIR-HSI), we were able to discriminate not only the presence of the commercial NEA12 fungal endophyte strain but perennial ryegrass cultivars of diverse seed age and batch. A total of 288 wavebands were extracted for individual seeds from hyperspectral images. The optimal pre-processing methods investigated yielded the best partial least squares discriminant analysis (PLS-DA) classification model to discriminate NEA12 and without endophyte (WE) perennial ryegrass seed with a classification accuracy of 89%. Effective wavelength (EW) selection based on GA-PLS-DA resulted in the selection of 75 wavebands yielding 88.3% discrimination accuracy using PLS-DA. For cultivar identification, the artificial neural network discriminant analysis (ANN-DA) was the best-performing classification model, resulting in >90% classification accuracy for Trojan, Alto, Rohan, Governor and Bronsyn. EW selection using GA-PLS-DA resulted in 87 wavebands, and the PLS-DA model performed the best, with no extensive compromise in performance, resulting in >89.1% accuracy. The study demonstrates the use of NIR-HSI reflectance data to discriminate, for the first time, an associated beneficial fungal endophyte and five cultivars of perennial ryegrass seed, irrespective of seed age and batch. Furthermore, the negligible effects on the classification errors using EW selection improve the capability and deployment of optimized methods for real-time analysis, such as the use of low-cost multispectral sensors for single seed analysis and automated seed sorting devices.


Assuntos
Imageamento Hiperespectral , Lolium , Movimento Celular , Diagnóstico por Imagem , Sementes
14.
Molecules ; 28(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375260

RESUMO

One of the major challenges in the development of effective pharmaceutical formulations for oral administration is the poor solubility of active pharmaceutical ingredients. For this reason, the dissolution process and drug release from solid oral dosage forms, such as tablets, is usually thoroughly studied in order to understand the dissolution behaviour under various conditions and optimize the formulation accordingly. Standard dissolution tests used in the pharmaceutical industry provide information on the amount of drug released over time; however, these do not allow for a detailed analysis of the underlying chemical and physical mechanisms of tablet dissolution. FTIR spectroscopic imaging, by contrast, does offer the ability to study these processes with high spatial and chemical specificity. As such, the method allows us to see the chemical and physical processes which occur inside the tablet as it dissolves. In this review, the power of ATR-FTIR spectroscopic imaging is demonstrated by presenting a number of successful applications of this chemical imaging technique to dissolution and drug release studies for a range of different pharmaceutical formulations and study conditions. Understanding these processes is essential for the development of effective oral dosage forms and optimization of pharmaceutical formulations.


Assuntos
Diagnóstico por Imagem , Liberação Controlada de Fármacos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Comprimidos/química
15.
Sensors (Basel) ; 22(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35161857

RESUMO

We developed a high spatially-resolved ion-imaging system using focused electron beam excitation. In this system, we designed a nanometric thin sensor substrate to improve spatial resolution. The principle of pH measurement is similar to that of a light-addressable potentiometric sensor (LAPS), however, here the focused electron beam is used as an excitation carrier instead of light. A Nernstian-like pH response with a pH sensitivity of 53.83 mV/pH and linearity of 96.15% was obtained. The spatial resolution of the imaging system was evaluated by applying a photoresist to the sensing surface of the ion-sensor substrate. A spatial resolution of 216 nm was obtained. We achieved a substantially higher spatial resolution than that reported in the LAPS systems.


Assuntos
Técnicas Biossensoriais , Elétrons , Potenciometria
16.
Chimia (Aarau) ; 76(3): 192-202, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069733

RESUMO

The kinetics of most of chemical energy storage and conversion processes is rate-limited by the mass transport through matter. There is an uncertainty on the corresponding kinetic models, especially if based solely on kinetic theory. Henceforth analytical strategies coupled to setups, in order to capture data for overcoming this limitation are essential. Operando chemical imaging of the kinetics process supports the identification of rate-limiting barriers and definition of actionable kinetic insights. After an overview of the chemical and physical processes in various energy storage/conversion systems, and examples of chemical imaging applied on them, analytical challenges are discussed with particular focus on novel methods and fundamental limitations. Despite convincing success technologies, various scientific challenges of operando chemical kinetics await solution. Apart from technical improvements of the analysis instrumentation, promising developments are seen in advanced digital science.

17.
Angew Chem Int Ed Engl ; 61(43): e202210288, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36057139

RESUMO

Lack of appropriate tools for visualizing cell membrane molecules at the nanoscale in a non-invasive and label-free fashion limits our understanding of many vital cellular processes. Here, we use tip-enhanced Raman spectroscopy (TERS) to visualize the molecular distribution in pancreatic cancer cell (BxPC-3) membranes in ambient conditions without labelling, with a spatial resolution down to ca. 2.5 nm. TERS imaging reveals segregation of phenylalanine-, histidine-, phosphatidylcholine-, protein-, and cholesterol-rich BxPC-3 cell membrane domains at the nm length-scale. TERS imaging also showed a cell membrane region where cholesterol is mixed with protein. Interestingly, the higher resolution TERS imaging revealed that the molecular domains observed on the BxPC-3 cell membrane are not chemically "pure" but also contain other biomolecules. These results demonstrate the potential of TERS for non-destructive and label-free imaging of cell membranes with nanoscale resolution.


Assuntos
Histidina , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Microscopia de Força Atômica/métodos , Proteínas , Fosfatidilcolinas , Membrana Celular , Fenilalanina
18.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418952

RESUMO

Raman spectroscopic imaging and mapping were applied to characterise three-compound ceramic composite biomaterial consisting of chitosan, ß-1,3-d-glucan (curdlan) and hydroxyapatite (HA) developed as a bone tissue engineering product (TEP). In this rapidly advancing domain of medical science, the urge for quick, reliable and specific method for products evaluation and tissue-implant interaction, in this case bone formation process, is constantly present. Two types of stem cells, adipose-derived stem cells (ADSCs) and bone marrow-derived stem cells (BMDSCs), were cultured on composite surface. Raman spectroscopic imaging provided advantageous information on molecular differences and spatial distribution of compounds within and between the cell-seeded and untreated samples at a microscopic level. With the use of this, it was possible to confirm composite biocompatibility and bioactivity in vitro. Deposition of HA and changes in its crystallinity along with protein adsorption proved new bone tissue formation in both mesenchymal stem cell samples, where the cells proliferated, differentiated and produced biomineralised extracellular matrix (ECM). The usefulness of spectroscopic Raman imaging was confirmed in tissue engineering in terms of both the organic and inorganic components considering composite-cells interaction.


Assuntos
Microscopia Confocal/métodos , Análise Espectral Raman , Alicerces Teciduais/química , Tecido Adiposo/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células da Medula Óssea/citologia , Células Cultivadas , Quitosana/química , Durapatita/química , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual
19.
Molecules ; 26(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799702

RESUMO

Raman spectroscopy is one of the main analytical techniques used in optical metrology. It is a vibration, marker-free technique that provides insight into the structure and composition of tissues and cells at the molecular level. Raman spectroscopy is an outstanding material identification technique. It provides spatial information of vibrations from complex biological samples which renders it a very accurate tool for the analysis of highly complex plant tissues. Raman spectra can be used as a fingerprint tool for a very wide range of compounds. Raman spectroscopy enables all the polymers that build the cell walls of plants to be tracked simultaneously; it facilitates the analysis of both the molecular composition and the molecular structure of cell walls. Due to its high sensitivity to even minute structural changes, this method is used for comparative tests. The introduction of new and improved Raman techniques by scientists as well as the constant technological development of the apparatus has resulted in an increased importance of Raman spectroscopy in the discovery and defining of tissues and the processes taking place in them.


Assuntos
Parede Celular/metabolismo , Células Vegetais/metabolismo , Análise Espectral Raman/métodos , Microscopia de Força Atômica/métodos , Plantas/metabolismo , Vibração
20.
Angew Chem Int Ed Engl ; 60(8): 4028-4033, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33174356

RESUMO

Protein lipoylation is a post-translational modification of emerging importance in both prokaryotes and eukaryotes. However, labeling and large-scale profiling of protein lipoylation remain challenging. Here, we report the development of iLCL (iodoacetamide-assisted lipoate-cyclooctyne ligation), a chemoselective reaction that enables chemical tagging of protein lipoylation. We demonstrate that the cyclic disulfide of lipoamide but not linear disulfides can selectively react with iodoacetamide to produce sulfenic acid, which can be conjugated with cyclooctyne probes. iLCL enables tagging of lipoylated proteins for gel-based detection and cellular imaging. Furthermore, we apply iLCL for proteomic profiling of lipoylated proteins in both bacteria and mammalian cells. In addition to all of the eight known lipoylated proteins, we identified seven candidates for novel lipoylated proteins. The iLCL strategy should facilitate uncovering the biological function of protein lipoylation.


Assuntos
Lipídeos/química , Proteínas/química , Alcinos/química , Animais , Bovinos , Dissulfetos/química , Iodoacetamida/química , Lipopeptídeos/análise , Lipoilação , Camundongos , Proteômica , Teoria Quântica , Células RAW 264.7 , Soroalbumina Bovina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA